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Abstract. This paper considers the development of some mathematical operators as convolution and primitive

for continuous-in-time financial model. This development is given in form of API (Application Programming

Interface) with showing concept of its computation. The model is based on using measures and fields. The work

we report here addresses the fundamental issue of how measures and fields are implemented for the software. The

originality of this API lie in the fact that it will be used by the company MGDIS.
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1. Introduction

Time is the central element that influence financial economic behavior. The continuous-in-

time financial model constitutes a powerful tool for studying the development of continuous-in-

time methods in finance. We refer to papers [1, 2], which are dealing with continuous-in-time

financial model. These papers develop the mathematics and economic theory of finance from

the perspective of a model in which agents can revise their decisions continuously in time. At

the same time, we have seen an explosion in the use of algorithms for computation methods to
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implement continuous-time models. The covered methods include convolution and primitive

has been one of the most effective and widely-used of these methods. They began to be studied

and applied systematically in various branches of modern science as in finance. We refer to

[3] that presents an approach for implementing continuous-time adaptive recursive filters for

convolution operator.

Within this paper, SOFI [4] is a software tool marketed by the company MGDIS. It is de-

signed to the public institutions such local communities to set out multiyear budgets. SOFI is

based on a discrete financial modeling. Currently, the mathematical objects involved in SOFI

are suites and series. The discrete model generates outcomes in the form of tables. We showed

in previous work [5] the default of this discrete model. We build a new model with using an

other paradigm in [5]. This new model is based on continuous-in-time model and uses the

mathematical tools such convolution and integration to describe loan scheme, reimbursement

scheme and interest payment scheme. In [6] we have shown some results about improving one

of the continuous-in-time financial models built in paper [5]. We use in [6] a mathematical

framework to discuss an inverse problem of the continuous-in-time model.

This article describes implementing the continuous-in-time financial model. Mainly, we fo-

cus on concept of computation in API. This API is to be integrated in SOFI in order to produce

the continuous software, and is restricted to certain measures and fields. The purpose of com-

puting integration of measures over a time interval is to compute loan scheme, reimbursement

scheme, etc; and the purpose of computing evaluation of fields at an instant is to compute cur-

rent debt amount, where current debt field is a function that, at any time t, gives the capital

amount still to be repaid.

Since some measures and fields could not been implemented continuously, we discretize

them. Indeed, some computations in API need discretization. Next, we use these discrete val-

ues for obtaining the continuous values. The original motivation for this paper comes from a

desire to understand the concept of computation in API with establishing mathematical relation

between discrete measure and integrated measure. In addition, convolution and primitive oper-

ators are fundamental operations in the model. We use convolution in order to compute capital
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repayment measure with the Fast Fourier Transform method. We use primitive to compute cur-

rent debt field at an instant t with accumulating measures between initial time and time t. The

primitive of measure is defined as a field in spite of it is undefined in the Radon measure space.

In this work, we describe how we impelement and check these operators.

The rest of this paper contains three sections. The first one introduces time steps that are

involved in the models in order to show concept of computation in API. In the second we review

numeric choices linked to API, where we define a field as continuous function by superior value.

The last one shows implementation details about convolution and primitive.

2. Concept of computation in API

This section is devoted to explain time steps that are involved in the model and the relations

between them. We give the time scales to integrate measure over interval which are shown in

Figure 1. We introduce Tmin which is the time scale below which nothing coming from the

model will be observed. To be more precise, we say that a measure m̃ is observed over time

interval [t1, t2] if

∫ t2

t1
m̃, (2.1)

is computed. And, we will always, choose times t1 and t2 such that t2−t1 > Tmin. In order to ob-

serve models, we need an observation step Tobs which is strictly superior to minimal observation

step Tmin

Tobs > Tmin. (2.2)

We define the discrete step TdM as a smaller step than step Tmin to discretize measures:

TdM ≤ Tmin. (2.3)

For instance, we are setting discrete step TdM by following equality:

TdM =
Tmin

20
. (2.4)
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Observation step Tobs is partitioned into nD discrete step TdM defined by:

nD =

[
Tobs

TdM

]
. (2.5)

A field is evaluated between inferior value a and superior value b with discrete step TdF satisfy-

ing:

TdF < b−a. (2.6)

Since measures and fields compose API, they are shared in two levels which are shown in

Figure 2. First is high level and is created for business reasons. The computation in high level

is designed to the SOFI users. Second is low level which is only used by the high level. The

computation in low level is designed to the high level users. Notice that low level doesn’t

use its high. We say that high level implements its low. High and low levels contain non-

discrete measures, non-discrete fields defined on R, discrete measures and discrete fields. Some

computations in high level need discretization. For instance, if we want to discretize a measure

in high level, we create its copy in low level. Then we discretize it in order to rise up its values

to high level.

Time density

Time scale

To be interpreted,
integrated over intervals

of length: > Tmin

Time scale
below which

are nothing observed

FIGURE 1. Different time steps.
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The aim here is to explain how measures are integrated and how fields are evaluated. A non-

discrete measure in low level is integrated between inferior bound a and superior bound b with

minimal observation step Tmin and observation step Tobs. It follows that discrete step TdM is

computed with relation (2.4). Whereas in high level it is integrated between inferior bounds a

and superior bound b. A non-discrete field in low level is evaluated between inferior value a and

superior value b with discrete step TdF. Yet, its evaluation in high level is done only between

inferior value a and superior value b.

The parallelism of discrete measures and fields in low level is based on the concept of a task.

Tasks provide much benefits: more efficient computation and robustness API. Precisely, the

Task Parallel Library [7] is used to entail execution and development speed. It is shown in [8]

that this library makes it easy to take advantage of potential parallelism in a program. It relies

heavily on generics and delegate expressions. Paper [9] shows several strategies that can be

applied in large-scale discrete distribution clustering tasks.

In what follows, we build the unidimensional mesh called DAS (DiscretizedAxeSegment

presented in Figure 3) for two reasons. First is to better structure the low level. Second is to

compute discrete convolution due to the impossibility for computing it with variable step using

the Fast Fourier Transform. Mesh DAS associated to discrete step TdM is defined by a set of

points (xk)k∈Z that are its multiple

DASTdM = {xk = k×TdM,k ∈ Z}. (2.7)

Integration of measure md in low level between inferior bound a and superior bound b with

minimal observation step Tmin returns its integration between new inferior bound xa and new

superior bound xb with discrete step TdM, where

xa = na×TdM, (2.8)

such that:

na =

[
a

TdM

]
, (2.9)

and where
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xb = nb×TdM, (2.10)

such that:

nb =



b
TdM

if TdM is divisible by b,

[
b

TdM

]
+1 else.

(2.11)

High level

Low level

SOFI

Lemf (Library Embedded Finance)

LemfAN (Library Embedded Finance And Numerical Analysis)
API

FIGURE 2. API composition.

−∞ +∞• •a bxa xb• • • • • • • • •

FIGURE 3. Mesh DAS defined on R.

Interval [xa,xb] is partitioned into N b
a subintervals of equal length, where N b

a is given by:

N b
a = nb−na, (2.12)

where integers na and nb are defined respectively in relations (2.9) and (2.11). Now, we will

define a discrete measure of measure md . For any integer j from 1 to N b
a , we call (na+ j−1)nd
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discrete value, the integration of measure md between inferior bound (na + j− 1)× TdM and

superior bound (na + j)×TdM given by following equality:

∀ j ∈ [[1;N b
a ]],md(na + j−1) =

∫ (na+ j)×TdM

(na+ j−1)×TdM

md. (2.13)

For any integer i from 1 to

[
N b

a
nD

]
, we define quantity mobs

d (i) as observed measure over time

interval that its length is Tobs between inferior bound na× TdM + (i− 1)× Tobs and superior

bound na×TdM + i×Tobs. Formally, mobs
d (i) is defined as:

∀i ∈

[[
1;

[
N b

a
nD

]]]
,mobs

d (i) =
∫ na×TdM+i×Tobs

na×TdM+(i−1)×Tobs

md, (2.14)

which is decomposed with Chasles relation as:

∀i ∈

[[
1;

[
N b

a
nD

]]]
,mobs

d (i) =
nD

∑
k=1

∫ (na+k−nD)×TdM+i×Tobs

(na+k−1)×TdM+(i−1)×Tobs

md. (2.15)

Because of (2.5) and of the fact that l = k+(i−1)×nD, relation (2.15) implies that:

∀i ∈

[[
1;

[
N b

a
nD

]]]
,mobs

d (i) =
i×nD

∑
l=1+(i−1)×nD

∫ (na+l)×TdM

(na+l−1)×TdM

md. (2.16)

From this and according to (2.16), we conclude that observed value mobs
d (i) is a sum of values

md(na + l−1) for integer l from 1+(i−1)×nD to i×nD

∀i ∈

[[
1;

[
N b

a
nD

]]]
,mobs

d (i) =
i×nD

∑
l=1+(i−1)×nD

md(na + l−1). (2.17)

There are two situations for computing observed values. If N b
a is divisible by nD, then

[
N b

a
nD

]

observed values are computed with relation (2.17). Else,

[
N b

a
nD

]
observed values are com-

puted with relation (2.17) such that the observed value mobs
d

([
N b

a
nD

]
+1

)
is computed with

following relation:
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mobs
d

([
N b

a
nD

]
+1

)
=

N b
a

∑

k=nD×

[
N b

a
nD

]
+1

md(na + k−1). (2.18)

3. Numeric choices in API

We are concerned in this section about implementation choices providing for great flexibility

in API. Given a continuous function φ , the Dirac measure δp at point p acts on the function

φ . The value of this action is φ(p). The purpose is to maintain this action in API. For that,

we will explain the numeric choices that we have made to achieve it due to the difficulty for

describing the dual of vector space of continuous piecewise function with a finite number of

pieces, continuous with superior values. For instance, the action of Dirac measure δp on fields

1]−∞,p] and 1[p,+∞[ is undefined. Indeed, they integrals with respect to Dirac measure δp could

not be computed. Formally, following integrals

∫ +∞

−∞

1]−∞,p] dδp(x),
∫ +∞

−∞

1[p,+∞[ dδp(x), (3.1)

are undefined. In order to set the value of this action consistently, we make a choice on Dirac

measure δp defined by:

< δp,φ >= lim
x→p+

φ(x). (3.2)

Consider a continuous function g with integral equals 1 over R. To justify relation (3.2), we

may restrict to support of function g defining function gε which approaches Dirac measure δp,

and is defined as:

gε(x) =
1
ε

g

(
x− p

ε
+ ε p

)
. (3.3)

Dirac measure δp can be expressed as a limit of function gε
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g

xp(1+ ε2)

FIGURE 4. Restriction to support of function g defining function gε in relation (3.3).

lim
ε→0+

gε = δp. (3.4)

To obtain relation (3.2), we require the following inclusion:

Supp(gε)⊂]p,+∞[, (3.5)

because of:

Supp(g)⊂]p,+∞[. (3.6)

Relation (3.6) provides restriction to support of function g illustrated in Figure 4 due to follow-

ing equivalence:

∀ε ∈ R∗+,x > p ⇐⇒ 1
ε
×

(
x− p

ε
+ ε p

)
> p. (3.7)

4. Convolution and accumulation

This section covers the implementation of convolution and of primitive operators. We refer to

papers [10, 11, 12], which are dealing with how convolution can be efficiently computed by FFT

(the Fast Fourier Transform). For example, algorithms based on explicit computation and on

FFT are described in [10]. Paper [11] presents a more efficient computation of the convolution

between a compressed text and an uncompressed pattern. Schaller & Temnov estimates in [12]
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numerical errors of discrete FFT. In the model, Loan Measure κ̃E is defined such that the amount

borrowed between times t1 and t2 is:

∫ t2

t1
κ̃E , (4.1)

and Repayment Measure ρ̃K is defined such that the amount borrowed between times t1 and t2

is:

∫ t2

t1
ρ̃K . (4.2)

Loan Measure κ̃E and Capital Repayment Measure ρ̃K are connected by a convolution oper-

ator. It is required to implement it in order to compute repayment amount. Then the discrete

convolution may be evaluated with the aid of FFT method. By the Fourier convolution theorem,

the discrete Fourier transform of κ̃E ? γ̃ may be computed as

F (ρ̃K ) = F (κ̃E ? γ̃) = F (κ̃E)•F (γ̃), (4.3)

where the Repayment Pattern Measure γ̃ expresses the way an amount 1 borrowed at t = 0

is repaid and where • denotes component-wise multiplication. Quantities F (κ̃E) and F (γ̃)

define discrete Fourier transforms of κ̃E and of γ̃ , respectively. The computation of discrete

convolution (κ̃E ? γ̃(ne + j−1))1≤ j≤N f
e

with discrete measures (κ̃E(na + j− 1))1≤ j≤N b
a

and

(γ̃(nc + j− 1))1≤ j≤N d
c

between points xe and x f of universel mesh DASTdM is summarized as

follows:

• Determine the convex hull of the support of discrete measure (κ̃E(na + j− 1))1≤ j≤N b
a

supposed to be interval [xa1,xb1];

• Determine the convex hull of the support of discrete measure (γ̃(nc + j− 1))1≤ j≤N d
c

supposed to be interval [xc1,xd1 ];

• Complete by zero discrete measures (κ̃E(na+ j−1))1≤ j≤N b
a

and (γ̃(nc+ j−1))1≤ j≤N d
c

such that they have N values, where N is power of 2 and is smallest value satisfying

N ≥N b
a +N d

c . Then, (κ̃1
E(na + j−1))1≤ j≤N and (γ̃1(nc + j−1))1≤ j≤N are called the

discrete values extended by zero;
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• Compute discrete measures (x(na + j− 1))1≤ j≤N and (y(nc + j− 1))1≤ j≤N by Fourier

transform of discrete measures (κ̃1
E(na + j− 1))1≤ j≤N and (γ̃1(nc + j− 1))1≤ j≤N , re-

spectively;

• Compute vector z( j− 1)1≤ j≤N defined by element-wise multiplication of (x(na + j−

1))1≤ j≤N by (y(nc + j−1))1≤ j≤N ;

• Compute vector (h( j−1))1≤ j≤N defined by inverse Fourier transform of (z( j−1))1≤ j≤N ;

• Build tabulated measure m̃Tabulated between inferior value xa1 + xc1 and superior value

xb1 + xd1 with a set of first N b
a +N d

c values of h;

• Discretize tabulated measure m̃Tabulated between points xe et x f with discrete step TdM to

get discrete values (κ̃E ? γ̃(ne + j−1))1≤ j≤N f
e

.

The integration of discrete measure (κ̃E ? γ̃(ne+ j−1))1≤ j≤N f
e

in high level between inferior

bound e and superior bound f is the sum of its values given by:

N f
e

∑
j=1

κ̃E ? γ̃(ne + j−1).

After defining convolution operator, we describe how the accumulation of measure is defined in

API. The Current Debt Field KRD is related to Loan Measure κ̃E and Repayment Measure ρ̃K

by the following Ordinary Differential Equation:

dKRD

dt
= κE(t)−ρK (t). (4.4)

The solution of this ODE is expressed:

KRD(t) = KRD(tI)+
∫ t

tI
κ̃E −

∫ t

tI
ρ̃K . (4.5)

To compute the Current Debt Field KRD at an instant t, we define the method that is computing

the primitive of a measure. This method is based on numerical approach which consists in accu-

mulating a discrete measure in order to approximate it by a field. The primitive of measure md

in low level that is zero at point xc is a field Fd . Its discretization between inferior value xa and
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superior value xb with discrete step TdF is defined by discrete field (FD
d (na + k−1))1≤k≤N b

a +1

given by:

∀k ∈ [[1;N b
a +1]],FD

d (na + k−1) =
∫ yk

xc

md, (4.6)

where points (yk)1≤k≤N b
a +1 are defined as:

∀k ∈ [[1;N b
a +1]],yk = xa +(k−1)×TdF. (4.7)

We distinguish three cases of computing discrete field (FD
d (na + k−1))1≤k≤N b

a +1:

First case xc < xa

Measure md is discretized between points xc and xb with discrete step TdF to compute discrete

measure (md(nc + j− 1))1≤ j≤N b
c

. The integral defined in relation (4.6) is decomposed with

Chasles relation to get:

∀k ∈ [[1;N b
a +1]],FD

d (na + k−1) =
N a

c

∑
j=1

∫ xc+ j×TdF

xc+( j−1)×TdF

md +
k−1

∑
j=1

∫ xa+ j×TdF

xa+( j−1)×TdF

md. (4.8)

Replacing xa by xc +N a
c ×TdF in relation (4.8), we obtain the following equality:

∀k ∈ [[1;N b
a +1]],FD

d (na + k−1) =
N a

c

∑
j=1

∫ xc+ j×TdF

xc+( j−1)×TdF

md +
k−1

∑
j=1

∫ xc+( j+N a
c )×TdF

xc+( j−1+N a
c )×TdF

md. (4.9)

From this and using relation (2.13) which defines discrete measure, we get:

∀k ∈ [[1;N b
a +1]],FD

d (na + k−1) =
N a

c

∑
j=1

md(nc + j−1)+
k−1+N a

c

∑
j=1+N a

c

md(nc + j−1). (4.10)

Second case xc > xb
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Measure md is discretized between points xa and xc with discrete step TdF to compute dis-

crete measure (md(na+ j−1))1≤ j≤N c
a

. It follows that Chasles relation applied to relation (4.6)

gives:

∀k ∈ [[1;N b
a +1]],FD

d (na + k−1) =−
N c

a

∑
j=k

∫ xa+ j×TdF

xa+( j−1)×TdF

md, (4.11)

which is reduced to following equality:

∀k ∈ [[1;N b
a +1]],FD

d (na + k−1) =−
N c

a

∑
j=k

md(na + j−1). (4.12)

Third case xa ≤ xc ≤ xb

Determining integer L ∈ [[1;N b
a ]] satisfying following inequalities:

yL < xc ≤ yL+1. (4.13)

Since xc > yk for each integer k from 1 to L, the result of second case implies that:

∀k ∈ [[1;L]],FD
d (na + k−1) =−

N c
a

∑
j=k

md(na + j−1). (4.14)

Replacing xc by xa +N c
a ×TdF in relation (4.6) and employing Chasles relation, we obtain:

∀k ∈ [[L+1;N b
a +1]],FD

d (na + k−1) =
k−1

∑
j=1+N c

a

md(na + j−1). (4.15)
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