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Abstract. In this paper, we establish some common fixed point theorems in generalized interpolation for two

mappings and generalize the Kannan type contraction.
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1. INTRODUCTION/PRELIMINARIES

It is well known that fixed point theory played a central role in various scientific fields. The

well-known result in this area is undoubtedly the famous Banach contraction principle (see

[1]) which motivated researchers to find other forms of contractions. In this line, we cite the

well-known Kannan contraction that does not require continuous mapping.

Definition 1.1. [2] Let (X ,d) be a metric space. A self-mapping on T : X → X is said to be a

Kannan contraction if there exists µ ∈ [0,1/2] such that

(1.1) d(Ta,Tb)≤ µ(d(a,Ta)+d(b,Tb)).
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Kannan obtained the following theorem.

Theorem 1.1. If (X ,d) is a complete metric space, then every Kannan contraction on E has a

unique fixed point.

In 2018, Karapinar [3] published a new type of contraction obtained from the definition of

the Kannan contraction by interpolation as follows:

Definition 1.2. [3] Let (X ,d) be a complete metric space. A mapping T : X → X is said to be

an interpolative Kannan type contraction on X, if there exist µ ∈ [0,1) and α ∈ (0,1) such that

(1.2) d(Ta,Tb)≤ µ[d(a,Ta)]α [d(b,Tb)]1−α ,

for every a,b ∈ X \Fix(T), where Fix(T) = {a ∈ X |Ta = a}.

Theorem 1.2. [3] On a complete metric space (X ,d), any interpolative Kannan-contraction

T : X → X has a fixed point.

Now, we define the generalized interpolative condition in the following way;

Definition 1.3. Let (X ,d) be a complete metric space. A mapping T : X → X is said to be an

generalized interpolative type contraction on X, if there exist µ ∈ [0,1) and α,β ∈ (0,1) such

that

(1.3) d(Ta,Tb)≤ µ[d(a,Ta)]α [d(b,Tb)]β ,

for every a,b ∈ X \Fix(T), where Fix(T) = {a ∈ X |Ta = a}.

Theorem 1.3. [4] Let (X ,d) be a complete metric space. A mapping T,S : X → X is said to be

an interpolative Kannan type contraction on X, if there exist µ ∈ [0,1) and α ∈ (0,1) such that

(1.4) d(Ta,Sb)≤ µ[d(a,Ta)]α [d(b,Sb)]1−α ,

is satisfied for all a,b ∈ X such that Ta 6= a and Sb 6= b. Then T and S have a unique common

fixed point.
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Definition 1.4. Let (X ,d) be a complete metric space. T,S : X → X be a self-mappings. As-

sume that there are some µ ∈ [0,1),α,β ∈ (0,1) s.t. the condition

(1.5) d(Ta,Sb)≤ µ[dα(a,Ta).dβ (b,Sb)]

is satisfied ∀ a,b∈ X such that Ta 6= a whenever Sb 6= b. Then S and T have a unique common

fixed point.

2. MAIN RESULTS

We start this section with the Theorem of generalized interpolative Kannan type contraction

for pair of mapping.

Theorem 2.1. Let (X ,d) be a complete metric space. T,S : X→X be a self-mappings. Assume

that there are some µ ∈ [0,1),α,β ∈ (0,1) s.t. the condition

d(Ta,Sb)≤ µ[dα(a,Ta).dβ (b,Sb)]

is satisfied ∀ a,b∈ X such that Ta 6= a whenever Sb 6= b. Then S and T have a unique common

fixed point.

Proof. Let ao ∈ X , define the sequence {an}∞
n=0 by

a2n+1 = Ta2n,a2n+2 =Sa2n+1,∀ n = {0,1,2,3, ....}.

If ∃ n ∈ {0,1,2,3, ..} s.t. an = an+1 = an+2 then an is a common fixed point of S and T.

Suppose that three consecutive identical terms in the sequence {an}∞
n=0 and that a0 6= a1.

Now, using (1.5), we deduce for a = a2n,b = a2n+1 that

d(a2n+1,a2n+2) = d(Ta2n,Sa2n+1)

≤ µ.dα(a2n,a2n+1).dβ (a2n+1,a2n+2)

Thus,

d1−β (a2n+1,a2n+2)≤ µdα(a2n,a2n+1)
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or,

d(a2n+1,a2n+2)≤ µ
1

1−β .d
α

1−β (a2n,a2n+1)

≤ µ
1

1−β .d
α

1−β (a2n,a2n+1), Since
α

1−β
< 1

≤ µd(a2n,a2n+1).

(2.1)

Hence,

d(a2n+1,a2n+2)≤ µd(a2n,a2n+1)≤ µ
2d(a2n−1,a2n)≤

...≤ µ
kd(a2n−2,a2n−1)≤ ...≤ µ

2n+1d(a0,a1)

or

(2.2) d(a2n+1,a2n+2)≤ µ
2n+1d(a0,a1),

similarly, on putting a = a2n and b = a2n−1 we have

d(a2n+1,a2n) = d(Ta2n,Sa2n−1)

≤ µdα(a2n,Ta2n).dβ (a2n−1,Sa2n−1)

≤ µdα(a2n,a2n+1).dβ (a2n−1,a2n).

Thus

d1−α(a2n,a2n+1)≤ µdβ (a2n−1,a2n),

or

d(a2n,a2n+1)≤ µ
1

1−α d
β

1−α (a2n−1,a2n)

≤ µd
β

1−α (a2n−1,a2n)

≤ µ(a2n−1,a2n).

Hence,

d(a2n+1,a2n)≤ µ.d(a2n−1,a2n)≤ µ
2.d(a2n−2,a2n−1)≤ µ

3d(a2n−3,a2n−2)≤

...≤ µ
2nd(a0,a1).

Thus

(2.3) d(a2n+1,a2n)≤ µ
2nd(a0,a1).
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Unifying (2.2) and (2.3) we can deduce that

(2.4) d(a2n+1,a2n)≤ µ
nd(a0,a1)

Now using (2.4) we can prove that the sequence {an}∞
n=0 is a Cauchy sequence

Let m,r ∈ {0,1,2,3...},

d(am,am+r)≤ d(am,am+1)+d(am+1,am+2)+ ...+(am+r−1,am+r)

≤ µ
m +µ

m+1 + ...µm+r−1d(a0,a1)

≤ (µm +µ
m+1 + ...µm+r−1 + ...)d(a0,a1)

=
µm

1−µ
d(a0,a1).

Letting m→ ∞ we deduce that {an}∞
n=0 is a Cauchy sequence.

As (X ,d) is complete, so ∃u ∈ X limn→∞ an = u. Using the contrary of the metric in its both

variables we may prove that u is a fixed point of T, as follows:

d(Tu,a2n+2) = d(Tu,Sa2n+1)

≤ µ.dα(u,Tu).dβ (a2n+1,a2n+2).

Letting n→ ∞ we get d(Tu,u) = 0 so (Tu,u).

Similarly,

d(a2n+1,Su) = d(Ta2n,Su)

≤ µ.dα(a2n,a2n+1).dβ (u,Su),

letting n→ ∞ we get u =Su.

Thus u is a common fixed point of S and T. To prove that u is a unique common fixed point

of S and T suppose that v ∈ X is another common fixed point of S and T.

Then

d(u,v) = d(Tu,Sv)≤ µdα(u,Tu).dβ (v,Sv) = 0.

Hence u = v. So S,T : X → X has a unique common fixed point in X . �
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3. NUMERICAL EXAMPLE

d(a,a) = d(b,b) = d(c,c) = d(d,d) = 0

d(a,b) = d(b,a) = 3

d(c,a) = d(a,c) = 4

d(b,c) = d(c,b) =
3
2

d(d,a) = d(a,d) = 0

d(d,b) = d(b,d) = 4

d(d,c) = d(c,d) =
3
2

Define self maps T,S as follows

T :

 a b c d

a d c d

S :

 a b c d

a b d c


It is clear that T,S satisfies (1.5) with µ = 9

10 and α = 1
2 ,β = 1

3 , and T and S has unique

common fixed point a.
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