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Abstract. The purpose of this paper is to study fuzzy Moore machines and their (output) subsystems. Apart from
usual properties of subsystems of a fuzzy Moore machine, we characterize them using a class of fuzzy sets for
fixed strings of input and output. Also a class of subsystems of a given fuzzy Moore machines is obtained with
the help of fuzzy points. Cyclic and super cyclic subsystems are also encountered and characterized. The concept
of subsystem is generalized to output subsystem. While proving (cartesian) product of output subsystems is an
output subsystem, we introduce products of fuzzy Moore machines. These products of fuzzy Moore machines
with the help of separability of functions and without separability of functions are analyzed and natural products

are introduced.

Keywords: Subsystem; Finite state machine; Fuzzy Moore machine: Restricted product: Wreath product

2010 AMS Subject Classification: 68Q70.

1. Preliminaries

In recent studies on fuzzy automaton, various extensions such as, general fuzzy automaton
[5, 16], Intutionistic fuzzy automaton [4], Bipolar fuzzy automaton [9], fuzzy pushdown au-
tomaton [ 14, 4] etc are successfully studied. Apart from these extensions various properties of
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fuzzy finite state machines are extended to these extensions [1, 3, 7, 8, 10, 11, 12, 13]. In [10]
subsystem of fuzzy finite state machine is introduced and various issues relating to them are
discussed. Since many concepts of fuzzy finite state machine are introduced for fuzzy Mealy
machine [2, 8, 13, 15]. It is natural to think about the extension for fuzzy Moore machine. In
[1] fuzzy Mealy and Moore machines are introduced and discussed comparatively. We use the
definition of fuzzy Moore machine given in the [1] and discuss mainly (output) subsystem of
fuzzy Moore machines in this paper.

Recall that X* denote the set of all string of finite length over X, A denotes the empty string
and | X| denotes the length of x.

The basic definitions of fuzzy Mealy and Moore machines are given in [1] as follows:

A fuzzy Mealy machine is a sextuple S = (Q,X,T',1, i, ), where Q is a non-empty finite set
of state of S; X is a non-empty finite set of inputs of S; I' is a non-empty finite set of outputs
of S; I: Q —» [0,1], is called initial fuzzy state in S; L : Q x X x Q — [0, 1], is called fuzzy
transition function and @ : Q X £ xI' — [0, 1], called fuzzy output function.

A fuzzy Moore machine is a sextuple M = (Q,X,T",1,u, ), where Q,X,T", I, u are similar as
in the above definition of fuzzy Mealy Machine and § : Q x I' — [0, 1], called fuzzy output
function. The fuzzy set § induces the fuzzy set 5 : Q x £* x I'* — [0, 1] as follows:
5*(p,x,A) = 8%(p,A, ) =0; 6*(p,0,7) = V {u(p,0,t) AS(t,7)} and 6*(p, ox, T0X)
= VQ{u(p,c,t) ANO(t,T) A [6#(t,x,oc)]},V1;€€Q Q.0 telxe X and o € T'*. Thus, the

te

following results are obvious.

Theorem 1.1. Ler M = (Q,X,T',1, U, §) be fuzzy Moore machine. Then for p € Q,6 € X, x € X*
and o € T*, if | x| # | a|, then we have §* (p,x, o) = 0.

Let o be a fuzzy subset of a nonempty set of X. Then supp(c) = {x € X|o(x) > 0} is the
support of o. Throughout this paper A denotes infimum and V denotes supremum of a set. Let

a € Q and r € [0,1]. Then the fuzzy subset g; of Q is defined by ¢;(¢q) =t and ¢;(r) = 0, if
qFrvreQ.



2. Fuzzy moore machines and homomorphisms

In this section, we introduce fuzzy Moore machines and discuss various properties of them.
Recall. X* denote the set of all string of finite length over X, A denotes the empty string and |x|
denotes the length of x.

Let o be a fuzzy subset of a nonempty set of X. Then supp(c) = {x € X|o(x) > 0} is the
support of o. Throughout this paper A denotes infimum and V denotes supremum of a set. Let
g € Q and r € [0,1]. Then the fuzzy subset g; of Q is defined by ¢;(¢) =t and ¢;(r) = 0, if
q#rVreQ.

Definition 2.1. Fuzzy Moore machine is a quintuple M = (Q,X,Y, 8,0) where Q is a finite non-
empty set called set of states, X is a finite non-empty set called set of inputs, Y is a finite non-
empty set called set of outputs, 8 is a fuzzy subset of Q X X x Q called the transition function,
o is a fuzzy subset of Q X Y called the output function and following condition is satisfied:

VgeQ,aeX,(3p€Q,8(q,a,p)>0)) = (IbeY,0(q,b)>0).
Definition 2.2. Let M = (Q,X,Y,0,0) be a fuzzy Moore machine. Then

(i) define 8% : Q x X* x Q — [0,1] as: forall ¢,p € Q,a € X, x € X*

1, ifqg=p,

0, ifq+#p, and

8" (q,A,p) =

6*(q,ax,p) = \/Q{5(q,a7r)A5*(nx,P)}
re
(ii) define 6* : Q x X* xY* — [0,1] as: forallg€ Q,ac X, x € X*,beY,ycY*

I, fx=y=2

0, fx=AyF#A)or(y=2A,x#2),

o*(q,a,b) = \ {8(q,a,r) No(r,b)} and
reQ

o*(g,ax,by) = \ {8(g,a,r) No(r,b) ANo*(r,x,y)}
reQ

o*(g,x,y) =

The following theorem is independent of the output function and can be found in many ref-

erences for example [1, 2, 5, 6, 7].



Theorem 2.3. Let M = (Q,X,Y, 8, 0) be a fuzzy Moore machine. Then §*(q,xu,p) =\ {8*(q,x,r)\
reQ
o*(r,u,p)}, Vq,p € Q,and x,u € X*.

The following couple of theorems show that the input and output has same length for the

working of fuzzy Moore machines.

Theorem 2.4. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine. If |x| # |y|, then 6% (q,x,y) =
0,VgeQ,xeX* yeY™

Proof. Without loss of generality assume that |x| > |y|. If |[y| =0, then y = A. Thus by defi-
nition of 6%, 6%(q,x,y) = 6%(¢,x,A) = 0. Suppose that the theorem holds for |y| =n— 1. Let
Y = Y1Y2Y3...-Yu- Then |x| is at least n+ 1. Suppose, x = x1x2X3...X,X,+1. Then

o™ (g, 210003 XXy 1,9192)3---Yn) = V{8 (q,x1,71) NG (r1,31) AL0* (r1,%0%3 .. X0 X1, Y23+ V)
lIr € QF =V{[8(q,x1,r1) Ao (ri,y1)] A[8(ri,x2,r2) NG (r2,y2)] A[8(r2,x3,r3) A O (r3,y3)]A
e A8 (P25 %01, 7= 1) A G (ra—1, Yu— )] A [8 (a1, X, 70) A G (rs y) | A 0* (1 X1, A) i € O}
=V{18(q,x1,r) Ao (ri,y1)] A[8(r1,x2,m2) A O (r2,y2)] A[6(r2,x3,73) A G (r3,y3)] A

N[O (P2, Xn—1,Pn—1) NO (Fn—1,Yn—1)] A0 (Fn—1,%n, ) NG (1, yn)] AO|r; € Q} = 0. O

Theorem 2.5. Let M = (Q,X,Y, 8, 0) be a fuzzy Moore machine, If |x| = |y| then 6% (q,ax, by) =

V {6%(¢q,a,b) N[6(q,a,r) Ao (rx,y)]}, Vg€ QxEX ,acX,yeY* bEY.
reQ

Proof. By the definition 2.2, 6*(g,ax,by) = \/ {8(q,a,r) ANo(r,b) Ao*(r,x,y)} = V {[6(q,a,
reQ reQ

rYAo(rb)]A[8(q,a,r) Aot (rx,y)]} = ré/Q{G#(q,a,b) N[6(q,a,r) Ao®(r,x,y)]}. O

Inductively one can easily prove that for any ¢ € Q and x € X*( 3 p € Q such that 6*(¢,x, p) >
0) < ( 3y € Y* such that 6¥(g,x,y) > 0) and |x| = |y|. Throughout this paper whenever we talk

about 8* and ¢ for strings of input x and output y, we mean it for |x| = [y|.

Definition 2.6. Ler M = (Q,X,Y,0,0) be a fuzzy Moore machine. Let q,p € Q. Then p is
called an immediate successor of q,if 3 a € X and b €Y such that §(q,a,p) AN c(q,b) >0 and

p is called successor of q, if 3 x € X* and 'y € Y* such that §*(q,x,p) A" (q,x,y) > 0.

Let M = (Q,X,Y,0,0) be a fuzzy Moore machine and ¢ € Q. We shall denote S(g) the set
of all successor of g. If T C Q, then set of all successor of T, denoted by S(7T'), is defined by the

set S(T) =U{S(q) |g€T}.



Theorem 2.7. Let M = (Q,X,Y,d,0)be a fuzzy Moore machine. Define a relation ~ on Q as

p ~ q if and only if q is successor of p. Then ~ is reflexive and transitive.
Clearly ~ is not symmetric.

Theorem 2.8. Let M = (Q,X,Y,8,0)be a fuzzy Moore machine. Let A;B C Q

(1) if A C B then S(A) C S(B).

(2) A C S(A).

(3) S(S(A)) = S(A).

(4) S(AUB) = S(A)US(B).
(5) S(ANB) C S(A)NS(B).

Proof. The proofs of (1), (2), (4) and (5) are straightforward.
(3) By (2) we have S(A) C S(S(A)). Let g € S(S(A)). Then g € S(p), for some p € S(A). Thus
p € S(r), for some r € A. Now, g is successor of p and p is successor of r, hence by Theorem

(2.7), q is successor of r. Thus g € S(r) C S(A). Hence, S(S(A)) C S(A). O

Definition 2.9. Let M = (Q,X,Y,0,0) be a fuzzy Moore machine. Let T C Q. Let 6" and ¢’ be
fuzzy subset of Q x X x Q and Q x X x Y respectively and let N = (T,X,Y,8',06’). Then N is
called a submachine of M, if (1) &' = 8|7 xxxr and 6' = o|rxy and (2) S(T) C T.

Clearly, if K is a submachine of N and N is a submachine of M, then K is a submachine of M.

Definition 2.10. Ler M = (Q,X,Y,0,0) be a fuzzy Moore machine. Then M is called strongly
connected, if p € S(q), V p,q € O.

Definition 2.11. Let My = (Q1,X1,Y1,01,01) and My = (Q2,X>,Y2,02,02) be a fuzzy Moore
Machines. A triplet (f,g,h) of mappings, f: Q1 — Q2, g: X1 —> Xp and h: Y| — Y», is called
fuzzy Moore machine homomorphism from My to My, denoted by (f,g,h) : My — Ma, if (i)
81(q1,x1,p1) < 8(fq1),8(x1), f(p1)) (i) o (q1,x1,31) < 65 (f(q1),8(x1),h(y1)), ¥ q1, p1 €

Q1,x1 € X{ and y; € Y. Fuzzy Moore machine homomorphism (f,g,h) is called strong homo-

morphism, if 8(f(q), g(x), f(p)) = 81(q,x,p) and 65 (f(q),8(x),h(y)) = 6} (¢,x,y), V p.q €
O, xeX/,yeY.



Remark 2.12. In above definition 2.11, if X1 = X», Y| =Y, and g,h are identity maps, then
we simply write f : M1 — My and say that f is a homomorphism or strong homomorphism

accordingly.

Theorem 2.13. Let (f,g,h) : M; — M be a fuzzy Moore machine homomorphism. Then

(1) if p is a successor of q in My, then f(p) is a successor of f(q) in M.
(2) S(f(q)) = f(S(q)), Va€Q,if (f,gh) is strong.

Proof. The proof of (1) is straightforward.

) f(p) € f(S(q)) & p € S(q) = & (q,x,p) Aot (q,x,y) >0 & 8] (¢,x, p) > 0and 67 (g,x,y) >
0= 8 (f(q),8(x),f(p)) >0and 65 (f(q),8(x),h(y)) >0 & (f(q),8(x),f(p)) Ao (f(q),
g(x),h(y)) >0 < f(p) € S(f(q)). O

Theorem 2.14. Let My = (Q1,X1,Y1,01,01) and My = (Q2,X5,Y>,6,,02) be a fuzzy Moore
Machines and let (f,g,h) : My — M be onto homomorphism. If M| is strongly connected,

then M is strongly connected.

Proof. Let q3,q5, € Q. Then 3 qi,q| € Q) such that f(q1) = g2 and f(q}) = ¢5. Since M| is
strongly connected, we have g; € S(¢). Then f(q1) € f(S(¢})). By Theorem 2.13(2) f(q1) €
S(f(q})), thatis g2 € S(q5). Hence, M is strongly connected. O

3. Fuzzy subsystems of fuzzy moore machines

In this section the concept of fuzzy subsystem of fuzzy Moore machine is introduced. Its char-
acterization will be discussed through a fuzzy set defined for fixed strings of input and output.
For a fixed state and an element of [0,1] a particular class of fuzzy subsystems will be obtained.
Towards the end of the section notions of cyclic and super cyclic fuzzy subsystems will be

discussed.

Definition 3.1. Let M = (Q,X,Y,0,0) be a Fuzzy Moore Machines. Let L be a fuzzy subset
of Q. Then U is called a fuzzy subsystem of M, if u(q) > u(p) Nd(p,a,q) No(p,b), Yq,p €
QacXandbey.



If (0,X,Y,0,0,u) is a fuzzy subsystem of M, then we shall write i for (Q,X,Y,8,0,u).

Theorem 3.2. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine. Then W is a fuzzy subsystem

of M if and only if 1t(q) > 1(p) AS*(p.x,q) No*(p,x,y), Vg, p € Q,x EX*,y Y™,

Proof. Suppose U is a fuzzy subsystem of M. Let ¢,p € Q,x € X* andy € Y*. We prove the
theorem by mathematical induction on |x| = |y| =n. If n =0, then x =y = A. Now if g = p,
then p(p) A 8*(q,A,q) A o*(q, 2, A) = p(q). If g # p, then u(p) A8*(p,A,q) Ao*(p,A,A) =
0 < u(g). Thus, the theorem is true for n = 0. Assume that the theorem is true for al-
lueX* and v € Y* such that [u| = |v| =n—1,n> 1. Let x = au and y = bv where a €
X,b €Y and |u| = |v| =n— 1. Then u(p) A 8*(p,x,q) Ac*(q,x,y) = u(p) A 8*(p,au,q) A
o*(g,au,bv) = u(p) A{ré/Q[fS(p,a,r) N (r,u,q)] N [8(p,a,r) Ao (r,b) No*(ru,v)]} = u(p) A
{ V. [8(p,a,r)\&*(r,u,q)] Alo*(p,a,b) No™(ru,v)]} = {ré/Q[H(P) N(p,a,r)Ne*(p,a,b)] A

reQ

3 10.0) A0 Iy < V. (() A8 (1) A1)} < ). Hence, ) = ()
re
8*(p,x,q) Ao*(p,x,y). The converse is trivial. O

The following theorem gives a class of constant fuzzy subsystems for M.
Theorem 3.3. Every constant fuzzy set L on Q determines a fuzzy subsystem of M.

Proof. Suppose U is constant fuzzy set of Q. Then for any p,q € Q, we have u(p) = u(q).
Then for any a € X and b € Y, clearly u(q) = u(p) > u(p) AN6(q,a,p) Ao(q,b). Therefore, u

is a fuzzy subsystem of M. 0

Theorem 3.4. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine. Let [ and [ be fuzzy
subsystems of M. Then

(1) ny Ny is a fuzzy subsystem of M and

(2) Uy U Wy is a fuzzy subsystem of M.

Proof. Since p; and y; are fuzzy subsystem of M, for p,q € Q,x € X*,y € Y* we have y;(q) >

w1 (p) A8*(p,x,q) Ao*(p,x,y) and a(q) > a(p) A S*(p,x,q) Ao*(p,x,y)

1. Therefore, (1 N2)(q) = 1 (q) Apa(q) > (1 (p) Apa(p)) A 8*(p,x,q) Ao™(p,x,y). Hence,
(N y) is a fuzzy subsystem.



2. Therefore, (1 U t2)(q) = pi(q)V H2(q) > (w1 (p) V 2(p)) A8*(p,x,q) A (p,x,y). Hence,
(1 ULp) is a fuzzy subsystem. O

The following example show that the complement of a fuzzy subsystem is not always a fuzzy

subsystem.

Example 3.5. Let Q = {p,q},X = {a},Y = {b},0(r,a,s) = % VrseQ,o(rnb)=1ivVreo.

Let (q) = % and (p) = 1. Then () > (p) A 8(p.a,q) A 6(p.b) and (p) > () A
0(q,a,p) No(q,b). Then, U is a fuzzy subsystem, but u° =1— U is not.

Theorem 3.6. Let My = (Q1,X1,Y1,81,01) and My = (Q2,X2,Y2,82,02) be fuzzy Moore ma-
chines. Let (f,g,h) : M| — M, be onto strong homomorphism. If WL is a fuzzy subsystem of

M\, then f(W) is a fuzzy subsystem of M,.

Proof. Let p2,q> € Q> and x> € X5, y2 € ¥5'. Since f is onto, there exist p1,q1 € Q1 be such that

f(p1) = p2 and f(q1) = q2. Also, g and h are onto, therefore there exists x| € X;" and y; € Y/’

such that g(x1) = x, and h(y;) = y,. Suppose also that there is r; € Q; be such that f(r]) =

p2. Then, 8 (p1,x1,q1) = 85 (f(p1),8(x1), f(q1)) = 85 (f(r1),8(x1), f(q1)) = &] (r1,x1,41).

Similarly of (p1,x1,y1) = of (r1,x1,51).

Now, f(1)(p2) A 85 (p2,x2,42) A O3 (p2,%2,y2)

= V{w(r)If(r) = p2} A8 (p2,x2,q2) A 6% (p2,x2,2)

= V{(r1) A5 (p2,x2,42) A OF (p2,x2,92) 1 f(r1) = pa}

= V{u(r) A8 (f(p1),8(x1), f(@1) ASE(f(p1),g(x1),h(3)) | f () = p2}

= V{u(r) A8 (p1,x,q1) Aot (pr,x,y)|f(r) = p2}

= V{u(r) A8 (ri,x1,q1) Aot (rx, )| f(r1) = pa}

< V{u(q1)|f(r1) = p2)}, since u is fuzzy subsystem of M;

< V() (gl f(r) = p2)}-
2)-

= f(u)(g

Therefore, f(u) is a fuzzy subsystem of M» O

The following example show that the ontoness is necessary for the above theorem.



Example 3.7. Let Q1 ={p,q}, 0> ={r.s}, X ={a},Y ={b},61(q,a,9) = 81(p,a,p) = 61(p,a,q) =
8i(q,a,p)=1,01(t,b) =1 sVt € Q. and §;(r,a,s) = 1,52(s a,r)= %,52(r,a,r) =1=00(s,a,s)=
1,00(r,b) = %,Gz(s,b) = g. Let f: Q1 — Q) defined by f(q) = f(p) = r. Then f is not onto.
Clearly, f is strong homomorphism. Let W be a fuzzy subset of Q1 such that 1y (p) = %, w(q) =
%. Then Wy is fuzzy subsystem of My, but f(LL) is not a fuzzy subsystem of M.

Theorem 3.8. Let (f,g,h) : M — M, be a strong homomorphism. If W is the fuzzy subsystem
of My. Then f~'(1) is a fuzzy subsystem of Mj.

Proof. Let M} = (Q1,X1,Y1,01,01) and My = (02,X»,Y2,8,,02) be fuzzy Moore machines.

(P1),f(q1) € 02,8(x1) € X5,h(y1) € Y5. Now
since 1 is fuzzy subsystem of Ma. we have, (/(p1)) > (/(a1)) A &(/(a1).g(x1). S (p1)) A
02(f(q1),8(x1),h(y1)). Thus, u(f(p1)) > u(f(q1)) A 6(q1,x1,p1) A 61(q1,x1,y1). That is,

F A (pr) > 71w (q1) AS(q1,x1,p1) Ao1(q1,x1,y1). Therefore, f~1 () is a fuzzy subsys-
tem of M;. O

Let p1,q1 € Q1 and x; € X{,y; € Y{*. Then f

Theorem 3.9. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine and | be a fuzzy set of Q.
Then
(1) if W is fuzzy subsystem of M, then N = (Supp(u),X,Y,8',6") is a submachine of M,

where

8" = 8 5upp(u) xx xSupp(u) and &' = O supp(u) xv-

(2) ifN; = (W, X,Y,8,0;) is a submachine of M, where,
e ={q € 0lu(q) >1t}, & = 8|y, xxxy, and 6; = &|y,xy, t € [0,1], then W is a fuzzy
subsystem of M.

Proof. 1. Let p € S(Supp(ut)). Then p € S(q), for some g € Supp(t). Then u(q) > 0. Since
p€S(g), 3 x € X*,y€Y* such that §*(q,x,p) Ao¥(g,x,y) > 0. u is fuzzy subsystem, we
have u(p) > u(q) A6*(q,x,p) Ao*(q,x,y) > 0 Thus, p € Supp(u). Therefore S(Supp(u)) C
Supp(u). Hence, N is a submachine of M.

2. Letq,p€ Q,x € X*,ye Y*. If u(p) =0 or §*(¢,x,p) = 0 or 6*(g,x,y) = 0 then u(q) >
0 = p(p) A 8*(p,x,q) A 6*(p,x,y). Suppose, u(p) >0, 8*(p,x,q) > 0,06%(p,x,y) > 0 and
let u(p) A 8*(p,x,q) Ao*(p,x,y) =t. Then p € y;. Since N, is submachine of M, we have



S(u) = w. Now, g € S(p) and S(p) C S(w) as p € y;. As S(u) = uy, we have g € p,. Hence,
u(q) >t =pu(p) A&6*(p,x,q) Ao*(p,x,y). Thus,  is fuzzy subsystem. O

The following example show that a fuzzy subsystem of M need not be a submachine of M

Example 3.10. Letr Q,X,Y, 8,0 be defined in Example 3.5. Let l(q) = %1 and u(p) = % Then
W is a fuzzy subsystem. Lett = % Let N, = (l;,X,Y,0,0;). Now p(q) > t. Thus, q € L. Also
8(q,a,p) = % >0 and o(q,b) = 1 > 0. Thus, 5(q,a,p) A o(q,b) > 0. Therefore, p € S(q).
Thus p € S(1;). But u(p) = % < t. Thus, p & W;. Hence, Ny is not a submachine of M.

We now define a fuzzy subset u of Q to characterize it as a fuzzy subsystem for fixed input
and output strings as follows:
Let M = (Q,X,Y,8,0) be a fuzzy Moore machine and u be a fuzzy subset of Q. Forx € X*,y €
Y* define a fuzzy subset (uxy) of Q by (uxy)(q) = \/Q{,u(p) AN&*(p,x,q) Ao (p,x,y)}, Vg€
pe
0.

Theorem 3.11. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine and let 1L be a fuzzy subset
of Q. Then W is a fuzzy subsystem of M if and only if uxy C u, VxeX*,yeY™

Proof. Let u be afuzzy subsystem of M. Letx € X*,y € Y*, g € Q. Then (uxy)(q) = V {u(p)A
peQ

8*(p,x,q) N o*(p,x,y)} < p(q). Hence, p(xy) C p.
Conversely, let g € Q and x € X*y € Y*. Then

u(q) = (uxy)(q) = VQ{u(p)M*(p,x, Q) No*(p,x,y)} = 1(p) NS (p.x,q) NS (p.x,y), Vpe
pe
Q. Hence, u is a fuzzy subsystem of M. 0

Theorem 3.12. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine. Then for all fuzzy subset 1L

of Q, (uxy)uv = (Uxu)yv, Vu,x € X*,v,yeY*

Proof. Let u be a fuzzy finite subset of Q and let x,u € X* and y,v € Y*. We use induction on
|u| = |v| = n to prove the theorem.

Case (i) Ifn=0,thenu=v=A. Let g € Q. Then
(uxy)AA(q) = p\E/Q{(uxy) (P)AS(p,,q) No*(p, A, A)} = (xy)(q). Hence, pxyAd = (uxy) =
(ux2)yA.



Case (ii) Suppose, that the theorem is true for all u € X*,v € Y* such that |u| = |v|=n—1,n>
1 and for all u. Let ' = au € X* whereae€ X, ' € X* andV =bveY* where be Y,y e Y*
and |u| =|v|=n—1.Let ¢ € Q. Then,
(uxu')yv'(q) = (uxau)ybv(q) = (p(xa)u)(yb)v(q) = \/Q{(uxayb)(r) N&*(ru,q) Ao®(ru,v)
re
}= VAV A{lww)(p) AS(p,a,r) Aot (p,a,b)} AS*(ru,q) Ao™(ruv)} =V {(uxy)(p) A
reQ peQ peQ
{ VQ{5(p7a,r) N&*(ru,q)} AN{o™(p,a,b) AN{8(p,a,r) Ao™(ru,v)}}}}
re
= \/Q{(uxy) () A &*(p,au,q) N o*(p,au,bv) = \/Q{(u(xy))(p) N (p.u,q) No¥(p,u V') =
pE pE
(uxy)u'V/(q).
Hence, (uxu')yv' = (uxy)u'v'. O
Our aim is now to use the characterization Theorem 3.11 to find a particular class of fuzzy

subsystems of M, we begin with classes of fuzzy sets

Definition 3.13. Ler M = (Q,X,Y,08,0) be a fuzzy Moore machine and | be a fuzzy subset of
Q. Define fuzzy subsets uXY and uX*Y* of Q by
(uxy)(p)=V  {u(r)Aé(ra,p)Ao(rb)} VpeQand
aeX ,beY,reQ
(uX*Y*)(p) = V {u(r)A8*(ru,p) No*(ru,v),} VpeQ.
ueX* veY* reQ
Note that
(1) (uXY) C (uX*Y™),
(2) (uXY)=0and (uX*Y*) = 0 if there exists » € Q such that u(r) = 0, and

(3) (uxy) € (UX*Y*) V xeX*,yeY™

Theorem 3.14. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine t € [0,1] and q € Q. Then

(@XY)(p)= NV {tné(q,a,p)Nc(q,D)}, VpeQand (¢ X Y*)(p)= NV {tA8"(q,u,p)A
acX ,beY ueX* vey*

6" (q,u,v)}Vp€Q.
One can note that for arbitrary fuzzy subset of Q, uX*Y™* is not necessarily a fuzzy subsystem
of M, but for 4 = g, forany g € Q and r € (0, 1], (¢;X*Y") is a fuzzy subsystem of M. Thus we

have following theorem

Theorem 3.15. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine. Let t € (0,1] and q € Q.
Then the following hold



(1) g X*Y* is a fuzzy subsystem of M,
(2) Supp(q:X*Y*) = S(q).

Proof. 1. Letx € X* and y € Y*. Then for any r € Q, we have

(g X*Y™) (xy))(r) = p\G/Q{(qu*Y*)(p) A& (p,x,r)No*(p,x,y)} =

=V{ V {tA8(qu,p)rc*(quv)} A& (p,x,r)Ac*(p,x,y)}
PEQ ueX* ver*

= Vo {tA8*(qu,p) Aot (qu,v) NS (p,x,r) Aot (p,x,y)}
pEQUEX* vey*

= Vo {en{8%(q,u,p) A& (p,x, 1)} A0 (q,u,v) AN{8*(q,u, p) N O (p,x,7)}}
pEQueX* veyY*

=V {tA8*(qux,r) Ao*(q,ux,vy)}
ueX* vey*

<V {tnd (g ;) Not (g V)}
uex* vey*
< (g X*Y*)(r).
Thus, ((¢:X*Y*)(xy)) C (¢, X*Y*). Hence, (¢, X*Y") is a fuzzy subsystem of M, by Theorem(3.11).

2. p€S(q) & IxeX* yeY*suchthat §*(¢q,x,p) Ac*(q,x,y) >0 \V  {tA8*(¢,x,p)A
xeX* yer*

c*(q,x,y)} >0 & (:X*Y*)(p) > 0& p € Supp(¢:X*Y*). O

Theorem 3.16. Let M = (Q,X,Y, 0, 0) be a fuzzy Moore machine. Let [ be a fuzzy subset of Q

and g € Q. Then the following are equivalent

(1) W is a fuzzy subsystem of M,
(2) ¢X*Y* Cu, Vte|0,1] such thatt < u(q),
(3) ¢ XY Cu, Vg Cu,Vtel0,1] suchthatt < u(q).

Proof. 1. = 2. Letq € Q,t € [0,1] such that 7 < p(g). Then for p € Q, we have

(@X*Y*)(p)= V {tA&*(qu,p)Act(quv)}<  V  {ulg)A8*(qu,p)Ao*(q,u,v)}
ueX* ver* ueX* vey*

< u(p), since u is fuzzy subsystem. Hence, ¢, X*Y* C u.

2. = 3. Clear, due to ¢, XY C ¢, X*Y*.

3. = 1. letpgeQandacX,beY If u(q) =0ordé(q,a,p) =0 or 6(q,b) =0 then

u(p) = 0= pu(p)Aé(q,a,p) ANo(q,b). Suppose (q) # 0 and 6(q,a,p) # 0 and 6(q,b) # 0.

Let u(qg) =t. Thus, by the hypothesis, ¢, XY C u. Then u(p) > (¢:XY)(p) = V {tA
ueX vey

6(q,u,p)No(q,v)} >tNb(q,a,p) No(q,b) = u(q) N6*(q,a,p) No(q,b). Hence,  is a fuzzy
subsystem of M. O



Corollary 3.17. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine and L be a fuzzy subsystem
of M. Then for any q € Q, we have
(1) u> q“(q)XY. and

(2) 12 qugX7Y".

Definition 3.18. Let M = (Q,X,Y,0,0) be a fuzzy Moore machine and L be a fuzzy subsystem
of M. Then L is called cyclicif 3 g€ Q,t € (0,1] witht < u(q) such that u < g, X*Y*. In this

case we call q; a generator of L.
The Theorem 3.16 enable to characterize cyclic fuzzy subsystems as:

Theorem 3.19. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine. and L be a fuzzy subsystem
of M. Then W is cyclic if and only if 3 q € Q andt € (0,1] such that u = ¢;X*Y*, whenever
1< u(q).

Theorem 3.20. Let M = (Q,X,Y, 0, 0) be a fuzzy Moore machine. Suppose the fuzzy subsystem
U of M is cyclic with generator q;, g € Q andt € (0,1]. Then

(1) u(q)
(2) u(q) =z u(p), Vpe,
(3) for any fuzzy subsystem W' of M such that ' C ., if u'(q) > u'(r), Vr € Q, we have

L

W= quiXTY™.

Proof. 1. Since pt =g, X*Y*, wehave u(q) = (¢:X*Y*)(q)= V {t"8*(q,x,q9) A" (g,x,)}

xeX* yey*
=tA(V  {8(gx9) Ao (gx0)}) =tAl=1.
xeX* yey*

2. Let p € Q. Since pu = ¢ X*Y*, we have u(p) = (¢:X*Y*)(p) = V {tA8"(¢.x,p) N
xeX* yeyr*

o' (g x)}= V {u@rd*(gx,p)rot (g0} =p@A( V{8 (gxp)Ac*(g,x)})
xeX* yeyr* xeX* yeyr*

< 1(q)-

3. Let p € Q. Since u’ C pu we have p/(p) < u(p). Then p'(p) = p/(p) A u(p). Also since

u=qgXrr, H(P) = (qu*Y*)<p) = \/xEX*,yEY* {t /\5*(%x7p) A G#(va7y)} =V, €X,y

€Y {u(q) A 8(g:x,p) A 6*(g,x,y)}. Hence, 0'(p) = ' (p) A(p) = Viex+, y €Y {1/ (p)

A u(g) A 8*(q,x,p)A 6*(q,x,y)} =V, € X*,y e Y* {i/(p) A 6*(q,x,p)A 6*(g,x,)}, since



W (p) <u'(q) <ulq) Ve eX*,yeY* {1 (q) A8 (q,x,p)A 6" (q,%,9)} = (qu() X" Y*)(p).
Hence u' C g,/ X*Y*. Thus, u’ = g, X*Y*, by above corollary. O

Definition 3.21. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine and | a fuzzy subsystem of
M. Then p is called super cyclic, if q, ) is its generator ¥ q € Q.

Theorem 3.22. Let M = (Q,X,Y,0,0) be a fuzzy Moore machine and | a fuzzy subsystem of
M. Then W is called super cyclic if and only if 4 = q,,()X*Y™, Vg€ Q.

Theorem 3.23. If 1 is super cyclic, then U is constant.

Proof. Since L is super cyclic, for any p € Q we have L = p;;(,)X*Y™. Also, we have u(p) >
w(r), V r € Q. This implies that u(p) = u(r), vV p,r € Q. Therefore, p is constant. O

Corollary 3.24. Every super cyclic fuzzy subsystem of a fuzzy Moore machine M is cyclic.

The following example show that a constant fuzzy subsystem u of M need not be (super)

cyclic fuzzy subsystem.

Example 3.25. Let Q = {p,q}, X = {a}, Y = {b}, 8(q,a,q9) = 8(p,a,p) = %, o0(p,a,q) =
S(grap) =1, 0(nb) =1 V re Q. Let u(g) = p(p) = 3 Then u(g) > u(p) A 8(p.aq)
A o(p,b) and u(p) > u(q) N 8(q,a,p) N\ o(q,b). Hence, U is a fuzzy subsystem and L is

constant. Now,

(@ X Y)(p)= V {1A8*(gx.p)Act(gxy)}=1<3
xeX,yeY

Ww(p). Therefore, W is not cyclic.

Theorem 3.26. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine and L be a fuzzy subsystem
of M. Suppose Supp(u) = Q. If u is super cyclic, then M is strongly connected.

Proof. Let p,q € Q. Then (g, X*Y*)(p) = v Y{H(Q) N&*(q,x,p) ANo*(q,x,y) } >0, since
xeX,ye
u is super cyclic 4 = (g, X*Y™*) and Supp(u) = Q. Hence, §*(q,x, p) A co*(gq,x,y)} > 0, for

some x € X*,y € Y*. Thus p € S(q). Hence, M is strongly connected. 0]

Theorem 3.27. Let M = (Q,X,Y,0,0) be a fuzzy Moore machine and | a fuzzy subsystem of
M. Then p is super cyclic if and only if ¥ p,q € Q, 3 x € X*,y € Y* such that 6*(p,x,q) \

o*(p,x,y) > u(p).



Proof. Suppose that u is super cyclic. Then u is constant by Theorem (3.23). Suppose 3 p,q €
Q,VxeX*yeY* 6*(p,x,q) Ao"(p,x,y) < u(p). Then
(PupX Y )a) =\ {u(p)r&*(p.x.q) Ao®(p.x,y)} < u(p).
xeX,yeY

Thus, py X *Y* # u. which is contradiction to u is super cyclic. Conversely, Suppose that

(p
Y p,g€Q, 3 x€X*ycY*suchthat §*(p,x,q) Ao*(p,x,y) > u(p). Then ¥V p,g€ Q, I x€
X*,y € Y* such that u(q) > u(p) A 8*(p,x,q) A o*(p,x,y) = u(p). Similarly p(p) > u(q).
Hence, u is constant. Now,

(PupX*Y*)(q) = v Y{u(p) A8*(p,x,q) No®(p,x,y)} = u(p) = u(q). Thus, py,X*Y*
xeX,ye

= u. Hence, U is super cyclic. 0

4. Output fuzzy subsystems of fuzzy Moore machines

In this section we introduce output fuzzy subsystem of a fuzzy Moore machine and show that it
is more specific than the fuzzy subsystem defined in previous section. Moreover it satisfies all
the results of fuzzy subsystems. We introduce product of output fuzzy subsystems and prove

that it is actually output fuzzy subsystem of various products of fuzzy Moore machines.

Definition 4.1. Let M = (Q,X,Y,0,0) be a Fuzzy Moore Machines. Let [ be a fuzzy subset of
Q. Then (Q,X,Y,8,0,1) is called a output fuzzy subsystem of M, if (q) > w(p) Ao(p,x,y)
whenever 6(p,x,q) >0, forall q,p € Q,x e X* )y e Y™

As before, if (Q,X,Y,0,0,1) is a output fuzzy subsystem of M, then we shall write u for
(Q,X,Y,8,0,u). Note that constant fuzzy set u is an output fuzzy subsystem of M.
The following theorem established the relation between output fuzzy subsystem of M and fuzzy

subsystem of M.

Theorem 4.2. Let M = (Q,X,Y,08,0) be a fuzzy Moore machine and let 1 be a fuzzy subset of

Q. If W is a output fuzzy subsystem of M, then W is a fuzzy subsystem of M.

Proof. Since u is output fuzzy subsystem of M, we have u(q) > u(p) A o(p,x,y) whenever
§(p,x,q) >0, forg,p € Q,x € X",y €Y". Obviously u(q) > u(p) Aé(p,x,q) Ao (p,x,y). U



The following example rules out the possibility of the converse of the above theorem.

Example4.3. Ler Q ={p,q},X ={a},Y ={b},0(r,a,s) = % VrseQ,0%(rx,y)=09V re
Q. xeX*,yeY* Let u(q) =0.8 and u(p) =0.9. Then u(q) > u(p) No(p,a,q) No(p,b) and
w(p) > u(q) Ndé(g,a,p) No(q,b). Thus, L is a fuzzy subsystem. Now, 6(p,x,q) = % > 0, but

u(g) =0.8 % u(p) Ao*(p,x,y) = 0.9. Hence, | is not a output fuzzy subsystem.

Theorem 4.4. Let M = (Q,X,Y,8,0) be a fuzzy Moore machine. Let 1) and [ be output fuzzy
subsystems of M. Then

(1) Uy N WUy is a output fuzzy subsystem of M.
(2) Uy U W is a output fuzzy subsystem of M.

Proof. Since, 1| and p, are an output fuzzy subsystems of M| and M», for p,ge Q 3 x€ X*,y €

Y* and §(p,x,q) > 0. We have, pi(g) > pi(p) Ao*(p,x,y) and pa(q) > pa(p) A o*(p,x,y).
1. Hence, (11 N o) (q) = p1(g) A pa(q) > w1 (p) Ata(p) A 6*(p,x,y), which means that (1 N

LL2) is an output fuzzy subsystem.

2. Hence, (i1 U pa)(q) = ti(q) V ta(q) > i (p) V pa(p) A 6*(p,x,y), which means that (i U

LL2) is an output fuzzy subsystem. O

Definition 4.5. Let 1y and Uy be two fuzzy subset of Q1 and Q» respectively. Define L1 X [ :
Q1 x 0y — [0,1] by (1 x p2)(q1,92) = 1(q1) AM2(q2), V (q1,92) € (Q1 X Q2). This fy X iy

is called the cartesian product of W and L.

We now keep a goal to show that the product of two output fuzzy subsystems is an output
fuzzy subsystem. Clearly if both are output fuzzy subsystems from the same fuzzy Moore
machine, then the product, which is actually the intersection, is an output fuzzy subsystem, by
Theorem 4.4 (1). The problem arises only when output fuzzy subsystems are from different
fuzzy Moore machines. To analyze the problem, we define various products of fuzzy Moore
machines and discuss that the product of output fuzzy subsystems are actually an output fuzzy

subsystem of those products. We begin with definitions of products of fuzzy Moore machines.

Definition 4.6. Let M| = (Q1,X1,Y1,01,01) and My = (Q2,X1,Y1,02,02) be fuzzy Moore ma-
chines. Then the machine My © M = (Q,X,Y, 8, ® 6,,01 © 032) is called



(1) restricted direct product of M\ and M,, symbolically represented as My O M, if Q =
01 X 0, X =X1 =X, Y=Y, =Y, 6 © &((q1,92), a,(p1,p2)) = 61(q1,a,p1) N &
(92,a,p2) and 61 © 0((q1,92), b) = 61(q1,b) A 02 (92,0) Y (q1,92).(p1, P2) € (O
xQn),acX,bey.

(2) full direct product of M| and M,, symbolically represented as My ®« M», if Q =
Q1 x 00, X =Xi xXp,Y =Y x Y3, 81 © 6,((q1,92), (a1,a2), (p1,p2)) = &1 (q1,a1,p1) A\
62(q2,a2, p2) and 61 ©62((q1,92), (b1,b2)) = 61(q1,01) A 02(q2,b2) Y(q1,92), (P1,P2) €
(Q1 X 02),(a1,az) € (X1 X X3),(b1,b2) € (Y1 X Ya).

Remark 4.7. Restricted direct product of fuzzy Moore machines is a particular case of their full
direct product, when the set of all inputs and outputs are respectively same in each machines

under diagonal mapping.

Theorem 4.8. Let M) = (Q1,X,Y,01,01) and My = (02,X,Y, 02, 02) be fuzzy Moore machines.
Then

(1) My ®x M, is restricted direct product of My and M, if and only if (8, ® &)*((q1,¢2),x,
(p1,p2)) = 8{(q1,x,p1) A 85 (q2,%, p2) and (01 © 62)*((q1,42),x, ¥) = o7 (q1,%,7) A\
03 (q2,%,9) Y (q1:42),(p1, p2) € (Q1 X Q2). x EX*,y € Y™,

(2) My ®x M, full direct product of My and My, if and only if (81 ® &)*((q1,92), (x1,x2),
(P1,p2)) = 8{(q1,%1,p1) A 85 (q2,%2, p2) and (61 62)*((q1,42), (x1,%2), (V1,2)) =
ot (q1,x1,1) A 63 (g2, %2,2) ¥ (q1.92), (P1,p2) € (Q1 X Q2), (x1,%2) € (X] % X3),
(yi,32) € (Y] xY5).

Proof. Proofs of (8; ® &;)* of both the cases (1) and (2) can be found in [4, 7]
1. Let (q1,92) € (Q1 X 02),x € X*,y € Y*. We prove the theorem by mathematical induction
on |x| = |y| =n.

Case (i) If n =0, then x = A and y = A. Clearly by definition,
(01©02)*((q1,92),A, 1)) = 1 = 06f(q1,A,1) A 65 (q2,A,A). Thus, the theorem is true for n =
0.

Case (ii) Suppose that the theorem is true for Vu € X*,v € Y* suchthat [u| = |v|=n—1,n> 1.

Letx =au and y = bv, wherea € X and b € Y and |u| = |v| =n — 1. Then,



(610 02)*((g1,92),%,y) = (610 62)*((q1,92) au, bv) =

= V{(81© 8)((91,92),a, (r1,r2)) A (01 @ 02)((r1,72),b) A (01 © 62)*((r1,72),u,v) | (r1,72) €
(01x02)} =V{[81(q1,a,71) A&(g2,a,12)| A[O1(r1,b) A O (12, b)| A0 (1,1, v) AGF (r2,u, V)]
ri€Q1,m €0} =V{d (q1,a,rl)/\Gl(rl,b)/\Gf(rl,u,vﬂ r1 € 01} AV{62(q2,a,r) N2 (r2,b) A
o} (r2,u,v)| 12 € Qo} = o} (q1,au,bv) A ¥ (q2,au,bv) = 6{ (q1,x,5) A 65 (42,%,y).

2. Let (q1,92) € (Q1 X 02), (x1,x2) € (X{ X X5),(y1,¥2) € (Y] x ¥;'). We prove the theorem by
mathematical induction on |x;| = [y;| =nfori=1,2.

Case (i) If n =0, then x; =xp = A and y; = y» = A. Clearly by definition
(61062)*((q1,92), (A, 4),(A,A)) =1 = 0f(q1,A,1) Aok (g2, A, ). Thus, the theorem is true
forn=0.

Case (ii) Suppose that the theorem is true for V uj,up € X*,vi,vo € Y* such that |u;| =
lvif =n—1,n> 1fori = 1,2. Let x; = aju;,x; = apup and y; = byvy,y, = byvp, where
a) € Xj,a3 € Xp, by €Y1,by €Y, and |uj| = |vi| =n—1, fori=1,2. Then,
(61062)*((q1,42). (x1,72), (V1,32)) = (01 © 62)*((q1, 92), (1101, @2u2), (brvi, bav2)) =
= V{(81© &)((q1,92), (a1,a2),(r1,r2)) A (01 © G2) ((r1,72), (b1, b2))

No1©62)*((r1, 1), (u1,u2), (vi,v2))| (r1,72) € (Q1 % 02)} = V{[81(q1,a1,71) A &2(g2, a2, 1) A
[o1(r1,b1) N O2(r2,b2)] A [G#(rl,ul,vl) /\Gf(rz,ug,vz)]\ ri € Q1,r € O} =V{d(q1,a1,r1)A
o1(r1,b1) A O'f(rl,ul,vl)| r1 € Q1} AV{6(q2,a2,m2) N oa(ra,b2) A Gf(rz,uz,vz)\ e =

of(q1,aiu1,bivi) A o3 (qa,a0u2,bav2) = 6f (q1,x1,51) A 65 (q2,%2,72). O

The following theorem show that t; X u, is an output fuzzy subsystem of each of the above

products of fuzzy Moore machines.

Theorem 4.9. Let M; = (Q;,X;,Y;, 8;,0;) be a fuzzy Moore machines, i = 1,2. Let ) and U
be an output fuzzy subsystems of M| and M, respectively. Then L X Uy is a an output fuzzy

subsystem of fuzzy Moore machine My ©n My and My ® x M5.

Proof. 1. Let (q1,42),(p1,p2) € (Q1 X Q2),x € X* and y € Y*. Let (8, ® &)* ((91,92),x,
(p1,p2)) > 0. Then 8, (q1,x,p1)) > 0and §;(g2,x,p2)) > 0. Now, (11 x 12) ((q1,92)) N(o1 A
62)*((q1,92),x,y) = (1 (q1) A p2(92)) A (0F (g1, x,9) A 63 (g2,x,y)) = [ (g1) A o (g1,2,9)] A
[12(g2) AoY(q2,x,y)] < wi(p1) Awi(p2). Hence, py Oty is output fuzzy subsystems. 2.



Let (g1,92), (P1,p2) € (Q1 X @2),(x1,%2) € (X1 X X2)* and (y1,y2) € (Y1 x V2)*. Let (01 ®
%)*((q1,92), (x1,x2),(p1,p2)) > 0. Then &;(q1,x1,p1)) > 0 and 8;(g2,x2,p2)) > 0. Now,
(1 % ) ((q1,92)) AN(o1© )" ((q1,92), (x1.x%2), (1,32)) = (11 (q1) A a(g2)) A (07 (q1,x1,

y1) A 63 (g2,%2,2)) = [ (q1) A of (q1,x1,90)] A [2(q2) A 65 (2,%2,¥2)] < 1i(p1) A pa(p2).
Hence, p; ©®« Uy is output fuzzy subsystems. 0J

We now show that 1y X Uy is an output fuzzy subsystem of the cascade product M| ®¢ M>
and the wreath product M| ©, M; in two different approaches. In the first approach, M| ©g
M, and M| ®, M, are defined analogous to the definitions of M| ®« M> and M| ©®x M;. In
these cases we have @ = (@, ®,), where @;, @, are crisp functions. Input and output sets
of M| ®, M, are respectively Xle x X> and YlQ2 X Y. In order to show that u; x up is an
fuzzy subsystem of M| ©4» M, and M| ©, M,, we have to use the concept of separable function.
The separability of a function was introduced by Malik, Mordeson and Sen in [11]. In our
opinion this idea of separability of functions is not natural, even though it helps in proving
Ui X W is an fuzzy subsystem of M| ©g» M and M| ©, M,. (see Theorem 4.11). However, in
the second approach, we redefine M| ®¢ M, by extending @; and @, as fuzzy sets rather than
crisp functions and we will obtain natural extension of @; and @,. These extensions will helps
in avoiding unnatural separability concept for proving u; X Uy is an output fuzzy subsystem of
M| ®g M;. (see Theorem 4.18). Similarly, considering input and output sets of M| ©, M, as
combination of set of fuzzy sets with X, and Y,, we will obtain natural extension of M| ©, M.
This will help us in showing u; X Uy is fuzzy subsystem of M ©, M, without using separability
concept. (see Theorem 4.18).

We begin with first approached of defining M| © 4 M>, M| ©, M and proving () X U is an
output fuzzy subsystem of M} ©®4» M, and M| ®, M, with the help of separability of functions.

Definition 4.10. Let M| = (Q1,X,Y,6;,01) and My = (02,X,Y,8,,02) be fuzzy Moore ma-

chines. Then the machine M © M, = (Q,X,Y,0; ® 6,01 ® 6,) is called
(1) cascade product of M| and M», symbolically represented as M| ©qy My, if Q = Q1 X
02, X =X2,Y =Y, 610 8:((91,92), a2, (P1,p2)) = 81 (q1, @1(q2,a2), 1) A 62(q2, a2, p2)

and 61 ® 62((q1,92),b2) = 01(q1, W2(q2, b2)) A G2(q2,02) Y (q1,92), (P1,p2) € (O1 X
Qz),az €X27b2 - Y2 and w : Q2 ><X2 —>X1,(1)2 : Q2 X Y2 —>Y1.



(2) wreath product of M| and M,, symbolically represented as M\ ©. My, if Q = Q1 X
02,X =X xXo,Y =Y x Y5, § ® &:((q1,92), (fra2), (p1,p2)) = 81 (q1, f(q2), 1)
A 8(q2, az, p2) and 61 © 02( (q1,92),(8:02)) = 01 (91,8(q2)) N 02(q2,b2) V(q1,92),
(p1,p2) € (01 X02), a2 €Xa, by €Yo, and X2 = {f : 0y — X1} and Y2 = {g: Oy

—)Yl}.

We, now define separable functions d; ® &, and 6; ® 05 in both the products M; ®4 M, and
M| ©, M, as follows:
The functions, §; ® &, and 0] ® 6, of M| ©®y M, are called separable, if Y (¢1,492),(p1, p2) €

(01X Q2),% =x21X20X23 ... X200 € X2, Y2 = ¥21Y22Y23--. Y20 € Y2, (01 @ )" ((q1,92), X2, (P1,P2)) =

5 (qu, 1 (q2,%21) @1(gY, x22) @1(657, x23)-001 (65", x24), P1) NS (g2, %2, p2) and (o

o 02)* ((q1,92), x2,y2)) = 6} (g1, @01 (92,%21) wl(qél), x22) @) (qu), x23)...01 (qé”’”, X2n),

02 (q2,21) 0205 2) @2(g5” y23)-w: @2 (5", y20)) N0F (4232, ) for some g € Q.
i=1,2,3,...,n—1.

The functions, 8; ©®6, and 6] ©0, of M; ®.M,; are called separable, if V (¢1,42),(p1, p2) €
(01 x Q2) and Y (f1,x21), (f2.%22), (f3:%23); ooy (fus¥2n) € (X2 x X) and ¥ (g1,¥21). (g2, ¥22),
(83,723); -+, (gnsy2n) € (Y2 ><Y2) (010 &)* ((q1,92), (f1i, x21) (f2, x22)---(fusX20), (P1,P2))
=8 (q1,/1(92) f2(g5")-fu(aS" ") .p1) A 85 (g2 %21 X22...30m, p2) and (01 © 0" ((% qz),
(45"

(f1,x21) (for x22) (s X2n), (81, y21) (f2,¥22)---(8n,¥20)) = OF (q1, f1(q2) fz(q2 )--Sfu(qy

)
(1) (n=1)y A ot f (i 10
g1(q2) gz(q2 ). 8n(612 ) N (92,%21%22...X24, ¥21Y22-.- Y2u) for some 4" € O, i=1,2,

3,..,n—1.

Y

Theorem 4.11. Let My = (Q1,X,Y, 81,01) and M = (02,X,Y, &2, 02) be fuzzy Moore machines
with 8; ® & and 6 ©® G, are separable functions in the products M| ® g M> and My ©oM;. Then

(1) My ®yM; cascade product of My and M, if and only if (8, ® 8)*((q1,q2),x2, (p1,p2)) =
85 (q1, 01(q2,%2), P1) N85 (2,2, p2) and (01 © 62)*((q1,92),%2,52) = 0} (91, @1 (g2, %2),
@(92,52)) A% (q2,%2,y2) Y (q1,92), (P1,p2) € (Q1 X Q2), %2 € X5,y2 € V5" and o :
Q2 x X5 — X[ a0 : Or x Yy — Y.

(2) My ®o My wreath product of My and M, if and only if (61 ® &)*((q1,92),(f, x2),

(P1,p2)) = 6;(q1.f(q2), P1) A &5 (q2,x2, p2) and (01 © 62)*((q1,42), (f,x2), (8,¥2)) =



ol (q1,f(92), 8(q2)) NG5 (q2.x2,32) Y (q1,92), (p1,p2) € (Q1 X 02),x2 € X5, 2 € Y5,
anXmQ2 ={f:0— X} anleQ2 ={g: 0, — Y}

Proof. Proofs of 8; ® &, of both the cases (1) and (2) can be found in [4, 7].
1. Let (g1,92) € (Q1 X 02),x2 € X5 ,y2 € Y5'. We prove the theorem by mathematical induction
on x| = [y2| =n.

Case (i) If n =0, then x, = A and y, = A. Now by definition,

(01©62)*((91,92),A,4)) = L and 6f (g1, @1 (g2, 1), 02 (r2,A)) AO% (q2,A,A) = 6 (q1, A, A) A
0%(g2,A,2) = 1 A1 = 1. Thus, the theorem is true for n = 0.

Case(ii) Suppose the theorem is true for Vu, € X5, vo € Y5 such that |up| = [vo| =n—1,n > 1.
Let x; = apuy and y; = byvy, where ay € X5, by € Y5 and |up| = |vo| =n— 1. Then,
(01062)*((q1,92),%2,52) = (01 © 62)*((q1,42), a2uz, bav2) =
= V{(01©02)*((q1,92),a2,b2) N (81 © 82)((q1,92), a2, (r1,72)) A (01 @ G2)*((r1,72), 12, v2)]|
(ri,m2) € (Q1 x 02)} = V{[o7 (g1, @1 (g2, a2), 02(q2,b2)) A O3 (g2, a2, b2)] A [81(q1, 01 (g2, a2),
) A&(g2,a2,12)] A0 (r1, @1 (r2,u2), 02(r2,v2)) A 05 (r2,u2,v2)]| (r1,72) € (Q1 % 02)}
= V{[o} (g1, ®1(q2,a2), (q2,b2)) A 81 (q1, @1 (g2, a2), r1) A of (r1, @1 (r2,u2), @2 (r2,v2)) ] A
(05 (q2,a2,b2) A 82(q2, a2, r2) A O3 (ra,u,v2)]| (r1,72) € (Q1 X Q2)} =
o (q1, 01 (q2,a2) 01 (r2,u2), 02 (q2, b2) 02(r2,v2)) A GF (g2, a0u2,b2v2) =
o} (q1, 01(q2,a2u2), 02(g2,b2v2)) A OF (g2, azua, bavy) =
o} (g1, ©1(q2,%2), @2(q2,y2)) A 63 (92, X2,¥2).

2. Let (q1,92) € (Q1 X Q2),x2 € X5 ,y2 € Y. We prove the theorem by mathematical induction
on |xy| = |y2| =n.

Case (i) If n =0, then x; = A and y, = A. Now by definition,
(01002)*((q1,92),(f,A),(g,4)) = 1 and o7 (q1,/(q2),8(q2)) A O3 (92,4,A) = 1. Thus, the
theorem is true for n = 0.

Case (ii) Suppose that the theorem is true for V up € X7,v, € ¥ such that |uy| = |v2| =
n—1,n> 1. Let x, = apup and y, = byv, where ap € Xp, by € Y and |up| = |v| =n— 1.
Then (01 © 62)*((1,92), (f>%2),(8,72)) = (01 ©62)* ((q1,42), (f,a2u2), (g,b2v2)) =V {(01
©02)* ((q1,92), (f,a2), (8:b2)) A (81 © &) ((91,42), (fra2), (r1,72)) A (01 @ 62)* ((r1,72),
(fou2), (g v2))] | (r1,m2) € (Q1 xQ2)} =V {[of (a1, f(a2), 8(42)) A 63 (92, a2,b2)] A [6)



(q1:£(q2), 11) A & (g2, a2,72)] N[O (r1, £(r2), 8(r2)) A 03 (r2,u2,v2)] | (r1,72) € (Q1 xQ02)}
=V {lof (q1.£(92) ,8(q2)) A &1 (q1,£(q2), r)A ©f (r1,f(r2), 8(r2) )] A [06F (q2,a2,b2) A
& (q2,a2,m2) A SF (ra,uz,)]| (r1, r2) € (Q1 x02)} = of (q1, f(q2)f(r2), 8(q2)g(r2)) NoY
(q2,a0u2, bav2) = 61 (g1, f(92), 8(92)) AGY (q2,%2,2). O

Theorem 4.12. Let M; = (Q;,X;,Y;, 8, 0;) be a fuzzy Moore machines, i = 1,2. Let ) and U
be an output fuzzy subsystems of M| and M, respectively. Then U X Uy is a an output fuzzy
subsystem of fuzzy Moore machine My © g4 Mp and My ©, My provided, 61 ® 0, is separable in

both the products.

Proof. 1. Let (q1,492), (p1,p2) € (Q1 X Q2),x2 € X5 and y, € ¥)'. Let (8; © 8)*((q1,92),x2,
(p1,p2)) > 0. Then 6; (g1, ®1(g2,x2),p1) > 0 and &5 (g2,x2, p2) > 0. Then u(p1) > wi(gi) A
ot (q1, 01(q2,%2),@(g2,y2) and pa(p2) > pa(q2) A 63 (g2, x2,y2). Thus, (1 x p2)((q1,92))
No1©02)*((q1,92), *2, y2) = (1 (q1) A p2(92)) A (07 (g1, @1(g2, %2), @2(g2, y2)) A 05 (2,
x2,32)) = [i(q1) A 6f(q1, @1(q2, x2), @2(q2,32))] Apa(g2) A 05 (g2, x2, y2)] < wi(p1) A
ti(p2) = (w1 x w2)((p1,p2))- Hence, py x Wy is an output fuzzy subsystems of M| © g My.

2. Let (q1,92),(p1,p2) € (Q1 X @2),x2 € X5 and y; € Y5 Let (81 © 8)"((q1,92), (fx2),
(p1,p2)) > 0. Then 67 (q1,f(q2),p1) > 0 and 87(g2,x2,p2) > 0. Then pi(p1) > pi(g1) A
o1 (q1,f(42),8(q2) and [ (p2) > pa(q2) A 65 (q2,x2,32). Thus, (1 x t2)((q1,92)) A (01 ©
02)*((q1,42),%2.32) = (1 (q1) A pa(2)) A (07 (a1, £ (92) 8(g2)) A 65 (g2.%2,72)) = [w1(g1) A

of(q1,f(q2),8(@2))] A [ (q2) Ao¥ (g2, %2, ¥2)] < 1 (p1) Aa (p2) = (1 X p2)((p1, p2))- Hence,
U1 X Uy is an output fuzzy subsystems of M| &, M5. 0

As we have mention earlier concept of separability is not natural, we now try for natural
extension M| ®q» M, and M} ©, M;. We end this section and paper by proving u; X U is output
fuzzy subsystem of M| ®y M, and M; ©, M, without the separability concept in this second

approach.

Definition 4.13. Let M; = (Q;,X;,Y;, 6;,0;) be a fuzzy Moore machines, i = 1,2. Let @ : Q) X
Xo x X1 — [0,1] and 0, : Q2 x Y2 x Y1 — [0,1]. Define My ©p Mz = (Q1 X 02,X2,Y2,6; ©

52161 ®62)7 where 61 O] 52((@1;@2)#12, (p17p2)) = V{51 (q17a17p1) N @ (q27a27a1) /\52



(q2,a2,p2)| a1 € X1} and 01 © 62 ((91,92).b2) =V {@a(q2, b2,b1) Aoy (q1,b1) A 02(q2,b2)]
by € Yl}.

The fuzzy sets w; and @, are now extended naturally as follows:
of 1 ) x X5 x X; — [0,1] defined by
1, ifxo=x1=24;
0, ifxpyAA=xj0rx;=A1F#xj.
wf(qg,ag,al) =V{0(q2,a2,m2) N @i (r2,a2,a1)|r; € 0>} and

w#(QZ;-xZ;-xl) —

of (q2,a2x0,a1x1) = \/{@1(q2, a2, 1) A &2(q2,a2,72) A OF (r2,x2,x1)|r2 € Oa}.

Now, @ : 0y x X5 x Y5 x Y;* — [0, 1] defined by
1, ifXQ =Y =)= ;L;

wg(q27-x27y27y1) =
0, otherwise.

®F (q2,a2,b2,b1) = \{82(q2,a2,72) A @F (r2,b2,b1)|r2 € Q2 } and

©F (q2,a2x2,b2y2, b1y1) = V{82(q2,a2,12) N @2(r2,b2,b1) A @ (r2,x2,2,y1)|r2 € Q2 }. The ex-
tensions of 0; ® &, and 6] ® 0, in M} ® M, takes the following form

(81 ©62)* 1 (01 X 02) X X5 x (Q1 X Q2) —> [0, 1] defined by
(81062)"((q1,92),a2%2, (P1, p2)) = V{[81 © 2((q1,92), a2, (r1,12)) AN (81 © &2)* (r1, 12), X2, (P14
p))l(r1,m) € Q1 x @2} and (61 ©® 62)* : (Q1 x Q1) x X3 x Y5 — [0, 1] defined by

1, ifx,=y,=4;

0, y=A#yorx#1i=y.

(01©062)*((q1,92),a2,b2) = V{[81 © &2((q1,92), a2, (r1,712)) A (61 © G2)((r1,72),

by)]|(r1,r) € Q1 X Oz} and

(010062)*((91,92),a2%2,b2y2) = V{181 ©82((91,92), a2, (r1,72)) AN (61 © G2) ((r1,72), ba) A (01 O
02)*((r1,72),%2,32)]| (r1,72) € Q1 % 02}

Clearly, by induction on |u;| one can easily prove that

(61©62)"((q1,92),u2x2, (p1, p2)) = V{[(81 © 82)*((q1,42) ,u2, (1,

r2)) A (81 © &) (r1,12),%2, (p1, p2)]|(r1,72) € Q1 X Q2}.

(01002)*((q1,92), %2, ¥2) =

Theorem 4.14. Let M| = (Q1,X.,Y,81,01) and M, = (Q2,X,Y,8,,02) be fuzzy Moore ma-

chines. Then the output function of the cascade product of M| and M, satisfies



(01 ©02)*((q1,92),%2,y2) = V{[o] (q1,%1,51) A ©f (q2,%2,x1) A 0 (q2,%2,¥2,y1) A 05 (2,2,
y2)]l(x1,y1) € X{ < Y[}

Proof. Let (q1,92) € (Q1 X 02),x2 € X5,y2 € Y. We prove the theorem by mathematical in-
duction on |x;| = |y2| = n.
Case (i) If n =0, thenx; =xp = A, y; =y, = A. Thus
(61002)*((q1,92),A,A) = 1 and
V{lof(q1.4,2) Aot (g2, A, 2) A0 (g2, 4,4, X) N 6F (g2, A, A)]|(x1, 1) X7 x ¥} =1A1=1.
Case (ii) If n = 1, then (61 © 62)*((q1,92), a2, b2) = VV{(81 © &) ((q1,92), a2, (r1,12)) A((o7
©02) ((r1,12),02))| (r1,72) € Q1 x @2} =V [V {81(q1, a1,11) A01(q2,a2,a1) N62(q2,a2,72)|ar
€ X1} AV A{@(ra, ba,by) A G1(r1,b1) A Ga(ra,b) [byr €Y1} ]I(r1,72) € Q1 X2} = V{ o} (91,41,
b)) N @1(q2, az,ay) A (x);’i(qz7 az,by,by) A Gf(qz, a,br)} |(a1,by) € X xY.
Suppose that the theorem is true for V x; € X}, y2 € ¥ such that |xp| = [y2| =n—1,n> 1.
Let up = axx; and vy = byy,, where a € Xp, by € Y5 and |xz| = |y2| = n — 1. Then,
(010 02)*((q1,42),u2,v2) = (01 © 62)*((q1,92), a2%2,b2y2) =
=V{[(61©&)((q1.92), @2, (r1,12)) A (610 62)((r1,72),b2) A(01© 62)*((r1,72),22,32)]| (r1.72) €
01 X 02}
=VHV(8i(q1,a1,r) No1(g2,a2,a1) N62(q2,a2,72))|ar € X1} A{V (@2(r2, b2, b1) AGy (r1,b1) A
02(r2,02))|b1 € i} AN (0F (r1,x1,51) A ©F (r2,x0,x1) A @F (r2,%2,¥2,51) A O3 (r2,%2,¥2) ) |x1 €
Xy €Y} (ri,m) € Q1 X Q]

=V{[o] (q1,u1,vi) NOf (g2, u2,u1) N @5 (q2,u2,v2,v1) ANOF (g2, uz,v2)]|(ur,v1) €Xf x Y[} O

Theorem 4.15. Let M; = (Q;,X;,Y;, 8, 0;) be a fuzzy Moore machines, i = 1,2. Let ) and
be an output fuzzy subsystems of M| and M, respectively. Then L X U is a an output fuzzy

subsystem of fuzzy Moore machine My ® o M>.

Proof. Let (81 © 62)*((91,92),%2,(p1,p2)) > 0. Then,
\AISi (q1.x1,p1) A 0f (g2,%2,1) A 85 (q2,%2, p2)]|x1 € X[} > 0.

Therefore, 0;(q1,x1,p1) > 0 and 62(q2,x2, p2) > 0, for some x| € X{

Since, ) and yy are an output fuzzy subsystems of M; and M,, we have u;(p1) > ti(q1) A



of(q1,x1,y1) and Wt (p2) > Wa(q2) Aol (q2,%2,¥2)
Therefore, (1 X t2)(p1,p2) > (11 X U2)(q1,92) A Of (q1,x1,1) A OF (g2, %2,2)
> (W x 12)(q1,q2) Aot (qr,x1,1) A 65 (q2,%2,v2) A OF (q2,%2,x1) A ©0F (g2,x2,y2,1)

= (1 X 12)(q1,42) A (010 62)*((q1,42) . x2,¥2).
Therefore, (i) X W) is an output fuzzy subsystem of M| ©g M. O

Definition 4.16. Let M; = (Q;,X;,Y;, 6;,0;) be a fuzzy Moore machines, i = 1,2. Define M| ®,
My = (Q1 X 02, F(X2) x Xo, F(Y2) x 12,81 © 8,01 © 02), where 8 © 8((q1,42), (f,2),
(P1,p2)) =V{01(q1,a1,p1) N f(q2,a1) NB2(q2, a2, p2)|a1 € X1} and 61 02((q1,92), (8,b2)) =
V{o1(q1,b1) ANg(q2,b1) AN 62(q2,b2)|b1 € Y1}

We have F(X2) = {f|f: 02 x X; — [0,1]} and F(¥2?) = {g|g: Q2 x ¥; — [0,1]}.
Now every (f,az) € F(XIQZ) x X, is extended to (f*,x2) € F((X;)9?) x X; where, f* :
Q> x X — [0,1], by f*(q2,4) =1, f*(q2,a1) = f(q2,a1) and f*(q2,a1x1) = \V{f(q2,a1) A
0 (q2,a2,m) A f*(r2,x1)|r2 € O2}, and every (g,b2) € F(YIQZ) x Y, is extended to (g*,b;) €
F((Y])9?) x Ya, where g* : Qp X ¥ x X5 — [0, 1], by
L, yi=x=24;

0, yi=A#xo0ry #A=x.
2" (q2,b1,a2) =V {62(q2,a2,12) Ng(r2,b1)|r2 € 02} and g* (g2, biy1,a2x2) = \V{82(g2,a2,72) A

8(r2,b1) Ng*(r2,y1,%2)|r2 € Q2 }.

(810 &) : (Q1 % Q2) x (F((X[)92) x X5) x (Q1 % Q2) — [0, 1]

(01 ©&)*((q1,92), (f*a2x2),(p1,p2)) =V {(61 © &)((q1,92), (f,a2), (r1,72)) A ((61 ©
&) ((r1,72), (f*sx2), (p1,p2))| (r1,72) € Q1 xQ2} and (01 © 62)*: (Q1 xQ2) X (F((X{)??)
xX5) x (F((¥y)?) x¥5) — [0,1] by

g (q2,y1,%2) =

L, m=y=4

0, x=A#yorx; #A=y;.

(61062 ((41.42). (/.42). (8.62)) = V{(8 ©8:) (q1.42). (.2). (1. r2)) A (01 O 02) (1. 12).
(g:b2)))[(r1,r2) € Q1 x Q2 } and
(
(

(01 ©02)*((q1,92), (f,x2),(g:)2)) =

010 062)*((91,92), (f*,a2x2), (g%, b2y2)) = V{(61 © &)((q1,92), (f,@2), (r1,72))A
(Gl @Gz)((l’l,l’z), (g7b2))) /\(Gl ®G2)#(<r17r2)7 (f*7x2)7 (g*,yz))I(m,m) €0 x QZ}

Clearly, by induction on |u;| one can easily prove that



(010 &)*((q1,92), (f*u2x2), (p1,p2)) = V{(61© &)*((q1,92), (f*,u2),(r1,r2)) A((01 ©
0)*((r1,m2), (f*,x2), (P1,p2)))| (r1,72) € Q1 X Q2 }.

Theorem 4.17. Let M} = (Q1,X.Y,8,01) and M, = (Q2,X,Y,8,,02) be fuzzy Moore ma-
chines. Then the output function of the wreath product of M| and M, satisfies
(01 ©02)*((q1,92), (f*x2),(g%,2)) = V{ [0f (q1,x1,31) A f*(g2,%1) Ag*(q2,y1,%2) A OF

(g2,x2,32)]| (x1,y1) € X{" x Y[}

Proof. Let (q1,q2) € (01 X Q2), f* € F((X])92),8" € F((Y{")92),x2 € XJ,y2 € Y. We prove
the theorem by mathematical induction on |xz| = |y2| = n.

Case (i) If n =0, then x; =x; = A, y; = y» = A. Theorem is true by definition itself.

Case (ii) If n = 1, then (01 ® )*((q1,q2), (f*,a2), (g%,02)) = V{(81 ® &)((q1,42),
(f,a2), (ri,r2)) A((o1 © 62) ((r1,72), (8:02)))|(r1,r2) € Q1 xQ2} = V[ V{bi(q1,a1,r1) A
flg2,a1) N&y(q2,a2,12) lar € X1} AV{g(r2,b1) AO1(r1,b1) AO2(r2,b2) |b1 € Y1}]| (r1,72)
€ 01 X0} = V{of (q1,a1,b1) A f*(q2,a1) Ng*(q2, b1,a2)|(ar,b1) € x1 X Y1 A 65 (q2,a2,b2) }.
Suppose that the theorem is true for V x; € X5,y € Y5 such that |x;| = [y2| =n—1,n> 1.
Let up = apxy and vy = byy,, where ay € Xp, by € Y and |x3| = |y2| =n—1,n > 1. Then
(01 ©02)*((q1,92), (f*,u2), (g%,v2)) = (01 ©02)*((q1,92), (f*,a2x2), (g*,b2y2)) = V{[(&
©&)((q1:92), (f:a2),(r1,12)) A(o1 © 62) ((r1,72), (8,02)) AO1© G2)*((r1,72), (f*,32),
&2l (r1,r2) € Q1 x @2} = V{V(8i(q1,a1,r1) Af(q2,a1) A &2(q2,a2,12))|ar € Xi} A
{V(g(r2,b1) A 01(r1,b1) AG2(r2,b2))|by € Yi} AN (Of (r1,x1,51) Af*(ra,x1) Ag*(ra,y1,%2)
A O3 (r2,x2,y2)) 1 € X{,y1 €Y(} [(r1,m2) € Q1 x Qo] = V{[0] (q1,a1x1,b131) Af*(g2,a1%1) A

g*(q2, biy1,a2x2)] AO3 (q2,a2%2, bayn)|(arx1, biy1) € X{ x Y}, O
The above theorem enable us to prove that (; X U, is an output fuzzy subsystem of M| ©, M.
Theorem 4.18. Let M; = (Q;,X;,Y;, 8, 0;) be a fuzzy Moore machines, i = 1,2. Let 1y and

be an output fuzzy subsystems of M| and M, respectively. Then U X U is a an output fuzzy

subsystem of the fuzzy Moore machine My ®o M.

Proof. Let (p1,p2),(q1,92) € Q1 X Qa, (f*,x2) € F(X{)? and (g%,y2) € F(Y{)?. Let (8 ®
52)*((6117612)7 (f*,XZ), (P17p2>) > 0. Then’ \/{[51*(%7)517171) /\f*(QZr)Q) A 62*(qzu-x27p2)]|x1 €



X;'} > 0. Therefore,d;(q1,x1,p1) > 0 and 8 (g2,x2,p2) > 0, for some x; € X;". Since, y; and
U are an output fuzzy subsystems of M| and M;, we have p;(py) > ui(gq1) A Gf(ql ,X1,y1) and
ta(p2) > pa(q2) A3 (g2, x2,y2). Therefore, (1 X o) (p1,p2) = (1 X 2)(q1,92) NS (q1,%1,1)
NG (q2,%2,72) > (1 X 12)(q1,G2) NG (q1,x1,31) AGS (g2, %2,32) A f* (g2, %1) Ag* (g2, 31,%2) =

(11 x 142)(q1,92) N(o1©62)*((q1,92), (f*,x2),(g%,y2)). Therefore, 1 x Wy is an output fuzzy
subsystem of M| ©, M. O

5. Conclusion

In this paper the results of fuzzy finite state machine are successfully extended for fuzzy Moore
machines. We introduced successor, submachines, subsystem, homomorphism and (super)
cyclic subsystems for Fuzzy Moore machines. Along with various properties, we have char-
acterized subsystems and (super) cyclic subsystems. Three classes, based on constants fuzzy
sets, fuzzy input-output sets and fuzzy points, of subsystems are also obtained. Subsystem of
Fuzzy Moore machine is then extended to output subsystem. It is also proved that the cartesian
product of output subsystems is an subsystem for four kinds of products of fuzzy Moore ma-
chines. Motivation to introduce extension of output function in fuzzy Moore machine is taken
from the already known separability concept of functions [7]. Following are the main results of

this paper.

(1) Let M = (Q,X,Y,8,0) be a fuzzy Moore machine. If input and output strings has
different length, then degree of the input-output function is zero, at each state.

(2) Image of the successor set of a state, under homomorphism, is a successor set of the
image of the state.

(3) Let M = (Q,X,Y,8,0) be a fuzzy Moore machine and let u be a fuzzy subset subset of
Q. Then u is a subsystem of M if and only if uxy C u, Vxe X*,yeY*.

(4) Let M = (Q,X,Y,8,0) be a fuzzy Moore machine. Let ¢ € (0,1] and ¢ € Q. Then the
following hold

(a) ¢: XY™ is a subsystem of M,

(b) Supp(g:X*Y*) = S(q).



(5) Let M = (Q,X,Y,8,0) be a fuzzy Moore machine and u a subsystem of M. Then u is
called super cyclic if and only if 4 = g,,(,)X*Y™*, Vg € Q.

(6) Let M = (Q,X,Y,8,0) be a fuzzy Moore machine and u a subsystem of M. Then u is
super cyclic if and only if Vp,q € Q,3x € X*,y € Y* such that §* (p,x,q) Ao¥(p,x,y) >

u(p).

(7) Product of two output subsystems of fuzzy Moore machines is an output subsystem of

the following products: restricted direct , direct, cascade and wreath products.
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