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Abstract: This paper presents a mathematical formulation of a constitutive Lambert-type differential 

equation on the basis of the stress decomposition theory in order to predict the dynamic behavior of a 

variety of materials. The expansion of the nonlinear elastic spring force law required in terms of a 

generalized form of the Newton’s binomial function of deformation provided, under relaxation of stress 

conditions, the time versus deformation variation as a Chapman-Richards-type growth model. 

Numerical applications carried out demonstrated successfully the ability of the model to reproduce the 

S-shaped response of viscoelastic materials. It has been shown that an increase of viscoelastic 

characteristics, increases significantly the sensitivity of the model, which becomes flexible enough for 

experimental data fitting.  
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1. Introduction 

The time dependent behavior of viscoelastic materials study has been and continues to 

be one of the most interesting subjects in mechanics due to various uses of these 
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materials in biomedical and engineering branches. Viscoelastic materials exhibit both 

elastic solid and viscous fluid behaviors. They dissipate energy and are characterized 

by time and history-dependent properties. Thus, their constitutive stress- strain 

relationship is time dependent, and may be linear or curvilinear. The linear behavior 

law is only judicious for materials undergoing small deformations when they are 

subjected to applied forces. The linear viscoelasticity is usually expressed in the 

Boltzmann single integral equation or in the differential form. It is well known that, 

from a point of view of mathematics, the integral constitutive representation is more 

complex to build than the constitutive differential form. The simplest constitutive 

differential relation in linear viscoelasticity is derived often from combinations of 

elastic springs and viscous dashpots arranged in series and/or parallel. But, 

mechanical responses of viscoelastic materials are in general nonlinear so that, the 

well-known established linear theory of viscoelasticity must be reasonably replaced 

by nonlinear theories. However, nonlinear models are more difficult to formulate than 

linear theories, since these models lead frequently to solve nonlinear differential 

equations that are generally non-integrable. A satisfactory constitutive equation must 

take into account elastic, viscous and inertial nonlinearities characterizing the 

viscoelastic material [1, 2]. In this perspective, the simple classical Maxwell and Voigt 

models or their different combinations can be modified and extended to higher order 

stress or strain terms in order to account for material nonlinearities. The obtained 

model according to Alfrey and Doty [3], is interesting since, it estimates the material 

properties in terms of differential equations that can be solved for a wide variety of 

transient conditions. For this, several theoretical viscoelastic models with varying 

complexities have been developed for predicting the nonlinear time dependent 

behavior of viscoelastic materials [4]. But, most of these models fail to include the 

inertia of the material studied in the constitutive equations. Moreover, there are only a 

few theoretical models that are formulated with constant-value material coefficients 

so that, the material functions are considered as stress, strain or strain rate dependent. 

A number of recent successful works are shown to be based on the modification and 

extension of classical linear viscoelastic models to large deformations [5, 6, 7, 8, 9]. 
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The models [5, 6, 7] take into account only the elastic nonlinearity by insertion of a 

nonlinear elastic spring force in the classical linear viscoelastic models. Thus, these 

models are insufficient for a satisfactory rheological estimation of materials. By 

contrast, the model [9] consisting of a simple nonlinear generalized Maxwell fluid 

model with constant material coefficients, in which a nonlinear spring obeying to a 

power-law is connected to a nonlinear dashpot obeying also to a power-law, gives 

account for both elastic and viscous nonlinearities simultaneously.  The model [9] 

appears useful to represent the nonlinear time dependent behavior of viscoelastic 

materials. However, in [9] the inertial contribution is also neglected. In the model [8], 

the elastic, viscous and inertial nonlinearities are simultaneously introduced. The 

model [8] tried to provide analytically a complete estimate of the viscoelastic material 

behavior. The model [8] is formulated on the basis of the method presented previously 

by Bauer [2] for a complete characterization of viscoelastic arterial walls. In effect, 

Bauer [2], to overcome the above mentioned-shortcomings in viscoelastic modeling, 

developed a theory based on the classical Voigt model. The Bauer’s theory [2] is 

intended to give satisfactorily and simultaneously account for strong elastic, viscous 

and inertial nonlinearities characterizing a viscoelastic material. The method consists 

essentially to decompose the total stress acting on the material as the sum of three 

components, that is, the elastic, viscous and inertial stresses and to express the pure 

elastic stress as a nonlinear function of deformation. The pure viscous and inertial 

stresses are then constructed as a first and second time derivatives of a similar 

function of deformation to the nonlinear elastic function, respectively. A fundamental 

theoretical difficulty in the use of the Bauer’s theory [2] consists of the determination 

of appropriate nonlinear elastic spring force function that tends towards the expected 

linear elastic behavior for small deformations. In the Bauer’s study [2], the pure 

elastic stress is expanded in a power series of strain, the pure viscous stress is 

developed as a first time derivative of a similar power series of strain, and the pure 

inertial stress is expressed as a second time derivative of a similar power series of 

strain. The Bauer’s stress decomposition method [2], consisting to express the stress 

as a sum of three elementary stresses, has been after used by many authors [10, 11, 12] 



21                           MATHEMATICAL FORMULATION 

for a complete characterization of arterial behavior. In [12], following the Bauer’s 

method [2], the elastic stress is expanded in a power series of strain. Monsia [8], in 

regard of the Bauer’s method [2], expanding the pure elastic stress in negative powers 

series of deformation and, expressing the pure viscous stress as a first time derivative 

of a similar negative powers series of deformation, the pure inertial stress as a second 

time derivative of a similar negative powers series of deformation, developed a 

hyperlogistic equation that represents successfully the time-dependent mechanical 

properties of a variety of viscoelastic materials. Recently, the Bauer stress 

decomposition theory has been described in a single differential constitutive equation 

by Monsia [13, 14]. The use of this constitutive equation requires the specification of 

the judicious nonlinear elastic spring force function )(  where the deformation 

)(t  is a scalar function. In [13] the function )(  is expressed as a simple rational 

law that led in the absence of exciting stress to represent the time dependent 

deformation of the material system of interest in terms of a useful hyper-exponential 

type function. Using also the same rational function as the nonlinear elastic spring 

force law )( , but with the presence of a constant exciting stress term, Monsia [14] 

described mathematically and successfully the time dependent nonlinear creep 

behavior of viscoelastic materials exhibiting simultaneously elastic, viscous and 

inertial nonlinearities. More recently, Monsia and Kpomahou [15], employing the 

Monsia formulation [13, 14] of the Bauer’s theory [2], with now the use of a 

Newton’s binomial function as the nonlinear elastic spring force law, developed 

successfully a theoretical nonlinear mechanical model applicable for representing the 

well known S-shaped time dependent behavior of viscoelastic materials. It is also well 

known that a variety of differential equations arises in the formulation of mechanical 

problems. The use of the Monsia formulation [13, 14] of the Bauer’s theory [2], leads 

then, often to a Lambert-type differential equation [8, 13-15]. In this work, following 

the Monsia formulation [13, 14] of the Bauer’s theory [2], and using a generalized 

form of the Newton’s binomial function of deformation for the pure elastic 
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constitutive law )( , a constitutive Lambert-type differential equation is developed. 

A noteworthy feature is that, under relaxation of stress process, this equation is solved 

in closed form solution, by using change of variable techniques, in elementary 

functions. The Chapman-Richards-type solution obtained showed that the model can 

be successfully applied to represent the curvilinear S-shaped response of a variety of 

viscoelastic materials.  Numerical studies are performed to illustrate the effects of 

rheological parameters action on the material response. It has been observed that an 

increase of the elastic and viscous factors affects, on the time period considered, the 

value of strain in opposite directions, and strongly increases the sensitivity of the 

model, of which the ability for experimental data fitting also increases.  

2. Formulation of the Mathematical Model  

2.1. Theoretical Developments 

We develop in this part the evolutions equations governing the elastic, viscous and 

inertial nonlinearities characterizing simultaneously the material system studied. To 

that end, we use the Monsia formulation [13, 14] of the Bauer’s theory [2]. The 

fundamental constitutive equation for a nonlinear elastic spring force law )( , is 

then written in the form [13, 14] 
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where the dot over a symbol denotes a differentiation with respect to time and the 

inertial module 0c . The coefficients a  and b  denote respectively the stiffness 

and viscosity modules. These all three coefficients a , b  and c  are time 

independent material parameters. The total exciting stress t  is a scalar function in 

the present one-dimensional mechanical model. To progress in this study it is 

necessary to specify the function )( . In this work, the nonlinear elastic spring 

force function is assumed described by the following law 

1)1()(                      (2) 

where   is a material constant different from zero. Therefore, using Equation (2), 



23                           MATHEMATICAL FORMULATION 

Equation (1) may be written in the form 
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Equation (3) determines the differential constitutive relationship between the total 

exciting stress t  and the induced strain )(t . Equation (3) represents a 

Lambert-type second-order nonlinear ordinary differential equation in )(t  for a 

given total exciting stress t . It may be turned into a simple form by means of a 

change of variable. By introducing the auxiliary variable 

1x                 (4) 

Equation (3) becomes, after adequate algebraic transformations 
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where 
c

b
 , 

c

a
o 
2 , and the coefficient c  different from zero. Equation (5), a 

Lambert-type differential equation, can be solved in closed form solution by using 

suitable boundary conditions that satisfy the dynamics of the material system studied.  

2.2. Dimensionalization 

Noting that the strain )(t  is a dimensionless quantity, the different coefficients that 

are present in Equation (3) have the following dimensions. Let us denote by M , L  

and T  the mass, length and time dimension respectively, the dimension of the stress 

becomes 21  TML . Therefore, the dimension of a  is given by 21  TML , that of 

b varies as 11  TML , and that of c  varies as 1ML  (mass per unit length).     

2.3. Solution using a stress 0t   
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2.3.1. Evolution Equation of Deformation )(t   

In the absence of total exciting stress that is, setting the exciting stress equal to zero 

( 0t ), which denotes a relaxation phase where the applied stress is removed after the 

loading process, the internal dynamics of the material system studied can be 

represented by the following nonlinear ordinary differential equation 

02 2
2

 xx
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x
x o


              (6)  

2.3.2. Solving Time Dependent Deformation Equation 

 At first sight, note that in [8, 13-15] a similar equation to (6) is already solved. Thus, 

setting the following change of variable 

x

x
f
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Equation (6) transforms, after a few mathematical manipulations, in the following 

Riccati ordinary differential equation for the variable f which possesses the strain 

rate dimension 
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Equation (10) provides the strain versus time relationship in the viscoelastic material 

under study. It predicts analytically the strain versus time variation of the material 

system considered as a Chapman-Richards-type model, well known to be powerful for 

reproducing mathematically any S curve shape.  

 

3. Numerical Results and Discussion    

Some numerical applications in this part are presented to illustrate the predictive 

capability of the model to reproduce the mechanical response of the material system 

studied and the effects of rheological parameters action on the material response. In 

the following of this work the numerical illustrations are investigated at the fixed 

value 1K . Figure 1 illustrates the typical time dependent strain behavior with an 

increase until a maximum asymptotical value, obtained from Equation (10) with the 

fixed value of coefficients at 2 , 9275.4 , 2o , 1of . It can be seen 

from Figure 1 that the model is capable to represent mathematically and accurately the 

typical exponential deformation response of viscoelastic materials, to say, soft living 

tissues, soft soils, etc [9, 13-15]. The strain versus time curve is nonlinear, with a 

nonlinear beginning initial region. The plotting illustrates then the S-shaped 

deformation behavior of the viscoelastic material under study.   
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Figure 1. Typical strain versus time curve showing an  asymptotical value. 

 Figures 2, 3, 4 and 5 illustrate the effects of material parameters action on the 

time-strain response. The effects of these parameters are studied by varying one 

coefficient while the other three are kept constant. As shown in Figure 2, the change 

of the parameter   has a high effect on the strain versus time curve. An increase  , 

decreases the initial value of the strain and the maximum strain value. But, an 

increasing   has no significant effect on the time needed to attain the maximum 

strain. The red line corresponds to 2 , the blue line to 3 , and the green line 

to 5 . The other parameters are 9275.4 , 2o , 1of . 

 

Figure 2.  Strain-time curves showing the effects of the material coefficient  . 

Figure 3 shows the effects of the damping coefficient   on the strain-time 
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relationship. An increase  , increases the initial value of the strain. The strain value 

also increases fast in the early time periods with an increasing  . But, this influence 

decreases as time tends to infinity, and the curves tend towards the same asymptotic 

value of the strain. . The red line corresponds to 9275.4 , the blue line to 5 , 

and the green line to 6 . The other parameters are 2 , 41397.2o , 1of . 

   

 

Figure 3.  Curves showing the effects of the damping coefficient   . 

 From Figure 4, it can be observed the dependence of the strain versus time curve on 

the natural frequency o . In effect, an increasing o , decreases contrary to the 

damping coefficient, the initial value of the strain. The strain value decreases also on 

the time period considered with increase o .  The red line corresponds to 4.2o , 

the blue line to 45.2o , and the green line to 46.2o . The other parameters are 

2 , 9275.4 , 1of . 
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Figure 4.  Curves exhibiting the dependence of the strain-time relationship on the natural frequency o . 

Figure 5 describes the effects of the parameter of  on the strain versus time curve. We 

can note that an increasing of , decreases the initial value of the strain. The strain value 

decreases also on the early time periods with increase of . However, this effect 

decreases as time tends to infinity, and the curves tend towards the same asymptotic 

strain value. The red line corresponds to 6.0of , the blue line to 8.0of , and the 

green line to 1of . The other parameters are 2 , 9275.4 , 41397.2o . 

 

 

Figure 5.  Curves illustrating the effects of the parameter of  action on the strain-time relationship.  
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The preceding numerical applications allowed investigating the model properties. The 

present study provides a nonlinear modified and extended Voigt rheological model. 

The modification and extension is made by introducing elastic, viscous and inertial 

nonlinear terms in the classical Voigt model by the use of the Bauer’s theory [2]. The 

application of this approach necessitates an appropriate choice of the pure nonlinear 

elastic constitutive law )( . In the present model, the elastic spring force law is 

expressed as a generalized form of the Newton’s binomial function. This law is 

created from the nonlinear elastic constitutive equation proposed first by Popovics [16] 

and discussed later in [17]. Therefore, the setting 1 , leads )(  to reduce to 

Newton’s binomial function 
1)1()(   , that agrees very well with the nonlinear 

polynomial elastic force function used by Bauer’s [2], when   becomes small, that 

is to say, when  1 . This choice of )(  permitted to describe the time 

dependent deformation of the material studied, under relaxation of stress conditions, 

as a Chapman-Richards-type equation, that is well known to be powerful for 

reproducing any S-shaped data. It is still possible to increase the number of model 

coefficients by substituting the previous pure elastic spring force 
1)1()(    by 

the following law  )( o  
in order to generalize and eventually to increase the 

model flexibility. It is worth noting that when 1 , the preceding 

Chapman-Richards-type model reduces to a hyperlogistic-type growth model. The 

current model can be also used to study the stress versus time and the stress versus 

strain relationship of the material system of interest. It is also interesting to note that 

the proposed model offers the ability, for 1K , to describe mathematically the creep 

relaxation behavior when the material under study is primarily assumed to be 

subjected to constant loading. But, these studies will be done as subsequent work. 

4. Conclusions  

A nonlinear constitutive Lambert-type differential equation has been developed. To 

that end, the stress decomposition theory has been used. The generalized Newton’s 
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binomial function chosen as purely nonlinear elastic constitutive law required 

permitted to represent mathematically the strain versus time relationship of the 

material system studied, under unloading process, as a Chapman-Richards-type 

growth model that is useful to reproduce any S-shaped curve. Numerical applications 

performed shown that an increase of viscoelastic characteristics, increases the 

sensitivity of the model, of which its flexibility increases significantly for 

experimental data fitting.    
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