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Abstract. In this research article, the discreet role of Cytotoxic T Lymphocyte (CTL) during the Hepatitis C

Virus infection has been studied. To explore the implications of the CTL responses, we have formulated a model

considering the dynamics of the population of uninfected liver cells, infected liver cells, HCV and CTL responses.

Since the actual incidence rate is probably not linear over the entire range of virus and uninfected liver cells. So,

here we have assumed that there exists a saturation effect in disease transmission rate. We have analysed the model

by both analytical as well as numerical approaches. We have found out the threshold condition that determines the

existence and stability of the endemic equilibrium.
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1. Introduction
Hepatitis C is an infectious disease caused by Hepatitis C virus. It is highly blood contagious

and very low risk of sexual and vertical transmission [1]. Unhygienic clinical conditions and

improper sterilization are the main reasons behind the Hepatitis C infection [2].
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According to the World Health Organisation (WHO), an estimated of 71 million people, glob-

ally has been suffering from chronic Hepatitis C syndromes, resulting in cirrhosis and liver

cancer. And fatality rate is approximately 39,900 every year. Presently, there is no vaccine

available for Hepatitis C, but research on this filed is still being carried on.

The footprints of the disease can be traced across the globe, but Eastern Mediterranean and

Europe Regions are the worst affected, affecting 2.3% and 1.5% of the population respectively.

Hepatitis C virus was untreated till 1975, but it’s presence was traced back in 1989 [3].

Hepatitis C syndromes are multiple and demographically manipulated. The virus generally

spreads and affects in between 2 weeks to 6 months in the human body. Fever, fatigue, nausea,

vomiting, abdominal pain, dark urine, grey face, joint pain, and jaundice are the symptoms of

Hepatitis C affected patient. But the worst part of the disease is that the virus sometime remains

undiagnosed for a long time and prolonged Hepatitis C infection leads to liver damage (fibrosis

and cirrhosis)

The role of Cytotoxic T Lymphocyte (CTL) and antibody responses in HCV infection is not

fully understood yet. Antibody responses have the potential to control infection. But the evo-

lution of antigenic escape allows the virus to persist in the host. CTL responses are required

to resolve the infection and that virus persistence is caused by week CTL responses. Due to

cellular immune responses against the virus, specifically that of CTLs which activates hepatic

stellate cells and, thus leads to liver inflammation and fibrosis.

Appropriate mathematical models can be helpful to answer biological important questions con-

cerned with the dynamics of the immune response to persistence virus. The effectiveness of

drug therapy has been formulated by several authors. Various theoretical studies have been car-

ried out on the mathematical model of HCV transmission dynamics. Nowak and Banghum [4]

used a mathematical model to explore the effect of individual variation in immune responses

on virus load and diversity. They found better indications of CTL responses in the equilibrium

virus load, rather than the abundance of virus-specific CTLs. Bonhoeffer et. al. [5] analysed

the virus populations role of the immune system and resistance of the drug therapy for the HIV

or Hepatitis B virus. Neumann et. al. [6] used a mathematical model to analyse the efficacy of

treatment with IFN-a therapy. Avendan et al. [7] formulated a mathematical model to describe
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FIGURE 1. Schematic explanation for the model (1) showing the effect of CTL responses

HCV considering four population susceptible or healthy liver cell, infected liver cell, virus, and

CTL responses. Zhao et al. [8] assume that the incidence rate of the virus model is described by

a Beddington-DeAngelis functional responses. This article is arranged in the following manner:

In the first section, we formulate the basic mathematical model on the basis of CTL responses

against the infected cells along with saturating infection. Here we show how CTL responses

on the human immune system for HCV patients. We have also carriedout the analytical and

numerical studies. In the last section, we have discussed the implication of the results which

were found in the earlier sections.

2. Formulation of the basic model

In this research article we have considered the basic model proposed by Avendan [7], consid-

ering healthy liver cells ( Hs(t) mm−3), infected liver cells ( Hi(t) mm−3), virus population (

V (t) mm−3) and the CTL responses ( T (t) mm−3). Healthy Liver cell Hs are produced at a rate

λ and die at a constant rate µs. Healthy liver cells become infected at a rate proportional to the

product of Hs and V , with constant of proportionality k, and once infected die with a constant
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FIGURE 2. Left Panel: Contour plot of R0 as a function of β and p. Right Panel:

Contour plot of R0 as a function of β and λ .

rate of µi. Since the average lifetime of infected cells is shorter than the average lifetime of the

healthy cell, thus we assume µs < µi. Since the actual viral infection is not linear, then it is

better to assume that the infection rate of viral infection model is given by saturated infection

rate[9]. Here we assume that the infection rate of the virus dynamics models is given by the

Beddington-DeAngelis functional response, βHsV
1+kV , where β , and k are constants [8]. Thus the

equation of the model becomes

Ḣs = λ −µsHs−
βHsV
1+ kV

Ḣi =
βHsV
1+ kV

−µiHi−δHiT

V̇ = pHi−µvV

Ṫ = αV (1− T
Tm

)−µtT.

(1)

We assume that Hepatitis C virions are produced inside the infected cells at a rate of p virions

per infected cell per day. On the other hand, viruses die at a per capita constant rate µv. In

the presence of HCV, the CTL responses is given by αV (1− T
Tm
) [7] and µt is the per capita

death rate of CTL responses. The killing rate of infected cells via mass action kinetics by the

CTL immune responses is denoted by δ . It is also assumed that all parameters of the model are

always positive.
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3. Existence condition and stability analysis of the basic model

To study the model (1), we have observed that there exist two equilibrium point: (1) The disease

free equilibrium point Ē( λ

µs
,0,0,0); and (2) The endemic equilibrium point E∗(H∗s ,H

∗
i ,V

∗,T ∗)

exist in the region Ω define as

{Ω = {Hs,Hi,T,V} ∈ R4
+ | Hs +Hi ≤ Hmax,V ≤ Vmax,T ≤ Tmax}, where Hmax =

λ

µs
, Vmax =

pλ

µsµv
, Tmax =

α pλ

α pλ+µsµt µv
, is positively invariant for system (1) for t > 0. Here we will assume

that initial conditions are always given in Ω. Detail description regarding the maximum cell

count is given in Section 3.4.

Remark: From the above study we have clearly observed that the maximum value of liver cells

is Hmax, and Vmax is the maximum value of the HCV. On the other hand, the maximum value of

the CTL responses in presence of HCV is Tmax.

The endemic equilibrium point must satisfy the relations H∗s = λ (1+kV ∗)
βV ∗+µs(1+kV ∗) , H∗i = µvV ∗

p ,T ∗ =
αV ∗Tm

αV ∗+µtTm
and V ∗ is defined as

a1V ∗2+a2V ∗+a3 = 0, where a1 = (β +kµs)(αµiµv+αδ µvTm), a2 = µs(µiµvα +αδ µvTm)+

µiµvµtTm(β + kµs)−λβ , a3 = µiµvµsµtTm−αβ pµtTm.

Since a1 > 0, a2 > 0, then we can conclude that if a3 < 0, there exist a positive root of V ∗. Now,

if αβ p
µiµvµs

> 1, then a3 < 0. Hence we can conclude that if the disease transmission rate dominate

the death rate of the models, then the endemic equilibrium persist.

3.1. The disease free state

There may exist disease free equilibrium point Ē which is given by Ē( λ

µs
,0,0,0). Now for the

system (1), the Jacobian matrix is given by

J =


−µs 0 −βλ

µs
0

0 −µi
βλ

µs
0

0 p −µv 0

0 0 α −µT

 .
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The characteristic equation for the disease free equilibrium is

(Λ+µs)(Λ+µT )[Λ
2 +(µi +µv)Λ+µiµv−

pβλ

µs
] = 0 (2)

For µiµv− pβHs > 0, there exist no positive roots and all roots are negative. Hence, the basic

reproduction R0 is pλβ

µsµiµv
.

Remark: At disease free equilibrium point Ē, the system is locally stable if the basic reproduc-

tion number R0 < 1 and the system is unstable when R0 > 1.

3.2. The Endemic state

For endemic equilibrium E∗, the Jacobian is

J(E∗) =


−µs +

βV ∗

(1+kV ∗)2 0 − βH∗s
(1+kV ∗)2 0

βV ∗

(1+kV ∗)2 −µi−δT ∗ βH∗s
(1+kV ∗)2 0

0 p −µv + kT ∗ 0

0 0 −α(1− T
Tm
) −µt

 .

The characteristic equation becomes

Λ
4 +a1Λ

3 +a2Λ
2 +a3Λ+a4 = 0 (3)

where

a1 = µs + t1 + t2 + t3 + t5 +µv > 0,

a2 = t3(µs + t1)+µvt5 +(µs + t1 + t3)(µv + t5)− pt2 > 0,

a3 = µvt5(µs + t1 + t3)+ t3(µs + t1)(µv + t5)− pt2(t5 +µs)+ pδH∗i t4 > 0,

a4 = t3(µs + t1)µvt5 + pδ t4t1H∗i − pt2t5µ5 > 0,

t1 =
βV ∗

1+ kV ∗
, t2 =

βH∗s
(1+ kV ∗)2

t3 = µi +δT ∗, t4 = α(1− T
Tm

), t5 =
αV ∗

Tm
+µT .

(4)
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Using the Routh-Hwritz criteria [14], the local stability of the endemic equilibrium E∗ will be

stable if we can show that

∆3 =


a1 1 0

a3 a2 a1

0 a4 a3

> 0.

Remark The Endemic equilibrium E∗ is exist if R0 > 1 and it is stable if a1 > 0, a2 > 0, a3 >

0, a4 > 0, a1a2−a3 > 0,.

3.3. Global Stability Analysis

The system Ē is globally stable if the system satisfy the following three conditions as follows:

(1) Ē is locally asymptotically stable,

(2) for dΓ1
dt = f (Γ1,0), Γ1

0 is globally asymptotically stable, and

(3) Ē satisfies the Liapunov-Lasalle Theorem.

Now we want to prove that the system is locally asymptotically stable. Thus we rewrite the

system (1) in the form given below

dΓ1

dt
= f (Γ1,Γ2),

dΓ2

dt
= f (Γ1,Γ2) (5)

where Γ1, Γ2 are defined as follows

Γ1 = (Hs),Γ2 = (Hi,V,A). (6)

Now if we can show that, f (Γ1,0) is a limiting function of

dΓ1

dt
= f (Γ1),i.e. lim

t→∞
Γ1 = Γ1

∗, (7)

Then we can conclude that the system Ē is globally asymptotically stable.

3.4. Total Cell Count

We consider Htot = Hs +Hi

Then
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dHtot

dt
=

dHs

dt
+

dHi

dt

≤ λ −µsHs−µiHi

≤ λ −µsHtot , since µs < µi

⇒ Htot ≤
λ

Htot
as t→ ∞

(8)

Hence the total liver cell count is always below λ

Htot
.

For CTL responses,

dA
dt

= αV (1− T
Tm

)−µtT

≤ α pλ

µsµv
− α pλ +µsµvµt

µsµv
T

⇒ A(t)≤ α pλ

α pλ +µsµt µv
.

(9)

For HCV population,

dV
dt

= pHi−µvV

≤ pλ

µs
−µvT

⇒V (t)≤ pλ

µsµv

(10)

4. Sensitivity Analysis

In this section, we have studied the sensitivity analysis of the reproduction number R0. Through

sensitivity analysis, we can predict the amount and type of change of the model behavior by

the change of the parameters. If the basic reproduction number is very sensitive to a particu-

lar parameter, then a perturbation of that condition affects the dynamics of the system which

may prove useful in identifying policies or helps us to make strategies to reduce the epidemic

prevalence. Through this study, we can predict which parameters play the most significant

role in HCV transmission dynamics. We have calculated a partial rank correlation coefficient
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FIGURE 3. Trajectories showing the time dependent changes in concentration

of the model variables for p = 1 and p = 8.
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FIGURE 5. Tornado plot of sensitivity analysis of all six parameters that influ-

ence R0. Left panel: R0 < 1. Right panel: R0 > 1

(PRCC) to study the sensitivity analysis of the system. Through the PRCC we can determine

the importance of the model parameters. The basic reproduction ratio is defined as R0 =
λβ p

µsµiµv
.

∂R0
∂ p = λβ

µsµiµv
> 0, ∂R0

∂β
= λ p

µsµiµv
> 0, ∂R0

∂λ
= pβ

µsµiµv
> 0, ∂R0

∂ µs
=− λβ p

µ2
s µiµv

< 0, ∂R0
∂ µi

=− λβ p
µsµ2

i µv
< 0

∂R0
∂ µv

=− λβ p
µsµiµ2

v
< 0.

From the above study we can conclude that higher rates of p, β , λ lead to increase of R0 and

higher rates of µs, µi, µv rates leads to the lower R0 and lower predominance of the epidemic.

Since the basic reproduction number, R0 is inversely related to µs,µi,µv, which means that

increasing of death rate uptake for the patients at the acquit stage which is beneficial to control

the disease.
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5. Numerical Simulation and Discussion

Table 1. Parameter values used in numerical simulations.
Parameter Description Values Range Reference

λ Production rate of healthy liver cell 100 [7, 10, 11, 13]

β Disease transmission rate 0.0003 [7, 11, 13]

δ Killing rate of infected liver cell 0.001 [7, 11, 13]

p Production rate of Hepatitis C virions 1-100 [7, 10, 11, 13]

α Growth rate of CTL responses 0.0003 [7]

µs Death rate of healthy liver cells 0.02 [7]

µi Death rate of infected liver cells 0.5 [7]

µv Death rate of Hepatitis C virions 5 [7, 10, 11, 13]

µt Removal rate of CTL responses 0.02 [7]

k Half saturation constant 0.002 -

Tm Maximum CTL responses level 1000 [7]

In our numerical simulation, we have described the CTL responses against Hepatitis C virions

and the functional responses. All the parameters are taken from Table 1. We have assumed

that Hs(0) = 200, Hi(0) = 20, V (0) = 20, T (0) = 20, and the unit of the concentration are

mm−3. From figure 2 (left panel) we have clearly observed that the infection rate β and virus

production rate p play a crucial role to fluctuate the basic reproduction number R0 of the system.

It has been observed that for low production rate (p), R0 < 1, i.e. the disease-free state is stable.

However, with high virus production rate, R0 > 1 i.e. the system moves towards the endemic

state. From figure 2 (right panel), we have observed that the infection rate β and production rate

of liver cell λ play a crucial role to fluctuate the basic reproduction number R0 of the system.

For low production rate (λ ), R0 < 1, i.e. the disease-free state is stable. However, with high

liver cell production rate, R0 > 1 i.e. the system moves towards the endemic state.

From figure 3, we have studied the system behavior for effect of virus production rate p. It is

clearly observed, that when p = 1, the basic reproduction number becomes below 1, and the

system attains its disease-free state. As p increases, the system moves to towards endemic state.

Thus we can conclude that disease can be restricted if we can control the production rate of

Hepatitis C virions. Figure 4 shows that the infected liver cell population reduces along with



12 AMAR NATH CHATTERJEE, MANARANJAN KUMAR SINGH, BIKASH KUMAR

virus load and CTL responses reduces as the half-saturation constant increases. Thus saturation

effect plays an important role to restrict the disease progression.

Figure 5 illustrates the PRCCs using R0 as an output variable. Results here suggest that disease

transmission rate as well as virus production rate for HCV infected individuals have the greatest

influence on increasing the magnitude of R0 thereby increasing new secondary HCV cases.

Also, the death rate of infected liver cells and death rate of the healthy liver cell have great

influence to reduce the magnitude of R0 which results from reduction of new infection of HCV

cases.

In order to understand the outbreak of HCV infection and verify the role of the CTL responses in

the disease progression, we have proposed a mathematical model which includes healthy liver

cells, infected liver cells, virus population and CTL responses. Theoretically, we have found

out the existence and stability condition for disease free as well as endemic state. From our

analytical findings, it is clear that the disease-free equilibrium is globally asymptotically stable

if R0 ≤ 1, which means that hepatitis C virus and infected liver cells can be entirely eliminated

from the population. When R0 ≤ 1, hepatitis C will persist and the endemic equilibrium is

globally asymptotically stable.

From our numerical findings it is clear that CTL responses and saturation effect play an impor-

tant role to stabilize the disease progression. It is clearly observed that as the saturation effect

increases the system moves towards disease-free state and the virus level along with infected

liver cell moves towards extinction. However more realistic models about HCV infection along

with control theoretic concept will be studied in the future work.
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