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1. Introduction 

We  consider the system of linear equations of the type  

 ,AX b                            (0.1)         

where 

 ,   and ,  1,2, , ,  1,2, , .ij j jA a X x b b i n j n                 
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A wide class of problems arising in engineering and sciences can be formulated as system of 

linear equations. See [1-18] and the references therein. Several methods and techniques have 

been developed for solving system of linear equations (1.1). Babolian et al. [6] have used 

Adomian decomposition method to derive an iterative method, which is  similar to the Jacobi 

iterative method for solving systems of linear equations.  Allahviranloo [4] used Adomian 

decomposition method for fuzzy system of linear equations. Keramati [10], Liu [12] and Noor et 

al [17] have used homotopy perturbation to derive some iterative methods for solving system of 

linear equations. The Adomian decomposition was developed by Adomian [2,3] and has been 

successfully applied to solve a wide class of linear and nonlinear problems, see [1-6,8,15]. 

Adomian decomposition method gives the solution as an infinite series usually converging to an 

accurate solution. Noor [16] has proved the equivalence between the homotopy perturbation 

method and the Adomian decomposition method. In this paper, we use Adomian decomposition 

technique to develop some iterative methods for solving systems of linear equations (1.1). These 

iterative are exactly the same as in Liu [12], which were obtained  using homotopy perturbation 

method. This is the main motivation of this paper. We give several numerical examples to 

illustrate the efficiency and performance of our results. Results obtained in this paper may be 

extended for solving  nonlinear system of  equations, which is another direction for future 

research. 

2. Iterative Methods 

For an auxiliary parameter 0,  any splitting matrix Q  and an auxiliary matrix H , one 

can decompose the system of linear equation (1.1) as follows:  

( ) .QX HA Q X Hb                              (1.1) 

Let 0W  be the initial approximation of X .  Then  (1.1) can be written as: 

 0 0[( ) ],QX W Q HA X Hb W      (1.2) 

which is written as  

 ( ) ( ),L X C M X   (1.3) 

where 
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 ( ) ( ),L X Q X  (1.4) 

 0 ,C W  (1.5) 

 0( ) [( ) ].M X Q HA X Hb W     (1.6) 

The main idea of the Adomian decomposition technique is to look for a solution of equation (1.3)  

having the series form of the type: 

 
0

,k

k

X X




  (1.7) 

and the operator ( )M X  is decomposed as: 

 
0 0

( ) ,k k

k k

M X M X A
 

 

 
  

 
   (1.8) 

where kA  are the functions which are known as the Adomian polynomials depend  upon  

   0 1 2, , , ,X X X    and  are given  by the formula
 

 

 
0 0

1
,    0,1,2, .

!

m
k

m km
k

d
A M X m

m d







 

  
   

  
  (1.9) 

From (1.6) and (1.9), we obtain 

 
0 0 0( ) ,

( ) ,    1,2,3, ,m m

A Q HA X Hb W

A Q HA X m

   


  
 (1.10) 

It follows from (1.3), (1.7) and (1.8) that 

 
0 0

.k k

k k

L X C A
 

 

 
  

 
   (1.11) 

From  (1.4)  and  (1.11), we have 

 
0 0

.k k

k k

Q X C A
 

 

 
  

 
   (1.12) 

Also  from (1.12), we have the following iterative scheme 

 
0

1

,

,    1,2,3, .k k

QX C

QX A k




 
 (1.13) 

Using the Adomian polynomials given by (1.10), we obtain 
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0 0

1 0 0

1

,

( ) ,

( ) ,    2,3,4, .k k

QX W

QX Q HA X Hb W

QX Q HA X k




   
   

 (1.14) 

From (1.14), we get 

 

1

0 0

1 1

1 0 0

1

1

,

( ) ( ),

( ) ,    2,3,4, .k k

X Q W

X I Q HA X Q Hb W

X I Q HA X k



 





 


   


  

 (1.15) 

Taking initial approximation 0 ,W Hb  we have 

 

1

0

1 1

( ) ,

( ) ( ) ,    1,2,3, .k

k

X Q H b

X I Q HA Q H b k



 

 


  

 (1.16) 

Thus, from (1.16), we have the series solution 

 1 1

0 0

( ) ( ) ,k

k

k k

X X I Q HA Q H b
 

 

 

     (1.17) 

which is exactly the same series solution obtained by using homotopy perturbation technique 

[12]. 

For the convergence analysis of the series (1.17), see Liu [12]. 

3. Some Special Adomian Methods 

 

We now discuss some special cases, which can be obtained from our results. 

 

3.1. Adomian Jacobi Method. Let ( ),  1,2, , .iiQ D diag a i n    Then, from (1.16), we 

have 

 

1

0

1 1

,

( ) ,   1,2,3, .k

k

X D Hb

X I D HA D Hb k



 

 


  

 (2.1) 

From (2.1), we have the series solution 

 1 1

0

( ) ,k

k

X I D HA D Hb


 



   (2.2) 

which is the same as homotopy Jecobi obtained by Liu [12] using homotopy perturbation 

method. 
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3.2. Adomiam Gauss-Seidel Method.  

Let ,  where ( ),  1,2, , ,  andiiQ D L D diag a i n     

 
21

1 , 1

0 0 0

0 0
.

0n n n

a
L

a a 

 
 


 
 
 
  

  

From (1.16), we have 

 

1

0

1 1

( ) ,

( ( ) ) ( ) ,    1,2,3, .k

k

X D L Hb

X I D L HA D L Hb k



 

  


    

 (2.3) 

From (2.3), we have the series solution 

 1 1

0

( ( ) ) ( ) ,k

k

X I D L HA D L Hb


 



     (2.4) 

which is the same as obtained by Liu [12] using homotopy perturbation method. 

4. Numerical Examples 

In this section, we present some numerical examples to illustrate the efficiency of the newly 

developed methods in this paper. We compare our methods with Jacobi method (JC) [7], 

Gauss-Seidel method (GS) [7], Adomian Jacobi method (AJC) and Adomian Guass-Seidel 

method (AGS). For each example, we calculate number of iterations, error estimate, spectral 

radius 1( ( ))D L U    (for Jacobi method), 1(( ) )D L U   (for Guass-Seidel method), 

1( )I D HA   (for Adomian Jacobi method) and 1( ( ) )I D L HA    (for Adomian 

Guass-Seidel method). All computations are done on Matlab and we use 1510 .  The following 

stopping criteria is used for computer programs: 

 

[ 1]

[ ]
.

k k

k

X X

X









   

We consider the following examples to illustrate the efficiency and implementation of these new 

iterative methods. 
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Examples 4.1 [7]. Consider the following system of linear equations 

 

1 2 4

1 2 3 5

2 3 6

1 4 5

2 4 5 6

3 5 6

4 0,

4 5,

4 0,

4 6,

4 2,

4 6.

x x x

x x x x

x x x

x x x

x x x x

x x x

  

    

   

   

     

   
 

  

Example 4.2 [7]. Consider the following system of linear equations ,AX b  where the entries 

of A  are 

 

2 ,       when  and 1,2, ,80,

2 and 1,2, ,78,
0.5 ,     when 

2 and 3,4, ,80,

4 and 1,2, ,76,
0.25 ,   when

4 and 5,6, ,80,

0,         otherwise, 

ij

i j i i

j i i
i

j i i
a

j i i
i

j i i



 


  


    


  
   




  

and those of b  are ,ib   for each 1,2, ,80.i   

Example 4.3 [7]. Consider the following system of linear equations ,AX b  where the entries 

of A  are 

 

4,       when  and 1,2, , 25,

1,2,3,4,6,7,8,9,11,12,13,14,
1 and 

16,17,18,19,21,22,23,24,

2,3,4,5,7,8,9,10,12,13,14,15,
1,     when 1 and 

17,18,19,20,22,23,24,25,

5 and 1,2,

ij

j i i

j i i

a j i i

j i i



 


   




    



   , 20,

5 and 6,7, , 25,

0,         otherwise, 

j i i







 

 
 
 
 

   



  

And (1,0, 1,0,2,1,0, 1,0,2,1,0, 1,0,2,1,0, 1,0,2,1,0, 1,0,2) .tb        
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Table 4.1 (Numerical Examples) 

Exp. Method   IT Error 

4.1 

 

 

 

 

4.2 

 

 

JC 

GSC 

AJC 

AGS 

 

JC 

GSC 

AJC 

AGS 

0.6036 

0.3643 

0.6036 

0.3643 

 

0.7457 

0.2277 

0.7457 

0.2277 

70 

36 

68 

34 

 

109 

25 

107 

23 

5.5511e-016 

5.5511e-016 

5.8777e-016 

6.5445e-016 

 

9.0190e-016 

5.9976e-016 

8.1209e-016 

5.7894e-016 

 

4.3 

 

JC 

GSC 

AJC 

AGS 

 

0.8660 

0.7500 

0.8660 

0.7500 

 

220 

114 

220 

113 

 

9.1699e-016 

9.8938e-016 

8.6332e-016 

9.5255e-016 
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