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1. Introduction 

A real-valued function  f  is said to be convex  on a closed interval  I  if 

  ),()1()()1( yftxtfyttxf    for all  .10,,  tIyx  If  the inequality is 

reversed,  the  f  is called  concave.  It is known that  f  is convex  if .0)(  xf  
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which holds for  all convex mapping ],[: baf ,  is known in the literature as 

Hadamard inequality. In  [2],  Fejér  generalized  Hadamard's inequality by giving the 

following :  

    

   Theorem 1.1. If  ],[: bag  is non-negative integrable and symmetric to  

2
bax  , and if  f  is convex on [a,b],  then 
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2. Lemmas 

The following lemmas are needed for our aim 

 

   Lemma 2.1.  Let 

                                                     ,0)()(  dcba                                                    (3)  
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Proof.   By  (3), 
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   Lemma 2.2.  If   ,0, dc   and 
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Proof.  By  (6), 
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3. Results 

   Theorem 3.1.  Let Igf :,  be positive convex functions such that for  all  

,, Iba   

                                              ,0)()()()(  bgagbfaf                                        (7)  

then  fg  is convex. If  

                                                ,0)())()(  aggbbfaf                                        (8) 

then  fg  is concave. 

 

                                           

Proof.  Applying  Lemma 2.1,  we have 
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The proof of the other part is similar. 

 

   Theorem 3.2.  Let Igf :, , be positive functions,  f is convex and  g  is 

concave,   0)(),( bgag and  satisfying 
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Then   f/g is convex. 

 

Proof.  Since 
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then on multiplying  (9)  and  (10),  we obtain 

                               ,
22

)()(

2

)()(

2







 








 







  ba
g

bfafbgagba
f  

which implies 
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Therefore, by Lemma 2.2, 
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A positive function  is said to be  log-convex if  logf   is convex. Concerning this type 

of functions,  we have the following result 

    

   Theorem 3.3.   If  If :  is a positive convex function  and if ,1c  then 

)(xfc   is convex. 

Proof.     

            
22

1 )()(
2

2

)(
2

2

)(

2

)(

2

)(

2

)()(

2
bfafbfafbfafbfafba

f cc
cccccc























































 

 .    

   Corollary 3.4.  Let Igf :, ,  f is log-convex and g is convex. If 

                               Ibabgagbfaf ,,0)()())((log))(log(                   (12) 

then  the function  gf is convex. 

 

Proof.   By Theorem 3.1,  gf )(log  is convex.  The result follows by an application 

of  Theorem 3.3,  with  .ec   

           

   Theorem 3.5.  Let  If :  be positive concave. Then f/1 is convex. 

 

Proof.  For   ,, Iba   we have 

            )()()()(2 22 bfafbfaf   
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   Theorem 3.6.  Let  If :  be positive  convex such that  1f  exist. Then 

1f  is concave. If  f  is concave, then  1f is convex. 

 

Proof.  We have  for  ,, Iba   
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  The proof of the other part is similar.     

 

   Theorem 3.7.  Let Igf :,  be positive convex functions such that If  for  

all  ,, Iba   
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is satisfied, then   fg  is convex.  If  both  f   and  g  are concave and  (13)  reverses, 

then  fg  is concave . 

 

Proof.  We have,  by  (13), via simple application, 
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   Corollary 3.8.  Let Igf :,  be positive functions such that f is convex and 

g  is concave,  then  f/g  is convex,  provided the following is satisfied for  all  ,, Iba   
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Proof.  As   g  is concave,   then  by  Theorem 3.5,   g/1   is convex.  The result 

follows by  Theorem  3.1  via  (14) .                             

 

   Theorem 2.9.  (a).  If  f   is convex and  g  is concave,   then  f-g is convex. 

(b).  If  f   is concave  and  g  is convex,   then  f-g is concave. 

 

Proof.  (a). 
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   Theorem 3.10.  Let Igf :,  be positive convex functions . Let 
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then  fg   is convex.  If   f  and  g  are concave such that  ,10  p  and  (15) reversed, 

then  fg  is concave. 

Proof.   
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   Theorem 3.11.  Let Igf :,  be positive functions such that  f  convex and   

g   concave and  for  all  ,, Iba   
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then   f+g  is convex. 

 

Proof.   We have 
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