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1. INTRODUCTION:  

 A positive sequence  na  is said to be almost increasing if there exists a positive sequence  nb  

and two positive constants BA  and such that 

(1.1) .  allfor , nbBabA nnn   

          The sequence  na  is said to be quasi-  -power increasing, if there exists a constant K  

depending upon   with  1K  such that 



57                                             ABSOLUTE INDEXED SUMMABILITY FACTOR 

(1.2) mn amanK   , 

for  all mn . In particular,  if 0 , then  na is said to be quasi-increasing sequence. It is clear 

that every almost increasing sequence is a quasi-  -power increasing sequence for any non-

negative  . But the converse is not true as  n is quasi-  -power increasing but not almost 

increasing. 

          Let  nff   be a positive sequence of numbers. Then the positive sequence  na  is said to 

be quasi- f -power increasing, if there exists a constant K  depending upon f  with 1K such that 

 

(1.3) mmnn afafK  , 

for ]4[1mn  . Clearly, if  n is a quasi- f -power increasing sequence, then the  nn f  is a 

quasi- increasing sequence. 

 Let  na be an infinite series with sequence of partial sums  ns . Let  np  be a sequence of 

positive numbers such that  

 


npP
n

n as,
0

  . 

 Then the sequence-to-sequence transformation 

(1.4)  



n

n

n

n Psp
P

T
0

,0,
1



  

defines the  npN , - mean of the sequence  ns  generated by the sequence of coefficients  np . 

The series   na is said to be summable ]1[1,, kpN
k

n , if 
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The series   na is said to be summable ,0,1,;,   kpN
k

n  if 
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The series   na is said to be summable   ,0,1,;,   kpN
k

nn  if 

 

(1.7)   .1
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Putting  
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2. PRELIMINARIES 

  Dealing with quasi-  -power increasing sequence Bor and Debnath[2] have 

established the following theorem: 

 

2.1. THEOREM: 

  Let  nX be a  quasi-  -power increasing sequence for 10   and  n be a real 

sequence. 

If the conditions   

(2.1.1)     m

m

n

n PO
n

P


1

, 
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(2.1.2)    )1(OX nn  , 

(2.1.3)    )(
1

m

m

n

k

n
XO

n
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(2.1.4)    )(
1

m

m

n n

k

nn
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tp




 

and 

(2.1.5)    


m

n

nnnX
1

2  

 

 

are satisfied, where nt is the )1,(C mean of the sequence )( nna .Then the series  nna  is 

summable 1,, kpN
k

n . 

 Subsequently Leindler[3] established a similar result reducing certain condition of Bor. 

He established: 

 

2.2. THEOREM: 

  Let the sequence  nX be a  quasi-  -power increasing sequence for 10   , and 

the real sequence  n  satisfies the conditions   

 (2.2.1)    )(
1

mO
m

n

n 


  

and 

(2.2.2)    )(
1

mO
m

n

m 


 . 

Further, suppose the conditions (2.1.3) ,(2.1.4) and  

(2.2.3)    


m

n

nnnX
1

)(  , 
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hold, where   nXnX nn log,max)(   .Then the series  nna  is summable 1,, kpN
k

n . 

 Recently, extending the above results to quasi- f -power increasing sequence, 

Sulaiman[5] have established the following theorem: 

2.3. THEOREM: 

  Let   0,10,log)(   nnff n be a sequence. Let  nX be a  quasi- f -

power sequence and  n  a sequence of constants satisfying the conditions   

(2.3.1)     nasn 0 , 

(2.3.2)    


1n

nnnX  , 

(2.3.3)     1OX nn  , 

(2.3.4)     m
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and 

(2.3.5)     m
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1
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1
, 

where nt is the  1,C mean of the sequence  nna .Then the series  nna  is summable

1,, kpN
k

n . 

      We prove the following theorem. 

3. MAIN RESULTS: 

  

       Let  nnff n

 log)(   be a sequence and  nX be a quasi- f -power sequence. Let  n  a 

sequence of constants such that   

(3.1)     nasn ,0 , 

(3.2)    


1n

nnnX  , 
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(3.3)    )1(OX nn  , 

(3.4)        
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(3.6)       m
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 . 

Then the series  nna  is summable   .0,1,;,   kpN
k

nn  

  In order to prove the theorem we require the following lemma. 

4. LEMMA: 

Let     0,10,log   nnff n   be a sequence and  nX   be a quasi - f - 

power increasing  sequence. Let  n  be a sequence of constants satisfying (3.1) and (3.2). then 

 (4.1)     1OXn n   

and 

(4.2)    


m

n

nnX
1

 . 

4.1. PROOF OF THE LEMMA:   

As 0 n and  
nXnn  log      is non-decreasing, we have  
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  )1()1( OXO
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This establishes (4.1). Next 
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This establishes (4.2). 
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5. PROOF OF THE THEOREM:  

Let  nT  be the sequence of   npN ,  mean of the series ,
1
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In order to prove the theorem, using  Minkowski’s  inequality it is enough to show that  

  4,3,2,1,
1
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Applying Holder’s inequality, we have  
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Next,  
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This completes the proof of the theorem. 
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