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1. Introduction

The classical integral transforms find several applications to the problem of mathe-

matical physics, particularly for solving the differential equations which arise in certain

physical problems. There are physical situations governed by differential equations whose

boundary conditions are not enough smooth and are generalized functions. In such sit-

uations the classical integral transforms of generalized functions or generalized integral

transformations. Therefore it is of importance to extend the classical integral transforms

to generalized functions. There is good number of integral transforms available in the lit-

erature. The well-known classical integral transforms such as Laplace, Mellin, Hankal and

Hardy etc., have been extended to generalized functions. The conventional Hardy trans-

formation is very general in the sense that the includes several other important integral
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transforms (see for details [6]), which is extended to generalized functions by Pathak and

Panday [6]. Recently the extension of a pair of classical integral transforms to generalized

functions is initiated, and Ahirro and More [2] have extended the classical Laplace-Hardy

integral transformation to generalized functions. The aim of the present paper is to ex-

tend the classical Mellin-Hardy integral transformations to generalized functions by using

an approach similar to Zemanin [9]. The rest of the paper is organized as follows. In

this section below we give the definitions of classical Mellin and Hardy transformation-

s. In section we construct certain function spaces and finally in section, we discuss the

distributional Mellin-Hardy integral transformations.

The classical Hardy transformations [4] which is also called Cν-transformations is de-

fined by

f(y) =

∫ ∞
0

Fν(ty)t dt

∫ ∞
0

Cν(tx)xf(x) dx, (1.1)

where

(a) Cν(z) = cos(pπ)Jν(Z) + sin(pπ)Yν(Z).

(b) The function Fν(z) is given by

Fν(z) =
∞∑
m=0

(−1)m(1
2
z)ν+2p+2m

Γ(p+m+ 1)Γ(p+m+ ν + 1)

=
22−ν−2pSν+2p−1,ν(z)

Γ(p)Γ(ν + p)
.

(c) Jν(Z) and Yν(z) are Bessel functions of first and second kind respectively, and

(d) Sµ,ν(z) is the Lommel function [3, 8].

The inversion formula (1.1) is valid under the following conditions [2, page 384].

(i) p > −1, p+ ν > −1, |ν + 2p| < 3
2
,

(ii) tαf(t) is a integrable over (0, δ) where, σ = min{1− ν − 2p, 1− |ν|, 1
2
}, δ > 0,

(iii) t
1
2f(t) is a integrable over (δ,∞), and

(iv) f(t) is of bounded variation in a neighborhood of the point t = x.

The theory of expansion formula (1.1) has been given by Cooke [3]. The kernal

functionCν is the solution of Bessel equation

∆xf(x) = 0
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where

∆x = D2
x +

1

x
Dx −

ν2

x2

(
Dx =

d

dx

)
The classical Mellin integral transformation is given by

F (s) =

∫ ∞
0

ts−1f(t) dt

where f(t) is a suitably restricted conventional function on the real line (0,∞). Thus this

integral transformation maps f(t) into function F (s) of the complex variables. Panday

and Pathak [6] extended the classical Hardy transformations to generalized functions and

Zemanian [9] extended the classical Mellin transformations to generalized functions. In

this paper we discuss the distributional Mellin-Hardy transformations.

2. Testing Function Spaces

Throughout this paper, let R and N denote the sets of real numbers and nonnegative

integers respectively. Let a, b, c, d, t,∈ R and s ∈ C, where C denotes the set of complex

numbers. consider the functions κ(t, x) defined by

κ(t, x) =


t−axα, 0 ≤ t < 1, 0 < x ≤ 1,

t−bx3−α, 1 < t <∞, x > 1,

(2.1)

where α is a fixed positive number satisfying |ν| ≤ α ≤ 1
2
.

Now for each numberk = (k1, k2) ∈ N+ × N+ we define a space MHα(Ω) consisting of

all infinitely differentiable functions φ(t, x) over the domain

Ω = {(t, x)
∣∣ 0 ≤ t <∞, 0 ≤ x <∞}, (2.2)

satisfying the semi-norm

γαa,b,k(φ(t, x)) = sup
0≤t≤∞
0≤x<∞

∣∣∣κa,b(t, x)Dk1
t ∆k2

x φ(t, x)
∣∣∣ <∞, (2.3)

where ∆x is the Bessel differentiable operator as defined in section 1 and Dt =
∂

∂t
.
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Obviously, one can prove that MHα(Ω) is a linear space under the pointwise addition

of functions and their multiplication by complex numbers. Clearly, γαa,b,0 is a norm. for if

γαa,b,0(φ) = 0, then

sup
0≤t≤∞
0≤x≤∞

∣∣∣κa,b(t, x)φ(t, x)
∣∣∣ = 0.

This further implies that φ(t, x) = 0, for all (t, x) ∈ Ω, showing that γαa,b,0 is a norm on

MHα(Ω). Therefore, the collection of the semi-norms {γαa,b,k}∞k1,k2=0 is a multi-norm for

MHα(Ω) and we assign to MHα(Ω), the topology [9, page 9] generated by the multi-

norm {γαa,b,k}∞k1,k2=0 Then the linear space MHα(Ω) becomes a multi-normed space. As

k = (k1, k2) ∈ N+×N+ transverses the nonnegative integers in N+, we obtain a countable

multi-norm {γαa,b,k}∞k1,k2=0 defined on MHα(Ω) and hence MHα(Ω) is a countably multi-

normed space. we say that a sequence a sequence {φn(t, x)}∞n=1 converges to φ(t, x) in

MHα(Ω) if for each fixed a, b, k and α; and n→∞, where each φn ∈MH(Ω) . Similarly,

a sequence {φn} inMH(Ω)is said to be Cauchy if γαa,b,k(φm−φn)→ 0 as m,n→∞. The

spaceMH(Ω) is said to be complete if every Cauchy sequence inMH(Ω) converges to a

point in MH(Ω).

3. Countably Union Spaces

Let w denote either a finite or −∞ and let z denote a finite or +∞. consider two

monotonic sequences {an}∞n=1 and {bn}∞n=1 of real numbers such that an → w+ and bn →

z−. Let {MHα,an,bn} be a sequence of countably multi-normed spaces that

an < an+1, bn < bn+1, . . . ,

etc., such that

MHα,a1,b1 ⊂MHα,a2,b2 ⊂MHα,a1,b1 ⊂ · · · ⊂ MHα,an,bn ⊂ · · · (3.1)

Further we assume that the topology of each MHα,an,bn is stronger than the topology

induced on it byMHα,an+1,bn+1 LetMHα(w, z) denote the union of all these spaces, i.e.,
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MHα(w, z) =
∞⋃
n=1

MHα,an,bn . (3.2)

A sequence converges inMHα(w, z) if and only if it converges in one of theMHα,an,bn

spaces and this definition does not depend upon the choices of the sequences {an} and {bn}

since each of the space MHα,an,bn is complete, MHα(w, z) is also complete [9, Theorem

1.8.3].

Lemma 3.1. Let w ≤ u and v ≤ z, then

MHα(u, v) ⊂MHα(w, z),

and the converges in MHα(u, v) implies the converges in MHα(w, z).

Proof. To prove the theorem , it suffices to show that if an ≤ cn and dn ≤ bn, then

MHα,cn,dn ⊂MHα,an,bn ,

and the topology of MHα,cn,dn is stronger than the topology induced on MHα,cn,dn by

MHα,an,bn For, we note that

0 < κan,bn(t, x) ≤ κcn,dn(t, x)

on Ω. Therefore, ∣∣∣κan,bn(t, x)Dk1
t ∆k2φ(t, x)

∣∣∣ ≤ ∣∣∣κcn,dn(t, x)Dk1
t ∆k2

x φ(t, x)
∣∣∣

=⇒ γαan,bn,k(φ(t, x)) ≤ γαcn,dn(φ(t, x)).

(3.3)

Hence by Lemma 1.6.3 of [9, page12,13] the conclusion of the lemma follows.

Theorem 3.1. MHα(Ω) is complete and therefore, a Frenchet space.

Proof. Let {φn(t, x)} be a Cauchy sequence in MHα(Ω). Then for each fixed a, b, k

and α, the functions {κa,b(t, x)Dk1
t ∆k2

x φn(t, x)} comprise a uniform Cauchy sequence on

Ω. Therefore, by Cauchy criterion [1, Page 345], it converges uniformly on Ω as n→∞,

for each fixed a, b, k and α. Suppose that

φn(t, x) = κa,b(t, x)Dk1
t ∆k2

x φn(t, x), (t, x) ∈ Ω. (3.4)
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Now by Cauchy criterion {Dφn} converges uniformly on Ω for each fixed a, b, k and α.

Hence by a standard theorem [1, page 345], there exists a smooth functions φ(t, x) defined

on Ω such that φn(t, x)→ φ(t, x) uniformly on every compact subset I of I ′ , where I ′ is

an open subset of Ω, and Dφn → Dφ as n→∞, where the function φ is given by

φ(t, x) = κa,b(t, x)Dk1
t ∆k2

x φ(t, x). (3.5)

Moreover, again the fact that {φn(t, x)}∞n=0 is a Cauchy sequence for each fixed a, b, k

and α. Hence, for every ε > 0, therefore, there exists an integer n0 ∈ N such that

γαa,b,k(φm − φn) < ε (3.6)

for all m,n ≥ n0. Taking the limit as m→∞ in (3.6) we get

γαa,b,k(φn − φ) < ε

for all n ≥ n0. This proves that φn → φ in MH(Ω) and the proof of the theorem is

complete.

Theorem 3.2. MH(Ω) is a testing function space.

Proof. The proof is simple and can be obtained by giving the arguments similar to

Lemma 2.5 of Ahirrao and More [2]. Before stating the main result of this section, we

prove a useful lemma.

Lemma 3.2. For t > 0, x > 0, one has

(i) |κa,b(t, x)Cν(t, x)| <∞.

(ii) |κa,b(t, x)xC ′ν(t, x)| <∞.

(iii) |κa,b(t, x)x2C ′′ν (t, x)| <∞.

Proof. It is well-known that

sup
0<y<∞

∣∣yαCν(y)
∣∣ <∞. (3.7)
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We prove that assertion (i) of the lemma. Suppose that 0 < t < 1 and 0 < x < 1, then

we have ∣∣κa,b(t, x)Cν(t, x)
∣∣ =

∣∣t−axαCν(t, x)
∣∣

=
∣∣t−a(t, x)αCν(t, x)t−α

∣∣
=
∣∣t−a−α(t, x)αCν(t, x)

∣∣
= t−(a+α)

∣∣(tx)αCν(tx)
∣∣

<∞.

Now suppose that 1 < t <∞, 1 < x <∞, then

∣∣κa,b(t, x)Cν(t, x)
∣∣ =

∣∣t−bx3−α(tx)αCν(tx)t−αx−α|

= |t−b−αx3−α(tx)αCν(t, x)
∣∣

=
∣∣t−b−αx3−α||(tx)αCν(tx)

∣∣
<∞.

The proofs of the assertions (ii) and (iii) of the lemma are similar to case (i) above and

hence we omit the details.

The following result is useful for extending the conventional Millin-Hardy integral trans-

formation to generalized functions.

Theorem 3.3. If |ν| ≤ α ≤ 1
2

and t > 0, x > 0, then for fixed α, ts−1Cν ∈ MHα(Ω),

where Re(s) < 0 and Cν(t, x) is given as in (1.1).

Proof. By (3.7), |yαCν(y)| <∞, for all y > 0. Now we consider the following estimate.

sup
0<t<∞
0<x<∞

∣∣∣κa,b(t, x)Dk1
t ∆k2

x t
s−1Cν(tx)

∣∣∣
= sup

0<t<∞
0<x<∞

∣∣∣κa,b(t, x)Dk1
t (t3−1)t2k2Cν(tx)

∣∣∣
= sup

0<t<∞
0<x<∞

∣∣∣κa,b(t, x)
[
t2k2+s−1Dk1

t Cν(tx)
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+ Cν(tx)

k1∏
j=1

(2k2 + j + s− 1)]t2k2+s−k1−1
∣∣∣

= sup
0<t<∞
0<x<∞

∣∣∣κa,b(t, x)t2k2+s−1Dk1
t Cν(tx)

∣∣∣
+ sup

0<t<∞
0<x<∞

∣∣∣κa,b(t, x)Cν(tx)

k1∏
j=1

(2k2 + j + s− 1)t2k2+s−k1−1|.

Now for the first term on the right hand side of the inequality (2.11), we have

sup
0<t<∞
0<x<∞

∣∣∣κa,b(t, x)t2k2+s−1Dk1
t Cν(tx)

∣∣∣
≤ sup

0<t<1
0<x<1

∣∣∣κa,b(t, x)t2k2+s−1Dk1
t Cν(tx)

∣∣∣
+ sup

1<t<∞
1<x<∞

∣∣∣κa,b(t, x)t2k2+s−1Dk1
t Cν(t, x)

∣∣∣
= sup

0<t<1
0<x<1

∣∣∣t−axαDk1Cν(tx)
∣∣∣

+ sup
1<t<∞
1<x<∞

∣∣∣t−bx3−αt2k2+s−1Dk1
t Cν(tx)

∣∣∣
= sup

0<t<1
0<x<1

∣∣∣t−axat−k1x−k1(tx)k1Dk1
t Cν(tx)t2k2+s−1

∣∣∣
+ sup

1<t<∞
1<x<∞

∣∣∣t−b+2k2+s−k1−1xs−α−k1(tx)k1Dk1
t Cν(tx)|

= sup
0<t<1
0<x<1

∣∣∣t−(a+k1)xα−k1
∣∣∣ ∣∣∣(tx)k1Dk1

t Cν(tx)
∣∣∣ ∣∣∣t2k2+s−1

∣∣∣
+ sup

1<t<∞
1<x<∞

∣∣∣t−b+2k2−k1+s−1x3−α−k
∣∣∣ ∣∣∣(tx)k1Dk1

t Cν(tx)
∣∣∣

<∞ [by Lemma 3.2]

(3.9)
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Again for the second term on the right hand side of the inequality (3.7), we have

sup
0<t<∞
0<x<∞

∣∣∣κa,b(t, x)Cν(tx)
∏

j = 1k1(2k2 + j + s+−1)t2k2+s−k1−1
∣∣∣

≤ sup
0<t<∞
0<x<1

∣∣∣κa,b(t, x)Cν(t, x)

k1∏
j=1

(2k2 + +j + s− 1)t2k2+s−k1−1
∣∣∣

+ sup
1<t<∞
0<x<∞

∣∣∣κa,b(t, x)Cν(t, x)

k1∏
j=1

(2k2 + j + s− 1)t2k2+s−k1−1
∣∣∣

= sup
0<t<1
0<x<1

∣∣∣t−axαCν(tx)

k1∏
j=1

(2k2 + j + s− 1)t2k2+s−k1−1
∣∣∣

+ sup
0<t<1
0<x<1

∣∣∣t−bx3−αCν(tx)

k1∏
j=1

(2k + j + s− 1)t2k2+s−k1−1
∣∣∣

= sup
0<t<1
0<x<1

∣∣∣Πk1
j=1(2k2 + j + s− 1)t−(a+α)

∣∣∣ ∣∣∣(tx)αCν(tx)
∣∣∣ ∣∣∣t2k2+3−k1−1

∣∣∣
+ sup

1<t<∞
1<x<∞

∣∣∣ k1∏
j=1

(2k2 + j + s− 1)t−b−αx3−2α
∣∣∣ ∣∣∣(tx)αCν(tx)

∣∣∣ ∣∣∣t2k2+s−k1−1
∣∣∣

<∞. [by Lemma3.2]

(3.10)

From (3.9) and(3.10), we get

sup
0,t<∞

0<x<∞

∣∣∣κa,b(t, x)Dk1
t ∆k2

x t
s−1Cν(tx)

∣∣∣ <∞.
i.e. γαa,b,k

(
ts−1Cν(tx)

)
<∞.

Hence ts−1Cν(tx) ∈MH(Ω) and the proof of the lemma is complete.

4. Conventional and Generalized Mellin-Hardy Integral Transformations

In this section we extend the conventional Mellin-Hardy integral transformation to

generalized functions. Let φ(t, x) be a conventional function defined over the domain Ω,

where Ω is given by

Ω =
{

(t, x) : 0 < t <∞, 0 < x <∞
}

(4.1)
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Then the conventional Mellin-Hardy integral transformation of φ(t, x) is defined as

F(s, y) =MHα(φ(t, x))

=

∫ ∞
0

ts−1 dt

∫ ∞
0

Cν(xy)φ(t, x) dx

=

∫ ∞
0

∫ ∞
0

ts−1cν(xy)φ(t, x) dx dt.

(4.2)

We note that the conventional or classical Mellin-Hardy integral transformation F(s, y)

is a mapping from Ω into the set of complex numbers. A result concerning the existence

of F(s, y) is given in the following.

Theorem 4.1. The Mellin-Hardy conventional transformation exists for b + Re(s) < 0

and |ν| ≤ α ≤ 1
2
.

Proof. It is well known [6, page 36] that for an appropriate M > 0, one has

|Cν(x, y)| ≤M(xy)
−1
2 (4.3)

for all x > 0, y > 0. Therefore,

|F(s, y)| =
∣∣∣∣∫ ∞

0

∫ ∞
0

ts−1Cν(xy)φ(t, x) dx dt

∣∣∣∣
≤
∫ ∞

0

∫ ∞
0

∣∣Cν(xy)|ts−1φ(t, x)
∣∣ dx dt

≤
∫ ∞

0

∫ ∞
0

M(xy)
−1
2 ts−1|φ(t, x)| dx dt

=

∫ 1

0

∫ 1

0

M(xy)
−1
2

t−axα
ts−1γαa,b,0(φ(t, x)) dx dt

+

∫ ∞
1

∫ ∞
1

M(xy)
−1
2

t−bx3−α ts−1γαa,b,0(φ(t, x)) dx dt

= y
−1
2 Mγαa,b,0(φ(t, x))

∫ 1

0

∫ 1

0

x
−1
2 ts+a−1x−α dx dt

+ y
−1
2 Mγa, b, 0α(φ(t, x))

∫ ∞
0

∫ ∞
1

x
−1
2 t−bxα−3ts−1 dx dt

(4.4)
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Now for the first term in the inequality (3.4), we have(∫ 1

0

x
1
2
−α dx

)(∫ 1

0

tRe(s)+a−1 dt

)
=
[
x

1
2
−α
]1

0

[
tRe(s)+a

]1

0

<∞.

(4.5)

Similarly,

(∫ ∞
1

∫ ∞
1

x
−1
2 t−bxα−3tRe(s)−1dxdt

)
=
(∫ ∞

1

x
−1
2

+α−3dx
)(∫ ∞

1

tb+Re(s)−1dt
)

=
(∫ ∞

1

x
−7
2

+αdx
)(∫ ∞

1

tb+Re(s)−1dt
)

≤
(∫ ∞

1

x−3dx
)(∫ ∞

1

tb+Re(s)−1dt
)

= lim
n→∞

{[x−2

−2

]n
1
×
[tb +Re(s)

b+Re(s)

]n
1

}
≤ 1

2|b+ Re(s)|
lim
n→∞

{[
x−2
]n

1
×
[
tb + Re(s)

]n
1

}
≤ 1

2|b+ Re(s)|
lim
n→∞

{
(n−2 − 1)(nb+Re(s)−1)

}
=

1

2|b+ Re(s)|
[∵ b+ Re(s) < 0]

(4.6)

From (4.4) and (4.5) and (4.6), it is clear that the integral on the right hand of 4.2

exists for b+ Re(s) < 0. This is complete the proof.

Remark 4.1. Now let MH(Ω) denote the dual of the testing function space MH(Ω).

Then for any f(t, x) ∈ MH(Ω), we define its distributional Mellin-Hardy integral trans-

formation by

F(s, y) =MH(f(t, x)) =
〈
f(t, x), ts−1Cν(x, y)

〉
(4.7)

where y is a non-zero real number, x > 0, t > 0, |ν| ≤ α ≤ 1
2
, b + Re(s) < 0 and Cν(xy)

is same as defined in section 1. By Theorem 2.3, we know that for a fixed y 6= 0,
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ts−1Cν(xy) ∈ MH(Ω) and therefore, the relation (4.7) is meaningful. Below we prove

some order properties of the distributional Mellin-Hardy integral transformation.

Theorem 4.2 Let F(s, y) be the distributional Mellin-Hardy integral transformation of

f(t, x) ∈MH′(Ω). Then,

|F(s, y)| = 0(|sy|−α) as y → 0

and |F(s, y)| = 0(|sy|4r−α) as y →∞,

 (4.8)

where r is some nonnegative integer and α is a fixed positive number satisfying |r| ≤ α ≤

y2 and, b+Re(s) < 0.

Proof. In view of the result [9, page 18,19], there exists a constant C > 0 and a nonneg-

ative integer r such that

|F(s, y)| =
∣∣〈f(t, x), ts−1Cν(xy)

〉∣∣
≤ C max

0≤k1≤r
0≤k2≤r

sup
Ω

∣∣∣ka,b(t, x)Dk1
t ∆k2

x t
s−1Cν(xy)

∣∣∣
= C max

0≤k1≤r
0≤k2≤r

sup
Ω

∣∣∣ka,b(t, x)Dk1
t t

s−1∆k2
x Cν(xy)

∣∣∣
= C max

0≤k1≤r
0≤k2≤r

sup
Ω

∣∣∣ka,b(t, x) (

k1∏
j=1

(s− j))ts−k−1(−1)k2y2k2Cν(xy)
∣∣∣

= C max
0≤k1≤r
0≤k2≤r

sup
Ω

{
|(xy)αCν(cy)x−αy2k2−αka,b(t, x)

k1∏
j=1

(s− j)ts−k−1
∣∣∣}

= C max
0≤k1≤r
0≤k2≤r

sup
Ω

{∣∣∣(xy)Cν(xy)
∣∣∣ ∣∣sy∣∣2(k1+k2)−α

×
∣∣∣x−αs−2k2−2k1+αy−2k1 ka,b(t, x)sΠk1

j=1(s− j)ts−k1 − 1
∣∣∣}.

(4.9)

Now |(xy)αCν(xy)| is bounded and

∣∣x−αs−2k2−2k1 + y−2k1κa,b(t, x)
∏k1

j=1
(s− j)ts−k−1

∣∣
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is bounded and suppose B is their bound. Hence we get

|F(s, y)| ≤ CB max
0≤k1≤r
0≤k1≤r

|sy|2(k1+k2)−α

|F(s, y)| = 0(|sy|)−α as y → 0.

and

|F(s, y)| = 0(|sy|4r−α) as y →∞.

The proof of theorem is complete.

Next we prove that the boundedness theorem for the distributional Melli-Hardy integral

transformation.

Theorem If F(s, y) =MH(f(t, x)), (t, y) ∈ Ω
′

f , then F (s, y) is bounded on any subset

Ω
′

f =
{

(s, y) : b+ Re(s) < 0, 0 < y <∞
}

of Ωf according to

|F(s, y) ≤ |y|−αP (|sy|) (4.10)

where, P (|sy|) is a polynomial depending upon a, b and α, |ν| ≤ α ≤ y2.

Proof. In view of Theorem 1.8.1 of Zemanian [9], there exists a constant C > 0 and a

nonnegative integer r such that

|F(s, y)| =
∣∣〈f(t, x), ts−1Cν(xy)

〉∣∣
≤ C max

0≤k1≤r
0≤k2≤r

sup
Ω

∣∣κa,b(t, x)Dk1
t ∆k2

x t
s−1Cν(xy)

∣∣
≤ C max

0≤k1≤r
0≤k2≤r

sup
Ω

∣∣κa,b(t, x)(−1)k2y2k2Cν(xy)

k1∏
j=1

(s− j − 1)ts−k−1
∣∣

= C max
0≤k1≤r
0≤k2≤r

sup
Ω

∣∣κa,b(t, x)Cν(xy)y2k2

k1∏
j=1

(s− j − 1)ts−k−1
∣∣.

It can be readily seen that for an appropriate m > 0,

|Cν(xy)| ≤M (xy)
−1
2 ,
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for all x > 0, y > 0 and |ν| ≤ α ≤ 1
2

([6, page 251]). Hence,

|F(s, y)| ≤ CM max
0≤k1≤r
0≤k2≤r

∣∣∣ k1(s−j−1)∏
j=1

y2k2−y2
∣∣∣∣∣∣κa,b(t, x)x

−1
2 ts−k1−1

∣∣∣.
Now, sup |κa,b(t, x)ts−k1−1x

−1
2 | is bounded for b + Re(s) < 0 and for every k1 ∈ N+ say

by the constant C ′ > 0. Therefore, from (3.12), we obtain

|F(s, y)| ≤ CMC ′ max
0≤k1≤r
0≤k2≤r

∣∣∣ k1∏
j=1

(s− j − 1)y2k2− 1
2

∣∣∣
= |y|

−1
2 P (|sy|)

≤ |y|−αP (|sy|),

(4.11)

where P (|sy|) is a polynomial depending upon a, b and α. This completes the proof.

Finally we mention that some related results of distributional Mellin-Hardy integral

transformation will be reported elsewhere.

References

[1] T. M. Apostol, Mathematical Analysis, Addison Wesley, Reading Mass (1957).

[2] N. R. Ahirrao, S. V. More, Distributional Laplace-Hardy Transformation, J. Indian Acad. Math. 9

(2) (1987), 47-74.

[3] R. G. Cooke, The Inverse formula o Hardy and Titchmarsh, Proc. Lond. Math. Soc. 23 (1925),

381-420.

[4] G. H. Hardy, Some Formula in the theory o Bessel’s function, Proc. Lond. Math. Soc. 23 (1925),

61-63.

[5] J. Korevaar, Mathematical Methods, Academic Press, New York and Lond. (1968).

[6] R. S. Pathak, J. N. Pandey, A Distributional Hardy Transformation, Proc. Camb. Phil. Soc. 76

(1974), 247-262.

[7] F. Treves, Topological Vector Spaces, distributions, Kernals,, Academic Press, New York, (1967).

[8] G. N. Watson, A treatise on theory o Bessle’s unctions, Camb. Univ. Second Edition, (1962).

[9] A. H. Zemanian, Generalized Integral Trnsformations, Interscience Publishers, (1968).


