
Available online at http://scik.org

Eng. Math. Lett. 2017, 2017:1

ISSN: 2049-9337

SUZUKI-TYPE FIXED POINT THEOREM IN b-METRIC-LIKE SPACES AND ITS
APPLICATION TO INTEGRAL EQUATIONS

NIDHI MALHOTRA1,∗, BINDU BANSAL2

1Department of Mathematics, University of Delhi, Delhi 110007, India

2Department of Mathematics, Hindu College, University of Delhi, Delhi 110007, India

Copyright c© 2017 Malhotra and Bansal. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Recently, Alghamdi et al. [1] introduced and studied a new generalization of metric-like space and

b-metric space which is called a b-metric-like space. In 2013, N. Shobkolaei et al. [16] proved some Suzuki-type

fixed point results in the set of metric-like spaces. In this paper, we extend and generalize Suzuki-type fixed point

theorem in the set of b-metric-like space and establish certain results as corollaries. Also, many examples and an

application to integral equations are presented to verify the effectiveness and applicability of our main results.
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1. Introduction

One of the main tools in fixed point theory is the Banach contraction principle proved by

Banach in 1922 [4]. There exists many generalizations of this theorem in the literature.

Several mathematicians have defined and studied various generalizations of metric spaces.

In 1994, Matthews [12] introduced the notion of partial metric space and generalized Banach
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contraction mapping theorem in such spaces. After that, many authors have studied fixed point

results in partial metric spaces. The notion of b-metric space was established by Bakhtin [3]

and Czerwik [5]. Since then several papers have dealt with fixed point theory for single-valued

and multi-valued operators in b-metric spaces (see [6], [8], [9], [10], [11], [13], [14], etc). In

2012, Amini-Harandi [2] introduced the concept of metric-like space, which is an interesting

generalization of partial metric space. Recently, Alghamdi et al. [1] introduced and studied

a new generalization of metric-like space and b-metric space which is called a b-metric-like

space.

In 2008, Suzuki [15] introduced an interesting generalization of Banach fixed point theorem

in a complete metric space. Since then many authors have extended Suzuki’s result in various

spaces. In 2013, N. Shobkolaei et al. [16] proved some Suzuki-type fixed point results in the

setup of metric-like spaces. The aim of this paper is to extend and generalize Suzuki-type fixed

point theorem in the setup of b-metric-like spaces and derive certain results as corollaries. Also,

many examples and an application to integral equations are provided in support of our main

results. Our fixed point results generalize and improve some well-known results in metric-like

spaces and b- metric spaces proved in the literature.

2. Preliminaries

Throughout the article, we denote by R, the set of all real numbers, by R+, the set of all

nonnegative real numbers and by N, the set of all natural numbers.

Definition 2.1. [12] A mapping p : X ×X → R+, where X is a nonempty set, is said to be a

partial metric on X if for any x,y,z ∈ X the following conditions hold true:

(P1) x = y if and only if p(x,x) = p(y,y) = p(x,y);

(P2) p(x,x)≤ p(x,y);

(P3) p(x,y = p(y,x);

(P4) p(x,z)≤ p(x,y)+ p(y,z)− p(y,y).

The pair (X , p) is then called a partial metric space.
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Definition 2.2. [2] A mapping σ : X ×X → R+, where X is a nonempty set, is said to be a

metric-like on X if for any x,y,z ∈ X the following conditions hold true:

(L1) σ(x,y) = 0⇒ x = y;

(L2) σ(x,y) = σ(y,x);

(L3) σ(x,z)≤ σ(x,y)+σ(y,z).

The pair (X ,σ) is then called a metric-like space. A metric-like on X satisfies all of the condi-

tions of a metric except that σ(x,x) may be positive for x ∈ X .

Remark 2.3. Every partial metric space is a metric-like space but not conversely in general (see

[2]).

Definition 2.4. [5] A b-metric on a nonempty set X is a function d : X×X →R+ such that for

all x,y,z ∈ X and a constant s≥ 1 the following conditions hold true:

(d1) d(x,y) = 0⇔ x = y;

(d2) d(x,y) = d(y,x);

(d3) d(x,y)≤ s[d(x,z)+d(z,y)].

The pair (X ,d) is called a b-metric space.

Definition 2.5. [1] A b-metric-like on a nonempty set X is a function σb : X ×X → R+ such

that for all x,y,z ∈ X and a constant s≥ 1 the following three conditions hold true:

(B1) σb(x,y) = 0⇒ x = y;

(B2) σb(x,y) = σb(y,x);

(B3) σb(x,y)≤ s(σb(x,z)+σb(z,y)).

The pair (X ,σb) is called a b-metric-like space.

Remark 2.6. Every metric-like space and b-metric space is a b-metric-like space but converse

need not be true.

We give the following example in support of above remark.

Example 2.7. [1] Let X = [0,∞). Define a function σb : X2→ R+ by

σb(x,y) = (x+ y)2.
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Clearly, (X ,σb) is not a b-metric or metric-like space. In fact, for all x,y,z ∈ X ,

σb(x,y) = (x+ y)2 ≤ (x+ z+ z+ y)2

= (x+ z)2 +(z+ y)2 +2(x+ z)(z+ y)

≤ 2((x+ z)2 +(z+ y)2)

= 2(σb(x,z)+σb(z,y))

and so (B3) holds. Clearly, (B1) and (B2) hold. Thus, (X ,σb) is a b-metric-like space with

constant s = 2.

We now give some more examples of b-metric-like space.

Example 2.8. [7] Let X = R. Define a function σb : X2→ R+ by

σb(x,y) = (x2 + y2)2.

Then (X ,σb) is a b-metric-like space with constant s = 2.

Example 2.9. [1] Let Cb(X) = { f : X → R : sup| f (x)| < ∞}.The function σb : X ×X → R+,

defined by

σb( f ,g) = 3
√

sup(| f (x)|+ |g(x)|)3

for all f ,g ∈Cb(X), is a b-metric-like with constant s = 3
√

4, and so (X ,σb,
3
√

4) is a b-metric-

like space.

For this, note that if x,y are two nonnegative real numbers, then (x + y)3 ≤ 4(x3 + y3) and

3
√

x+ y≤ 3
√

x+ 3
√

y.

This implies that

σb( f ,g)≤ 3
√

4(σb( f ,h)+σb(h,g)) for all f ,g,h ∈Cb(X).

Example 2.10. [1] Let X = [0,∞). Define a function σb : X2→ R+ by

σb(x,y) = (max{x,y})2.

Then (X ,σb) is a b-metric-like space with constant s = 2. Clearly, (X ,σb) is not a b-metric or

metric-like space.

Example 2.11. [7] Let X = R and c ∈ R. Define a function σb : X2→ R+ by

σb(x,y) = (|x− c|+ |y− c|)2.



SUZUKI-TYPE FIXED POINT THEOREM 5

Then (X ,σb) is a b-metric-like space with constant s = 2.

Now we define convergent and Cauchy sequences in b-metric-like spaces.

Definition 2.12. [1] Let (X ,σb) be a b-metric-like space with constant s ≥ 1 and let {xn} be

a sequence in X . A point x ∈ X is said to be the limit of the sequence {xn} if lim
n→∞

σb(x,xn) =

σb(x,x), and we say that the sequence {xn} is convergent to x and denote it by xn→ x as n→∞.

Definition 2.13. [1] Let (X ,σb) be a b-metric-like space with constant s≥ 1.

(1) A sequence {xn} is called Cauchy if and only if lim
m,n→∞

σb(xn,xm) exists and is finite.

(2) A b-metric-like space (X ,σb) is said to be complete if and only if every Cauchy sequence

{xn} in X converges to x ∈ X so that lim
m,n→∞

σb(xn,xm) = σb(x,x) = lim
n→∞

σb(xn,x).

Remark 2.14. In a b-metric-like space, limit of a convergent sequence is not necessarily

unique and a convergent sequence need not be a Cauchy sequence.

Example 2.15. Let X = [0,∞) and σb = (max{x,y})2 for all x,y ∈ X .

Let xn =


0 if n is odd

1 if n is even

For any x≥ 1, lim
n→∞

σb(x,xn) = lim
n→∞

(max{xn,x})2 = x2 = σb(x,x).

Therefore, it is a convergent sequence and xn→ x ∀ x≥ 1.

That is, limit of the sequence is not unique.

Also, lim
m,n→∞

σb(xm,xn) does not exist. Thus, it is not a Cauchy sequence.

Proposition 2.16. [1] Let (X ,σb) be a b-metric-like space with constant s≥ 1 and let {xn} be

a sequence in X such that lim
n→∞

σb(xn,x) = 0. Then

(A) x is unique;

(B) 1
s σb(x,y)≤ lim

n→∞
σb(xn,y)≤ sσb(x,y) for all y ∈ X .

3. Main results

Theorem 3.1. Let (X ,σb) be a complete b-metric-like space with constant s≥ 1. Let T : X→ X

be a self map and let θ = θ : [0,1)→ ( 1
s+1 ,1] be defined by
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θ(r) =


1 ,0≤ r ≤

√
5−1
2

1−r
r2 ,

√
5−1
2 ≤ r ≤ rs

1
s+r ,rs ≤ r < 1

where rs =
1−s+

√
1+6s+s2

4 is the positive solution of 1−r
r2 = 1

s+r . If there exists r ∈ [0,1) such that

for each x,y ∈ X ,

θ(r)σb(x,T x)≤ σb(x,y)⇒ σb(T x,Ty)≤ r
s2 σb(x,y) (3.1)

then T has a unique fixed point z ∈ X and for each x ∈ X, the sequence {T nx} converges to z.

Proof. First note that θ(r)≤ 1 which implies that

θ(r)σb(x,T x)≤ σb(x,T x) (3.2)

Therefore, it follows from (3.1) that for each x ∈ X

σb(T x,T 2x)≤ r
s2 σb(x,y) (3.3)

Let x0 ∈ X be arbitrary. Define a sequence {xn} by xn = T xn−1 = T nx0 for n ∈ N.

From (3.3), we have

σb(xn,xn+1) = σb(T xn−1,T 2xn−1)≤ r
s2 σb(xn−1,T xn−1) =

r
s2 σb(xn−1,xn)≤ . . .≤ rn

s2n σb(x0,x1).

For m,n ∈ N,m≥ n, we have

σb(xn,xm)≤ sσb(xn,xn+1)+ s2
σb(xn+1,xn+2)+ . . .+ sm−n−1

σb(xm−1,xm)

≤ (
srn

s2n +
s2rn+1

s2n+2 + . . .+
sm−n−1rm−1

s2m−2 )σb(x0,x1)

<
rn

s2n−1 (1+
r
s
+(

r
s
)2 + . . .)σb(x0,x1)

=
rn

s2n−1
1

1− r
s

σb(x0,x1)→ 0 as n→ ∞.

Hence, {xn} is a Cauchy sequence. Since X is complete, there exists z∈X such that lim
n→∞

σb(xn,z)=

σb(z,z) = lim
m,n→∞

σb(xm,xn) = 0.

That is, lim
n→∞

xn+1 = lim
n→∞

T xn = z.

We will prove that T z = z.
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Put x = T n−1z in (3.3),we get

σb(T nz,T n+1z)≤ r
s2 σb(T n−1z,T nz) (3.4)

holds for each n ∈ N (where T 0z = z). It follows by induction that

σb(T nz,T n+1z)≤ rn

s2n σb(z,T z). (3.5)

We now show that

σb(z,T x)≤ rσb(z,x). (3.6)

holds for each x 6= z.

Since limσb(xn,T xn) = σb(z,z) 6= 0 and by Proposition 2.16, limσb(xn,x) 6= 0, therefore there

exists n0 such that θ(r)σb(xn,T xn)≤ σb(xn,x) holds for every n≥ n0.

Assumption (3.1) implies that for such n,

σb(T xn,T x)≤ r
s2 σb(xn,x). (3.7)

Now taking limit as n→ ∞, we get
1
s σb(z,T x)≤ limσb(xn+1,T x)≤ r

s2 limσb(xn,x)≤ r
sσb(z,x)

⇒ σb(z,T x)≤ rσb(z,x).

Next we will show that for each n ∈ N,

σb(T nz,z)≤ σb(T z,z) (3.8)

For n = 1, this relation is obvious. Suppose that it holds for some m ∈ N.

If T mz = z, then T m+1z = T z and σb(T m+1z,z) = σb(T z,z).

If T mz 6= z, then

σb(T m+1z,z)≤ rσb(T mz,z)≤ rσb(T z,z)≤ σb(T z,z).

The result follows by induction.

Now, in order to prove that T z = z, we suppose on the contrary that T z 6= z and consider the two

possible cases:

Case I: 0≤ r ≤ rs (θ(r)≤ 1−r
r2 )

We will first prove that

σb(T nz,T z)≤ r
s2 σb(T z,z) f or n≥ 2. (3.9)
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For n = 2, it follows from (3.4).

Now suppose that (3.9) holds for some n > 2. Then

σb(T z,z)≤ [σb(z,T nz)+σb(T nz,T z)]

≤ sσb(z,T nz)+ r
sσb(T z,z)

≤ sσb(z,T nz)+ rσb(T z,z)

⇒ (1− r)σb(z,T z)≤ sσb(z,T nz).

Now using (3.5), we have

θ(r)σb(T nz,T n+1z)≤ 1−r
rn σb(T nz,T n+1z)

≤ 1−r
s2n σb(z,T z)

≤ 1
s2n−1 σb(z,T nz)≤ σb(z,T nz)

Therefore, by assumption (3.1), we get

σb(T z,T n+1z)≤ r
s2 σb(z,T nz)≤ r

s2 σb(z,T z).

Hence the claim follows by induction.

Now T z 6= z and (3.9) implies that T nz 6= z for each n ∈ N.

Hence, (3.6) implies that

σb(z,T n+1z)≤ rσb(z,T nz)≤ r2σb(z,T n−1z)≤ . . .≤ rnσb(z,T nz).

Hence lim
n→∞

σb(z,T n+1z) = 0 = σb(z,z).

Thus, T nz→ z.

Using this and Proposition 2.16 in (3.9) we get

1
s2 σb(z,T z)≤ r

s2 σb(T z,z) as n→ ∞.

That is, σb(z,T z) = 0 which is a contradiction.

Case II: rs ≤ r < 1 (θ(r) = 1
s+r ).

We will prove that there exists a subsequence {xnk} of {xn} such that

θ(r)σb(xnk ,T xnk) = σb(xnk ,xnk+1)≤ σb(xnk ,z) (3.10)

holds for each k ∈ N.

Now from (3.3), we know that

σb(xn,xn+1)≤
r
s2 σb(xn−1,xn) holds f or each n ∈ N.
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Suppose that

1
r+ s

σb(xn−1,xn)> σb(xn−1,z),

1
r+ s

σb(xn,xn+1)> σb(xn,z)

holds for some n ∈ N.

Then,

σb(xn−1,xn)≤ s(σb(xn−1,z)+σb(xn,z))< s
s+r σb(xn−1,xn)+

s
s+r σb(xn,xn+1)

≤ s
s+r σb(xn−1,xn)+

r
s(s+r)σb(xn−1,xn)≤ σb(xn−1,xn), which is not possible.

Hence, either

θ(r)σb(x2n−1,x2n)≤ σb(x2n−1,z)

or θ(r)σb(x2n,x2n+1)≤ σb(x2n−1,z)

holds for each n ∈ N.

In otherwords, there is a subsequence {xnk} of {xn} such that (3.10) holds for each k ∈ N.

But assumption (3.1) implies that

σb(T xnk ,T z)≤ r
s2 σb(xnk ,z)

ie, σb(xnk+1,T z)≤ r
s2 σb(xnk ,z).

Taking limit as k→ ∞, we get

σb(z,T z)≤ 0, which is a contradiction.

Thus, we have T z = z.

That is , z is a fixed point of T.

Uniqueness: Let y,z be two fixed points of T such that y 6= z. Then

σb(y,z) = σb(y,T z)≤ rσb(y,z) (using (3.6)), which is not possible.

Therefore, y = z.

Now we give an example to support our result.

Example 3.2. Let X = [0,∞). Define σb : X2→ R+ by σb(x,y) = (x+ y)2 ∀ x,y ∈ X .

Then (X ,σb) is a complete b-metric-like space with constant s = 2. Let T : X → X be a map

defined by T x = ln(1+ x
8) ∀ x ∈ X .
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Take r = 0.8. Then θ(r) = 1
2.8 . Now,using the Mean Value Theorem for any x,y ∈ X with x≤ y

and that T x≤ x
8 , we have

θ(r)σb(x,T x) = 1
2.8(x+ ln(1+ x

8))
2 ≤ 1

2.8(x+
x
8)

2 < x2 ≤ (x+ y)2 = σb(x,y).

On the other hand, we have

σb(T x,Ty) = ( x
8 +

y
8)

2 ≤ 0.8
4 (x+ y)2 = r

s2 σb(x,y).

Thus T satisfies all the hypothesis of Theorem 3.1 and hence T has a unique fixed point ie,

x = 0.

Theorem 3.3. Let (X ,σb) be a complete b-metric-like space with constant s ≥ 1. Let S,T :

X → X be two mappings. Suppose that there exists r ∈ [0,1) such that

max{σb(Sx,T Sx),σb(T x,ST x)} ≤ r
s

min{σb(x,Sx),σb(x,T x)} (3.11)

for every x ∈ X and that

α(y) = in f{σb(x,y)+min{σb(x,Sx),σb(x,T x)} : x ∈ X}> 0 (3.12)

for every y ∈ X such that y is not a common fixed point of S and T .Then there exists z ∈ X such

that z = Sz = T z. Moreover, if u = Su = Tu, then σb(u,u) = 0.

Proof. Let x0 ∈ X be arbitrary and define a sequence {xn} by

xn =


Sxn−1 if n is odd

T xn−1 if n is even
(3.13)

Now if n is odd, we have

σb(xn,xn+1) = σb(Sxn−1,T xn) = σb(Sxn−1,T Sxn−1)

≤max{σb(Sxn−1,T Sxn−1),σb(T xn−1,ST xn−1)}

≤ r
s

min{σb(xn−1,Sxn−1),σb(xn−1,T xn−1)}

≤ r
s

σb(xn−1,Sxn−1) =
r
s

σb(xn−1,xn).
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If n is even, then we have

σb(xn,xn+1) = σb(T xn−1,Sxn) = σb(T xn−1,ST xn−1)

≤max{σb(Sxn−1,T Sxn−1),σb(T xn−1,ST xn−1)}

≤ r
s

min{σb(xn−1,Sxn−1),σb(xn−1,T xn−1)}

≤ r
s

σb(xn−1,T xn−1) =
r
s

σb(xn−1,xn).

Thus for any n ∈ N,we have

σb(xn,xn+1)≤
r
s

σb(xn−1,xn). (3.14)

Repeating (3.14), we obtain

σb(xn,xn+1)≤
rn

sn σb(x0,x1).

For m,n ∈ N,m≥ n, we have

σb(xn,xm)≤ sσb(xn,xn+1)+ s2
σb(xn+1,xn+2)+ . . .+ sm−n−1

σb(xm−1,xm)

≤ (
srn

s2 +
s2rn+1

sn+1 + . . .+
sm−n−1rm−1

sm−1 )σb(x0,x1)

<
rn

sn−1 (1+ r+ r2 + . . .)σb(x0,x1)

=
rn

sn−1(1− r)
σb(x0,x1)→ 0 as n→ ∞.

Hence, {xn} is a Cauchy sequence. Since X is complete, ther exists z∈X such that lim
n→∞

σb(xn,z)=

σb(z,z) = lim
m,n→∞

σb(xm,xn) = 0.

If z is not a common point of S and T, then by hypothesis (3.12)

0 < in f{σb(x,z)+min{σb(x,Sx),σb(x,T x)} : x ∈ X}

≤ in f{σb(xn,z)+min{σb(xn,Sxn),σb(xn,T xn)} : n ∈ N}

≤ in f{ rn

sn−1(1− r)
σb(x0,x1)+σb(xn,xn+1) : n ∈ N}

≤ in f{ rn

sn−1(1− r)
σb(x0,x1)+

rn

sn σb(x0,x1) : n ∈ N}= 0,

which is a contradiction.

Therefore, z = Sz = T z.
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If u = Tu = Su for some u ∈ X , then

σb(u,u) = max{σb(Su,T Su),σb(Tu,STu)}

≤ r
s

min{σb(u,Su),σb(u,Tu)}

=
r
s

min{σb(u,u),σb(u,u)}

=
r
s

σb(u,u).

⇒ σb(u,u) = 0.

Corollary 3.4. Let (X ,σb) be a complete b-metric-like space with constant s≥ 1. Let T : X →

X be a mapping. Suppose that there exists r ∈ [0,1) such that

σb(T x,T 2x)≤ r
s

σb(x,T x)

for every x ∈ X and that

α(y) = in f{σb(x,y)+σb(x,T x) : x ∈ X}> 0

for every y ∈ X such that y 6= Ty. Then there exists z ∈ X such that z = T z. Moreover, if u = Tu,

then σb(u,u) = 0.

Proof. Take S = T in Theorem 3.3 .

Example 3.5. Let X = [0,∞) and σb : X2→ R+ be defined as

σb(x,y) = (x+ y)2.

Then (X ,σb) is a complete b-metric-like space with s = 2. Define T : X → X by T x = x
2 and

S : X → X by Sx = x
4 for all x ∈ X .

Then, max{σb(Sx,T Sx),σb(T x,ST x)}= max{σb(
x
4 ,

x
8),σb(

x
2 ,

x
8)}=

25
64x2.

Now, min{σb(x,Sx),σb(x,T x)}= min{σb(x, x
4),σb(x, x

2)}=
25
16x2.

Here r = 1
2 and also α(y)> 0 for every y ∈ X such that y is not a common fixed point of S and

T.

Thus all the conditions of Theorem 3.3 are satisfied and x = 0 is a common fixed point of S and

T.
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Theorem 3.6. Let (X ,σb) be a complete b-metric-like space with constant s ≥ 1. Let S,T be

mappings from X onto itself. Suppose that there exists r > s such that

min{σb(Sx,T Sx),σb(T x,ST x)} ≥ r max{σb(x,Sx),σb(x,T x)}

for every x ∈ X and that

α(y) = in f{σb(x,y)+min{σb(x,Sx),σb(x,T x)} : x ∈ X}> 0 (3.15)

for every y ∈ X such that y is not a common fixed point of S and T .Then there exists z ∈ X such

that z = Sz = T z. Moreover, if u = Su = Tu, then σb(u,u) = 0.

Proof. Let x0 be arbitrary. Since S is onto, ther is an element x1 such that x1 = S−1x0, ie,

Sx1 = x0. Now since T is also onto, there is an element x2 such that T x2 = x1. Proceeding in

the same way, we can find x2n+1 such that Sx2n+1 = x2n and x2n+2 such that T x2n+1 = x2n+2 for

n = 1,2,3, . . .

Therefore, x2n = Sx2n+1 and x2n+1 = T x2n+2 for n = 0,1,2, . . .

If n = 2m, then

σb(xn−1,xn) = σb(x2m−1,x2m) = σb(T x2m,Sx2m+1) = σb(T Sx2m+1,Sx2m+1)

≥min{σb(T Sx2m+1,Sx2m+1),σb(ST x2m+1,T x2m+1)}

≥ r max{σb(Sx2m+1,x2m+1),σb(T x2m+1,x2m+1)}

≥ rσb(Sx2m+1,x2m+1) = σb(x2m,x2m+1) = σb(xn,xn+1).

If n = 2m+1, then

σb(xn−1,xn) = σb(x2m,x2m+1) = σb(Sx2m+1,T x2m+2) = σb(ST x2m+2,T x2m+2)

≥min{σb(T Sx2m+2,Sx2m+2),σb(ST x2m+2,T x2m+2)}

≥ r max{σb(Sx2m+2,x2m+2),σb(T x2m+2,x2m+2)}

≥ rσb(T x2m+2,x2m+2) = σb(x2m+1,x2m+2) = σb(xn,xn+1).

Thus for any n ∈ N, we have

σb(xn−1,xn)≥ rσb(xn,xn+1)

⇒ σb(xn,xn+1)≤ 1
r σb(xn−1,xn)...≤ 1

rn σb(x0,x1).

Let α = 1
r , then 0 < α < 1. Therefore,
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σb(xn,xn+1)≤ αnσb(x0,x1).

Now if m,n ∈ N,m≥ n, then

σb(xn,xm)≤ sσb(xn,xn+1)+ s2
σb(xn+1,xn+2)+ ...sm−n−1

σb(xm−1,xm)

≤ (sα
n + s2

α
n+1 + ...)σb(x0,x1)

< sα
n(1+ sα +(sα)2...)σb(x0,x1)

=
αn

(1− sα)
σb(x0,x1)→ 0 as n→ ∞.

Hence, {xn} is a Cauchy sequence. Since X is complete, ther exists z∈X such that lim
n→∞

σb(xn,z)=

σb(z,z) = lim
m,n→∞

σb(xm,xn) = 0.

If z is not a common point of S and T, then by hypothesis (3.15)

0 < in f{σb(x,z)+min{σb(x,Sx),σb(x,T x)} : x ∈ X}

≤ in f{σb(xn,z)+min{σb(xn,Sxn),σb(xn,T xn)} : n ∈ N}

≤ in f{ αn

1− sα
σb(x0,x1)+σb(xn,xn+1) : n ∈ N}

≤ in f{ αn

1− sα
σb(x0,x1)+α

n
σb(x0,x1) : n ∈ N}= 0,

which is a contradiction.

Therefore, z = Sz = T z.

If u = Tu = Su for some u ∈ X , then

σb(u,u) = min{σb(Su,T Su),σb(Tu,STu)}

≥ r max{σb(u,Su),σb(u,Tu)}

= r max{σb(u,u),σb(u,u)}

= rσb(u,u).

⇒ σb(u,u) = 0.

Corollary 3.7. Let (X ,σb) be a complete b-metric-like space with constant s≥ 1. Let T : X→X

be an onto mapping. Suppose that there exists r > s such that

σb(T x,T 2x)≥ rσb(x,T x)
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for every x ∈ X and that

α(y) = in f{σb(x,y)+σb(x,T x) : x ∈ X}> 0

for every y ∈ X such that y 6= Ty. Then there exists z ∈ X such that z = T z. Moreover, if u = Tu,

then σb(u,u) = 0.

Proof. Take S = T in Theorem 3.6.

Corollary 3.8. Let (X ,σb) be a complete b-metric-like space with constant s ≥ 1.Let T be a

continuous mapping from X onto itself. Suppose that there exists r > s such that

σb(T x,T 2x)≥ rσb(x,T x)

for every x ∈ X.Then there exists z ∈ X such that z = T z. Moreover, if u = Tu, then σb(u,u) = 0.

Proof. Suppose that there exists y ∈ X with Ty 6= y such that α(y) = in f{σb(x,y)+σb(T x,x) :

x ∈ X}= 0.

Then there exists a sequence {xn} in X such that

lim{σb(xn,y)+σb(T xn,xn)}= 0.

Therefore, limσb(xn,y) = 0 and limσb(T xn,xn) = 0.

Now, σb(y,y)≤ σb(y,xn)+σb(xn,y)

⇒ σb(y,y) = 0.

Also, σb(T xn,y)≤ σb(T xn,xn)+σb(Xn,y)→ 0 as n→ ∞.

Since T is continuous, we have

Ty = T (limxn) = limT xn = y, which is a contradiction.

Hence, if y 6= Ty, then α(y) > 0. Therefore by Corollary (3.7), there exists z ∈ X such that

z = T z.

Example 3.9. Let X = [0,∞) and σb : X×X → R+ be defined by

σb(x,y) = (x+ y)2.

Then (X ,σb) is a complete b-metric-like space with s = 2. Define T : X → X by T x = 3x. Then

clearly T is onto and continuous. Also for each x ∈ X , we have
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σb(T x2,T x) = 144x2 ≥ r16x2 = rσb(T x,x) where r = 3,4, . . . ,9. Thus T satisfies all the con-

ditions of Corollary (3.8) and x = 0 is a fixed point of T.

Corollary 3.10. Let (X ,σb) be a complete b-metric-like space with constant s≥ 1. Let T be a

continuous mapping from X onto itself. Suppose that there exists r > s such that

σb(T x,T 2x)≥ r min{σb(x,T x),σb(y,Ty),σb(x,y)} (3.16)

for every x,y ∈ X.Then there exists z ∈ X such that z = T z. Moreover, if u = Tu, then σb(u,u) =

0.

Proof. Replacing y by T x in (3.16), we get

σb(T x,T 2x)≥min{σb(x,T x),σb(T 2x,T x),σb(T x,x)} ∀x ∈ X .

If T x = T 2x, then T x is a fixed point of T and we are done.

So, now assume that T x 6= T 2x. Since r > s≥ 1, it follows that

σb(T x,T 2x)≥ rσb(x,T x) for all x ∈ X .

Therefore, by Corollary (3.8), we get that T has a fixed point in X .

Remark 3.11. For s = 1, we get the corresponding results proved by N. Shobkolaei et al.[16].

4. Application to the existence of solution of integral equations

In this section, we study the existence of solutions of nonlinear integral equations using

Theorem 3.1 in b-metric-like space.

Consider the integral equation

u(x) =
∫ a

0
G(x, t) f (t,u(t))dt f or all x ∈ [0,a] (4.1)

where a > 0, f : [0,a]×R→R and G : [0,a]× [0,a]→ [0,∞) are continuous functions on [0,a].

Let X =C([0,a]) be the set of real valued continuous functions on [0,a]. Define a function σb

on X as

σb(u,v) = sup
x∈[0,a]

(|u(x)|+ |v(x)|)2 f orall u,v ∈ X .
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Clearly (X ,σb) is a complete b-metric-like space with constant s= 2. Let a function θ be defined

as in Theorem 3.1 and the mapping T : X → X be defined by

Tu(x) =
∫ a

0
G(x, t) f (t,u(t))dt f or all x ∈ [0,a].

Suppose that there exists r ∈ [0,1) such that for every t ∈ [0,a] and u,v ∈ X , the inequality

θ(r)σb(Tu,u)≤ σb(u,v)⇒ (| f (t,u(t))|+ | f (t,v(t))|)2 ≤ r2

16
(|u(t)|+ |v(t)|)2. (4.2)

Also, assume that

sup
x∈[0,a]

∫ a

0
G(x, t) dt ≤ 1. (4.3)

Theorem 4.1. Under assumptions (4.2) and (4.3), the integral equation (4.1) has a unique

solution in C([0,a]).

Proof. For all x ∈ [0,a],

(|Su(x)|+ |Sv(x)|)2 = (|
∫ a

0
G(x, t) f (t,u(t))dt|+ |

∫ a

0
G(x, t) f (t,v(t))dt|)2

≤ (
∫ a

0
G(x, t)| f (t,u(t))|dt + |

∫ a

0
G(x, t)| f (t,v(t))|dt)2

= (
∫ a

0
G(x, t)(| f (t,u(t))|+ | f (t,v(t))|)dt)2

≤ r
4
(
∫ a

0
G(x, t)(|u(t)|+ |v(t)|)dt)2

≤ r
4
(
∫ a

0
G(x, t)(σb(u,v))

1
2 dt)2

≤ r
4
(σb(u,v))(

∫ a

0
G(x, t)dt)2

≤ r
4

σb(u,v).

⇒ sup
x∈[0,a]

(|Tu(x)|+ |T v(x|)2 ≤ r
4σb(u,v).

That is, σb(Tu,T v)≤ r
4σb(u,v).

Thus all the conditions of Theorem 3.1 holds and therefore T has a unique fixed point u in

X =C([0,a]).

Hence, u is the solution of integral equation (4.1).
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