ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

S.K.PAIKRAY ${ }^{\text {1* }}$, R.K.JATI ${ }^{2}$, U.K.MISRA ${ }^{3}$, N.C.SAHOO ${ }^{4}$
${ }^{1}$ Department of Mathematics, Ravenshaw University, Cuttack-753003, Odisha, India
${ }^{2}$ Department of Mathematics, DRIEMS, Tangi, Cuttack-754022, Odisha, India
${ }^{3}$ Department of Mathematics, NIST, Palur Hills, Berhampur-761008, Odisha, India
${ }^{4}$ Department of Mathematics, S.B.Women'sCollege(Auto), Cuttack-753001, Odisha, India

Abstract

A result concerning absolute indexed summability factor of an infinite series using Quasi - f - power increasing sequences has been established.

Keywords:Quasi-increasing,Quasi - β - power increasing, Quasi - f - power increasing, index absolute summability, summability factor.

2000 AMS Subject Classification: 40A05, 40D15, 40F05

1. INTRODUCTION:

A positive sequence $\left(a_{n}\right)$ is said to be almost increasing if there exists a positive sequence $\left(b_{n}\right)$ and two positive constants A and B such that
(1.1) $A b_{n} \leq a_{n} \leq B b_{n}$, for all n.

The sequence $\left(a_{n}\right)$ is said to be quasi- β-power increasing, if there exists a constant K depending upon β with $K \geq 1$ such that

*Corresponding author

Received December 6, 2012
(1.2) $K n^{\beta} a_{n} \geq m^{\beta} a_{m}$,
for all $n \geq m$. In particular, if $\beta=0$, then $\left(a_{n}\right)$ is said to be quasi-increasing sequence. It is clear that every almost increasing sequence is a quasi- β-power increasing sequence for any nonnegative β. But the converse is not true as $\left(n^{-\beta}\right)$ is quasi- β-power increasing but not almost increasing.

Let $f=\left(f_{n}\right)$ be a positive sequence of numbers. Then the positive sequence $\left(a_{n}\right)$ is said to be quasi- f-power increasing, if there exists a constant K depending upon f with $K \geq 1$ such that

(1.3) $K f_{n} a_{n} \geq f_{m} a_{m}$,

for $n \geq m \geq 1[4]$. Clearly, if $\left(\alpha_{n}\right)$ is a quasi- f-power increasing sequence, then the $\left(\alpha_{n} f_{n}\right)$ is a quasi- increasing sequence.

Let $\sum a_{n}$ be an infinite series with sequence of partial sums $\left\{s_{n}\right\}$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that
$P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty$, as $n \rightarrow \infty$.
Then the sequence-to-sequence transformation

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}, P_{n} \neq 0 \tag{1.4}
\end{equation*}
$$

defines the $\left(\bar{N}, p_{n}\right)$ - mean of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left\{p_{n}\right\}$.
The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1[1]$, if
(1.5) $\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty$.

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$, if
(1.6) $\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\partial k+k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty$.

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n} ; \alpha_{n}(\delta)\right|_{k}, k \geq 1, \delta \geq 0$, if
(1.7) $\sum_{n=1}^{\infty}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty$.

Putting $\alpha_{n}=\left(\frac{P_{n}}{p_{n}}\right)^{\delta},\left|\bar{N}, p_{n} ; \alpha_{n}(\delta)\right|_{k}, k \geq 1, \delta \geq 0$, reduces to $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$.

2. PRELIMINARIES

Dealing with quasi- β-power increasing sequence Bor and Debnath[2] have established the following theorem:

2.1. THEOREM:

Let $\left(X_{n}\right)$ be a quasi- β-power increasing sequence for $0<\beta<1$ and $\left(\lambda_{n}\right)$ be a real sequence.

If the conditions

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{P_{n}}{n}=O\left(P_{m}\right) \tag{2.1.1}
\end{equation*}
$$

(2.1.2)

$$
\lambda_{n} X_{n}=O(1)
$$

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n}=O\left(X_{m}\right), \tag{2.1.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}\left|t_{n}\right|^{k}}{P_{n}}=O\left(X_{m}\right) \tag{2.1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|<\infty \tag{2.1.5}
\end{equation*}
$$

are satisfied, where t_{n} is the $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$.Then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

Subsequently Leindler[3] established a similar result reducing certain condition of Bor. He established:

2.2. THEOREM:

Let the sequence $\left(X_{n}\right)$ be a quasi- β-power increasing sequence for $0<\beta<1$, and the real sequence $\left(\lambda_{n}\right)$ satisfies the conditions

$$
\begin{equation*}
\sum_{n=1}^{m} \lambda_{n}=O(m) \tag{2.2.1}
\end{equation*}
$$

and
(2.2.2)

$$
\sum_{n=1}^{m}\left|\Delta \lambda_{m}\right|=O(m)
$$

Further, suppose the conditions (2.1.3),(2.1.4) and

$$
\begin{equation*}
\sum_{n=1}^{m} n X_{n}(\beta)|\Delta| \Delta \lambda_{n} \|<\infty, \tag{2.2.3}
\end{equation*}
$$

hold, where $X_{n}(\beta)=\max \left(n^{\beta} X_{n}, \log n\right)$.Then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Recently, extending the above results to quasi- f-power increasing sequence, Sulaiman[5] have established the following theorem:

2.3. THEOREM:

Let $f=\left(f_{n}\right)=\left(n^{\beta} \log ^{\gamma} n\right), 0 \leq \beta<1, \gamma \geq 0$ be a sequence. Let $\left(X_{n}\right)$ be a quasi- f power sequence and $\left(\lambda_{n}\right)$ a sequence of constants satisfying the conditions

$$
\begin{equation*}
\lambda_{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.3.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} n X_{n}|\Delta|\left|\Delta \lambda_{n}\right|<\infty \tag{2.3.2}
\end{equation*}
$$

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=O(1) \tag{2.3.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n X_{n}^{k-1}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \tag{2.3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n}} \frac{1}{X_{n}^{k-1}}\left|t_{n}^{k}\right|^{k}=O\left(X_{m}\right) \tag{2.3.5}
\end{equation*}
$$

where t_{n} is the $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$.Then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

We prove the following theorem.

3. MAIN RESULTS:

Let $f=\left(f_{n}\right)=\left(n^{\beta} \log ^{\gamma} n\right)$ be a sequence and $\left(X_{n}\right)$ be a quasi- f-power sequence. Let $\left(\lambda_{n}\right)$ a sequence of constants such that

$$
\begin{align*}
& \lambda_{n} \rightarrow 0, \text { as } n \rightarrow \infty \tag{3.1}\\
& \sum_{n=1}^{\infty} n X_{n}|\Delta|\left|\Delta \lambda_{n}\right|<\infty
\end{align*}
$$

$$
\begin{align*}
& \left|\lambda_{n}\right| X_{n}=O(1), \tag{3.3}\\
& \sum_{n=v+1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right) \frac{1}{P_{n-1}}=O\left(\left(\alpha_{m}\right)^{k} \frac{p_{m}}{P_{m}}\right), \tag{3.4}
\end{align*}
$$

$$
\begin{align*}
& \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right) \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}=O\left(X_{m}\right), \tag{3.5}\\
& \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right) \tag{3.6}
\end{align*}
$$

Then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n} ; \alpha_{n}(\delta)\right|_{k}, k \geq 1, \delta \geq 0$.
In order to prove the theorem we require the following lemma.

4. LEMMA:

Let $f=\left(f_{n}\right)=\left(n^{\beta} \log ^{\gamma} n\right), 0 \leq \beta<1, \gamma \geq 0$ be a sequence $\operatorname{and}\left(X_{n}\right)$ be a quasi $-f$ power increasing sequence. Let $\left(\lambda_{n}\right)$ be a sequence of constants satisfying (3.1) and (3.2). then

$$
\begin{equation*}
n X\left|\Delta \lambda_{n}\right|=O(1) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{4.2}
\end{equation*}
$$

4.1. PROOF OF THE LEMMA:

As $\Delta \lambda_{n} \rightarrow 0$ and $n^{\beta} \log ^{\gamma} n X_{n} \quad$ is non-decreasing, we have

$$
\begin{aligned}
n X_{n}\left|\Delta \lambda_{n}\right|=n^{1-\beta} & \log ^{-\gamma} n\left(n^{\beta} \log ^{\gamma} n X_{n}\right) \sum_{v=n}^{\infty} \Delta\left|\Delta \lambda_{v}\right| \\
= & O(1) n^{1-\beta} \log ^{-\gamma} n \sum_{v=n}^{\infty} v^{\beta} \log ^{\gamma} v X_{v}\left|\Delta \| \Delta \lambda_{v}\right| \\
= & O(1) \sum_{v=n}^{\infty} v^{1-\beta} \log ^{-\gamma} v v^{\beta} \log ^{\gamma} v X_{v}\left|\Delta \| \Delta \lambda_{v}\right|
\end{aligned}
$$

$$
=O(1) \sum_{v=n}^{\infty} v X_{v}\left|\Delta \| \Delta \lambda_{v}\right|=O(1)
$$

This establishes (4.1). Next

$$
\begin{aligned}
& \sum_{n=1}^{m} X_{n}\left|\Delta \lambda_{n}\right|=\sum_{n=1}^{m-1}\left(\sum_{r=1}^{n} X_{r}\right) \Delta\left|\Delta \lambda_{r}\right|+\left(\sum_{r=1}^{n} X_{r}\right)\left|\Delta \lambda_{r}\right| \\
& =O(1) \sum_{n=1}^{m-1}\left(\sum_{r=1}^{n} r^{-\beta} \log ^{-\gamma} r r^{\beta} \log ^{\gamma} r X_{r}\right)\left|\Delta \| \Delta \lambda_{v}\right| \\
& +O(1)\left(\sum_{r=1}^{m} r^{-\beta} \log { }^{-\gamma} r r^{\beta} \log ^{\gamma} r X_{r}\right)\left|\Delta \lambda_{m}\right| \\
& =O(1) \sum_{n=1}^{m-1}\left(n^{\beta} \log ^{\gamma} n X_{n}\right) \Delta \| \Delta \lambda_{v} \mid \sum_{r=1}^{n} r^{-\beta-\epsilon} \log _{r}^{-\gamma} r r^{\epsilon} \\
& +O(1) m^{\beta} X_{m}\left|\Delta \lambda_{m}\right| \log { }^{\gamma} m \sum_{r=1}^{m} r^{-\beta-\epsilon} \log { }^{-\gamma} r r^{\epsilon}, \in<1-\beta . \\
& =O(1) \sum_{n=1}^{m-1}\left(n^{\beta} \log ^{\gamma} n X_{n}\right) \Delta \| \Delta \lambda_{\nu} \mid n^{\epsilon^{\epsilon}} \log { }^{-\gamma} n \sum_{r=1}^{n} r^{-\beta-\epsilon} \\
& +O(1) m^{\beta} X_{m}\left|\Delta \lambda_{m}\right| \log { }^{\gamma} m m^{\epsilon} \log _{r}^{-\gamma} m \sum_{r=1}^{m} r^{-\beta-\epsilon} \\
& =O(1) \sum_{n=1}^{m} n^{\beta+\epsilon} X_{n}\left|\Delta \| \Delta \lambda_{\nu}\left(\int_{1}^{n} u^{-\beta-\epsilon} d u\right)+O(1) m^{\beta+\epsilon} X_{n}\right| \Delta \lambda_{m}\left(\int_{1}^{m} u^{-\beta-\epsilon} d u\right) \\
& =O(1) \sum_{n=1}^{m} n X_{n}|\Delta|\left|\Delta \lambda_{\nu}\right|+O(1) m X_{m}\left|\Delta \lambda_{m}\right| \\
& =O(1) \text {. }
\end{aligned}
$$

This establishes (4.2).

5. PROOF OF THE THEOREM:

Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n}$, then
$T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=0}^{v} a_{r} \lambda_{r}$

$$
=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(p_{n}-p_{v-1}\right) a_{v} \lambda_{v}
$$

Hence for $n \geq 1$
$T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} p_{v-1} a_{v} \lambda_{v}$

$$
\begin{aligned}
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} v a_{v}\left(\frac{1}{v} p_{v-1} \lambda_{v}\right) \\
& =\frac{(n+1)}{n} \frac{p_{n}}{P_{n}} t_{n} \lambda_{n}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v-1} t_{v} \lambda_{v} \frac{v+1}{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \frac{v+1}{v} \Delta \lambda_{v} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \frac{\lambda_{v+1}}{v} \\
& =T_{n 1}+T_{n 2}+T_{n 3}+T_{n 4} \text { (say). }
\end{aligned}
$$

In order to prove the theorem, using Minkowski's inequality it is enough to show that

$$
\sum_{n=1}^{\infty}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n j}\right|<\infty \quad, j=1,2,3,4 .
$$

Applying Holder's inequality, we have
$\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n 1}\right|^{k}=\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\frac{n+1}{n} \frac{p_{n}}{P_{n}} t_{n} \lambda_{n}\right|^{k}$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{-1} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}\left(X_{n}\left|\lambda_{n}\right|\right)^{k-1}\left|\lambda_{n}\right| \\
& =O(1) \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{-1} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}\left|\lambda_{n}\right| \\
& =O(1) \sum_{n=1}^{m-1}\left(\sum_{v=1}^{n}\left(\alpha_{n}\right)^{k}\left(\frac{P_{v}}{p_{v}}\right)^{-1} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}\right) \Delta\left|\lambda_{v}\right|+O(1) \sum_{v=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{v}}{p_{v}}\right)^{-1} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}\left|\lambda_{m}\right| \\
& =O(1) \sum_{n=1}^{m-1} X_{n} \Delta\left|\lambda_{n}\right|+O(1) X_{m}\left|\lambda_{m}\right| \\
& =O(1) .
\end{aligned}
$$

Next,

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n 2}\right|^{k} & =\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v-1} t_{v} \lambda_{v} \frac{v+1}{v}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v-1}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left(\sum_{v=1}^{n-1} \frac{p_{v}}{P_{n-1}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} p_{v-1}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{-1} \frac{1}{P_{n-1}} . \\
& =O(1) \sum_{v=1}^{n}\left(\alpha_{v}\right)^{k}\left(\frac{p_{v}}{P_{v}}\right)\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \\
& =O(1), \text { as in the case of } T_{n 1} .
\end{aligned}
$$

Next,

$$
\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n 3}\right|^{k}=\sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} t_{v} \frac{v+1}{v} \Delta \lambda_{v}\right|^{k}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{-1} \frac{1}{P_{n-1}^{k}} \sum_{v=1}^{n-1} P_{v}^{k} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}\left|\Delta \lambda_{v}\right|\left(\sum_{v=1}^{n-1} X_{v}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} P_{v}^{k} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}\left|\Delta \lambda_{v}\right|_{n=v+1}^{m+1}\left(\alpha_{n}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right) \frac{1}{P_{n-1}^{k}} . \\
& =O(1) \sum_{v=1}^{m}\left(\alpha_{v}\right)^{k} \frac{1}{v} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}\left(v\left|\Delta \lambda_{v}\right|\right) \\
& =O(1) \sum_{v=1}^{m-1} \sum_{r=1}^{v}\left(\alpha_{r}\right)^{k} \frac{1}{r} \frac{\left|t_{r}\right|^{k}}{X_{r}^{k-1}} \Delta\left(v\left|\Delta \lambda_{v}\right|\right)+O(1)\left(\sum_{r=1}^{m}\left(\alpha_{r}\right)^{k} \frac{1}{r} \frac{\left|t_{r}\right|^{k}}{X_{r}^{k-1}}\right)\left(m\left|\Delta \lambda_{m}\right|\right) \\
& =O(1) \sum_{v=1}^{m-1} X_{v}\left(-\left|\Delta \lambda_{v}\right|+(v+1) \Delta \Delta\left|\Delta \lambda_{v}\right|\right)+O(1) m X_{m}\left|\Delta \lambda_{m}\right| . \\
& =O(1) \sum_{v=1}^{n} X_{v}\left|\Delta \lambda_{v}\right|+O(1) \sum_{v=1}^{n} v X_{v}|\Delta| \Delta \lambda_{v}\left|+O(1) m X_{m}\right| \Delta \lambda_{m} \mid \\
& =O(1) .
\end{aligned}
$$

Finally,

$$
\begin{gathered}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\partial k+k-1}\left|T_{n 4}\right|^{k}=\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\partial k+k-1}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} t_{v} \frac{\lambda_{v+1}}{v}\right|^{k} \\
=O(1) \sum_{n=1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{-1} \frac{1}{P_{n-1}^{k}} \sum_{v=1}^{n-1} \frac{P_{v}}{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left(\sum_{v=1}^{n-1} \frac{P_{v}}{v}\right)^{k-1} \\
=O(1) \sum_{v=1}^{m} \frac{P_{v}}{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m}\left(\alpha_{n}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{-1} \frac{1}{P_{n-1}} \\
=O(1) \sum_{v=1}^{m}\left(\alpha_{v}\right)^{k} \frac{\left|t_{v}\right|^{k}}{X_{v}{ }^{k-1}}\left(X_{v}\left|\lambda_{v}\right|\right)^{k-1}\left|\lambda_{v}\right|
\end{gathered}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left(\alpha_{v}\right)^{k} \frac{\left|t_{v}\right|^{k}\left|\lambda_{v}\right|}{v X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left(\sum_{r=1}^{v}\left(\alpha_{r}\right)^{k} \frac{\left|t_{r}\right|^{k}}{r X_{r}{ }^{k-1}}\right)\left|\Delta \lambda_{v}\right|+O(1) \sum_{r=1}^{m}\left(\alpha_{r}\right)^{k} \frac{\left|t_{r}\right|^{k}}{r X_{r}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m} X_{v}\left|\Delta \lambda_{v}\right|+O(1) X_{m}\left|\lambda_{m}\right| \\
& =O(1)
\end{aligned}
$$

This completes the proof of the theorem.

REFERENCES

[1] H.Bor ,A Note on two summability methods, Proc.Amer. Math. Soc. 98 (1986), 81-84.
[2] H.Bor and L.Debnath, Quasi - β - power increasing sequences, International journal of Mathematics and Mathematical Sciences,44(2004),2371-2376.
[3] L.Leinder, A recent note on absolute Riesz summability factors, J. Ineq. Pure and Appl. Math.,Vol-7, Issue2, article-44(2006).
[4] W.T.Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl. 322 (2006),1224-1230.
[5] W.T.Sulaiman, A recent note on absolute absoluteRiesz summability factors of an infinite series, J. Appl. Functional Analysis, Vol-7,no.4,381-387.

