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Abstract: Many mathematicians studied the convergence theorem of iterative sequence with errors in 

Banach space and in Hilbert space. In 2004, Liu Qihou defined the iterative sequence with errors in 

metric spaces. In this paper, the article mainly discusses the convergence of iterative sequence with 

errors for extended contractive mappings in metric space. The result improves and extends the known 

results. 
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1. Introduction 

Definition: let X be a set and T is a self-mapping, if for any Xa , such that Ta=a, 

then a be called a fixed point. 

Suppose 1x X ， 1n nx Tx  ，（ n N  ）is Picard iterative sequence and it is the most 

primal iterative sequence. 

In 1953, W.R Mann [1] and in 1974, S. Ishikawa [2] put the following two iterative 

sequences: 

Let X be a linear space, M is a subset on X, T is a self-mapping on M 
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(1). Let Mx 1 , iterative sequence 

  ,,)1(1 NnTxxx nnnnn                                (1)   

(where 0<= n <=1), is called Mann iterative sequence. 

(2). Let Mx 1 , iterative sequence 

  ,)1(1 nnnnn Tyxx    

      ,,)1( NnTxxy nnnnn                             (2) 

(Where 10,10  nn  ) is called Ishikawa iterative sequence. 

It is well known that the consideration of errors terms in any approximate method 

is an important part of the method. In 1995, Lishan Liu [3] introduce what he called 

Ishikawa and Mann iterative sequence with error terms to the formulas (1) and (2)    

(3). For a nonempty subset K of a Banach space X and a mapping T: KK  ,the 

sequence  nx  on K is defined by 

Kx 0  

1 (1 )n n n n n nx x Ty u       

 (1 )n n n n n ny x Tx v     ,        0n   

(where  nu and  nv  are two summable sequence in X, i.e 
0

x

n

n

u


   ,  

0

x

n

n

v


  ， n and  n are two sequence in [0,1] satisfying certain restriction) is 

called Ishikawa iterative sequence with errors. 

The conditions he placed on the error terms imply that they go to zero as n goes 

to infinity. In 1991, Yugang Xu [4] introduced the following more satisfactory 

definitions: 

(4) Let K a nonempty convex subset of a normed linear space E, and a mapping  

T: KK  . For any given Kx 1  the sequence  nx  on K is defined iteratively by 
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    nnnnnnn ucTybxax 1  

    nnnnnnn ucTxbxay
'''

            0n   

Where  nu   nv  are bounded sequences in K and  na   nb   nc   'na   'nb  

 'nc Are sequences in [0,1] such that  1,1
'''

 ncbacba nnnnnn  is 

called the Ishikawa iterative sequence with errors. 

(5)  If, with the same notations and definitions as in part 4, 0
''
 nn cb  for all 

integers n>=1, then the resulting sequence is called the Mann iteration sequence with 

errors. 

Many mathematicians have discusses the convergence of iterative sequence for 

mapping classes above in Banach space and in Hilbert sequence space. In 2004,   

Liu Qihou [5] introduced Ishikawa iterative sequence of the mapping in metric space. 

Let K be a nonempty complete metric space E and T be a self-mapping of E, F(T) 

denotes the set of fixed point of T, and let F(T) is nonempty. For any given Kx 1 , the 

sequence  nx  on K is defined iteratively by 

    nnn

n

nnnn cpyTdbpxdapxd  ),(),(),( 1  

    nnn

n

nnnn cpxTbpxdapyd  ),(),(),(           

)(, TFpNn  , 1,1  ncbacba nnnnnn  where n , n  is bounded 

and do not depend on p ( )(TFp ), 0 1,,,,, nnnnnn cbacba ， 




1n

nc    


1n

nc  

As we know, the fixed point theory is an effective method to study solutions of 

some kind of equations, and iterative sequence is an important tool to  find the 

mappings’ fixed point. So it becomes the hot spot in the field of mathematics in 

recent years. In 1977, the founder of the fixed point theory-the university professor of 

American Indiana B.E Rhoades [6] induced 25 kinds of the basic contraction 

mappings in his thesis, and also extended these definitions. This paper mainly 
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discusses the convergence of iterative sequence with errors about some contractive 

mappings in metric space.        

 

2. Preliminaries 

Definition the 43 type contractive mapping: 

exist nonnegative number 1a , 2a , 3a , 4a , 5a , and 1
5

1


i

ia , and nonnegative integer p , 

such that  ,x y X  , 

1 2 3 4 5( , ) ( , ) ( , ) ( , ) ( , ) ( , )p p p p p pd T x T y a d x y a d x T x a d y T y a d x T y a d y T x       

Definition the 18 type contractive mapping: 

exist nonnegative number 1a , 2a , 3a , 4a , 5a , and 1
5

1


i

ia , such that ,x y X  

1 2 3 4 5( , ) ( , ) ( , ) ( , ) ( , ) ( , )d Tx Ty a d x y a d x Tx a d y Ty a d x Ty a d y Tx       

Definition the 49 type contractive mapping: 

exist (0,1)h .and nonnegative integer p, such that for any ,x y X :,  

( , ) max{ ( , ), ( , ), ( , ), ( , ), ( , )}p p p p p pd T x T y h d x y d x T x d y T y d x T y d y T x  

Definition the 24 type contractive mapping: 

exist (0,1)h .such that for any ,x y X : 

( , ) max{ ( , ), ( , ), ( , ), ( , ), ( , )}d Tx Ty h d x y d x Tx d y Ty d x Ty d y Tx  

Lemma (see the lemma on P302, Liu Qihou [9]) 

Let sequence  
1n n

x



 satisfy 1n n nx x     , where 0nx  ,  0nx   and  

lim 0n
n




 , 0 1   , then we have lim 0n
n

x


  

 

3. Main results 

Theorem 1 :Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied the condition of the 43 type contractive mapping, then  there must exist 
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an unique fixed point on X and for some 1x X ,if the sequence  
1n n

x



satisfy  

nn

p

n xTxd  ),( 1 n N   and 0, lim 0n n
n

 


 且  then we have  
1n n

x



converge 

to the fixed point of T . 

Theorem 2: Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied the condition of the 18 type contractive mapping, then  there must exist 

an unique fixed point on X and for some  1x X  ,if the sequence  
1n n

x



 satisfy 

1( , )n n nd x Tx   , n N   and 0, lim 0n n
n

 


 且 , then we have  
1n n

x



 converge 

to the fixed point of T .   

Theorem 3:Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied exist nonnegative number
1a ,

2a ,
3a , and nonnegative integer p, and 

3

1

1i

i

a


 , such that ),(),(),(),( yTycdxTxbdyxadTyTxd pp  , then there must 

exist an unique fixed point on X and for some 1x X , if the sequence  
1n n

x



 

satisfy nn

p

n xTxd  ),( 1 , n N   and 0, lim 0n n
n

 


 且 , then we have  

 
1n n

x



 converge to the fixed point of T . 

Theorem 4 :Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied exist nonnegative number
1a ,

2a ,
3a , and 

3

1

1i

i

a


 , such that 

 ),(),(),(),( TyycdTxxbdyxadTyTxd  . Then there must exist an unique fixed 

point on X and for some 1x X   ,if the sequence  
1n n

x



 satisfy  

1( , )n n nd x Tx    , n N   and  0, lim 0n n
n

 


 且 , then we have  
1n n

x



  

converge to the fixed point of T . 

Theorem 5:Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied the condition of the 49 type contractive mapping. Then there must exist an 

unique fixed point on X and for some 1x X  , if the sequence  
1n n

x



 satisfy 
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nnn xxd  ),( 1 nn

p

n xTxd  ),( 1  , n N  and 0n  0, lim 0n n
n

 


 且  

0lim 


n
n

 , then we have  
1n n

x



converge to the fixed point of T.   

Theorem 6:Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied the condition of the 24 type contractive mapping，then there must exist an 

unique fixed point on X and for some 1x X , if the sequence  
1n n

x



satisfy 

nnn xxd  ),( 1   1( , )n n nd x T x   , n N    and 0n , 0, lim 0n n
n

 


 且 , 

0lim 


n
n

 , then we have   
1n n

x



converge to the fixed point of T 

Theorem 7:Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied )},(),({),( TyydTxxdhTyTxd   )
2

1
,0(h  , for some ,x y X , then  

there must exist an unique fixed point on X and for some ,x y X , if the sequence 

 
1n n

x



 satisfy  1( , )n n nd x Tx   , n N   and 0, lim 0n n

n
 


 且 ,then we have 

 
1n n

x



 converge to the fixed point of T .                                                          

Theorem 8: Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied ),(),( yxhdTyTxd  , (0,1)h  , for  some ,x y X , then  there must 

exist a unique fixed point on X and for some 1x X , if the sequence 1x X , satisfy      

1( , )n n nd x Tx   , n N   and 0, lim 0n n
n

 


 且 ,  then we have   
1n n

x



  

converge to the fixed point of T . 

Proof of theorem 1: 

We have already known that if T satisfies the condition of the 43 type 

contractive mapping, then T must have an unique fixed point. Let this fixed point is *x , 

then we also have * *

pT x x    

Because 1 * 1 *( , ) ( , ) ( , )p p

n n n nd x x d x T x d T x x    

                 1 *( , ) ( , )p p p

n n nd x T x d T x T x                (1) 

According to the condition 
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1 2 3 4 5( , ) ( , ) ( , ) ( , ) ( , ) ( , )p p p p p pd T x T y a d x y a d x T x a d y T y a d x T y a d y T x    

So we have  

* 1 * 2 3 * *

4 * 5 *

( , ) ( , ) ( , ) ( , )

                        ( , ) ( , )

p p p

n n n n

p

n n

d T x T x a d x x a d x T x a d x Tx

a d x Tx a d x T x

  

 
              

1 * 2 4 * 5 *( , ) ( , ) ( , ) ( , )p p

n n n n na d x x a d x T x a d x Tx a d x T x       

1 * 2 * 2 * 4 * 5 *( , ) ( , ) ( , ) ( , ) ( , )p p

n n n n na d x x a d x x a d x T x a d x Tx a d x T x                   

1 2 4 * 2 5 *( ) ( , ) ( ) ( , )p

n na a a d x Tx a a d x T x                          (2)                                                                                                                                         

* 1 * 2 * * 3

4 * 5 *

( , ) ( , ) ( , ) ( , )

                      ( , ) ( , )

p p p p

n n n n

p p

n n

d T x T x a d x x a d x T x a d x T x

a d T x x a d T x x

  

 
 

=   1 3 5 *,na a a d x x  +   3 4 *,
p

na a d x T x      (3) 

Add (3) to (2), we have that: 

       2 3 4 5 * 1 2 3 4 5 *2 , 2 ,p

n na a a a d x T x a a a a a d x x          

           1 2 3 4 5
* *

2 3 4 5

2
, ,

2

p

n n

a a a a a
d x T x d x x

a a a a

   


   
    

                   *,nh d x x                                (4) 

  And because 1
5

1


i

ia    so 1 2 3 4 52( ) 2a a a a a      

So 1 2 3 4 5

2 3 4 5

2
0 1

2

a a a a a
h

a a a a

   
  

   
   

So 1 * 1 *( , ) ( , ) ( , )p p p

n n n nd x x d x T x d T x T x    

           1 *( , ) ( , )n n nd x Tx hd x x       

  Because   1,
p

n n nd x T x          for any Nn           

according to the lemma： 

satisfy     *, 0nd x x       0n     and 0lim 


n
n

  , 0 1h   

So we have 
n

lim  *, 0
ind x x    .   It is that *lim n

n
x x


  

In the theorem 1, let p=1 then we can obtain the theorem 2. 



31                     ITERATIVE SEQUENCES WITH ERRORS 

Let 
4a =

5a =0, and let 
1a =a, 

2a =b,
3a =c, then we obtain the theorem 3 

Let 
4a =

5a =0, and let 
1a =a, 

2a =b,
3a =c, and let p=1,then we obtain the theorem 4 

Proof of theorem 5: 

We also have already known that if T satisfies the condition, then T must have 

an unique fixed point. Let this fixed point is *x , then we also have * *

pT x x    

Because 1 * 1 *( , ) ( , ) ( , )p p

n n n nd x x d x T x d T x x    

                 1 *( , ) ( , )p p p

n n nd x T x d T x T x                    (1) 

According to the condition 

 ( , ) max{ ( , ), ( , ), ( , ), ( , ), ( , )}p p p p p pd T x T y h d x y d x T x d y T y d x T y d y T x  

then we have: 

* * * * * *( , ) max{ ( , ), ( , ), ( , ), ( , ), ( , )}p p p p p p

n n n n n nd T x T x h d x x d x T x d x T x d x T x d x T x               

* *max{ ( , ), ( , ), ( , )}p p

n n n nh d x x d x T x d x T x    

            *m a x { ( , ) , ( , ) , }p

n n nh d x x d x T x  

*( , ) ( , )p

n n nhd x x hd x T x                             (2) 

So put (2) in (1), then 

1 * 1 *( , ) ( , ) ( , )p p p

n n n nd x x d x T x d T x T x    

1 *( , ) ( , ) ( , )p p

n n n n nd x T x hd x x hd x T x    

:        1 * 1 1( , ) ( , ) ( , ) ( , )p p

n n n n n n nd x T x hd x x hd x x hd x T x        

         1 * 1( 1 ) ( , ) ( , ) ( , )p

n n n n nh d x T x h d x x h d x x          

Because  nnn xxd  ),( 1  and nn

p

n xTxd  ),( 1  

So 1 * *( , ) (1 ) ( , )n n n nd x x h hd x x h       

And because  0n  , 0, lim 0n n
n

 


 且  , and 0lim 


n
n

  

From the lemma, we have 1 *lim ( , ) 0n
n

d x x


 ,   i.e *lim n
n

x x


  

In the theorem 5, let p=1 then we can obtain the theorem 6  
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In the theorem 2, let 
3a =

4a =
5a =0, and let 

1a =
2a =h,0 1h  , then we have 

obtain the theorem 7 

In the theorem 2, let 2a = 3a = 4a = 5a =0, and let 1a =h,0 1h  , then we have 

obtain the theorem 8 

When we let n =0 in the above theorems, then we can obtain some corollaries[10]； 

Corollary 1:Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied the condition of the 43 type contractive mapping, then (1) there must 

exist a unique fixed point *x X , (2) for any x X , *lim n

n
T x x


 .  

Corollary 2: Let X be a nonempty complete metric space，T is contractive mapping 

on X .satisfied the condition of the 18 type contractive mapping, then (1) there must 

exist an unique fixed point *x X , (2) for any x X , *lim n

n
T x x


 . 

Corollary 3:Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied exist nonnegative number
1a ,

2a ,
3a , and nonnegative integer p, and 

3

1

1i

i

a


 , such that ),(),(),(),( yTycdxTxbdyxadTyTxd pp  , then there must 

exist an unique fixed point *x X , (2) for any x X , *lim n

n
T x x


  

Corollary 4:Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied exist nonnegative number
1a ,

2a ,
3a , and 

3

1

1i

i

a


 , such that 

 ),(),(),(),( TyycdTxxbdyxadTyTxd  . Then (1) there must exist an unique 

fixed point *x X , (2) for any x X , *lim n

n
T x x


  

Corollary 5: Let X be a nonempty complete metric space，T is contractive mapping 

on X .satisfied the condition of the 49 type contractive mapping. Then (1) there must 

exist an unique fixed point *x X , (2) for any x X , *lim n

n
T x x


  

Corollary 6: Let X be a nonempty complete metric space，T is contractive mapping 

on X .satisfied the condition of the 24 type contractive mapping，then (1) there must 
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exist an unique fixed point *x X , (2) for any x X , 
*lim n

n
T x x


  

Corollary 7:Let X be a nonempty complete metric space，T is contractive mapping on 

X .satisfied )},(),({),( TyydTxxdhTyTxd   )
2

1
,0(h  , for some ,x y X , then  

(1)there must exist an unique fixed point *x X , (2) for any x X , *lim n

n
T x x


         

Corollary 8: Let X be a nonempty complete metric space，T is contractive mapping 

on X .satisfied  

),(),( yxhdTyTxd  , (0,1)h  , for  some ,x y X , then (1) there must exist a 

unique fixed point *x X , (2) for any x X , *lim n

n
T x x


  
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