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Abstract. In this paper, refinements and new results concerning the Hermite-Hadamard’s inequality

concerning products of convex functions are presented.
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1. INTRODUCTION

A real-valued function fis said to be convex on a closed interval I if
flx+ 1=ty < tf(x)+(1—=1t)f(y), forall z, y € I, 0 <t < 1.If the inequality is
reversed, the f is called concave. It is known that fis convex if f”(z) > 0.

The inequality

(1) f(“b)sbia/bﬂx)dmsw
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which holds for all convex mapping f : [a, b] — R, is known in the literature as Hadamard’s

inequality. In [2], Fejér generalized Hadamard’s inequality by giving the following :
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Theorem 1.1. If g : [a,b] — R is non-negative integrable and symmetric to x = “T“’, and

if f is convex on [a,b], then

@ (%) / gla)de < / @) gl dr < L0 / o) da.

a

2. MAIN RESULTS
Lemma 2.1. If f,g: I — R are positive convex functions such that
(3) (f(a) = f(b)) (9(a) — g(b)) >0, Va,be I,

then fg:I* — R is convex.

Proof. By the hypothesis, we have for all a, b € I,

f(a)g(d) + f(b)g(a) < fla)g(a)+ f(b)g(b)
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Theorem 2.2. Let f,g,h : I D [z,y] — R be positive convex functions such that (3) is

satisfied, his integrable and symmetric to t = (x + y)/2. Then the following inequalities
hold
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Proof. The proof follows from (1) and (2) .

Theorem 2.3. Assume that f : I — R is a convex function on I = [a,b]. Then for all

c € la, b,

(6)

where

/"

Proof. We have

/

a+b
2
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c=(1=XNa+ b, A€|0,1], we have

fla) + f(0)
: :

) <) = 1 [ pwan < pe < L
a+c b+c
l(c):)\f( 5 ) (1—A)f( 5 )
L(c) = %()\f(a) +f(e) + (1=X) f(b))
c—a=Ab—a), b—c=(1-X)(b—a).
Ma+c)+ (1= N(c+b)
i 2 )
Af<“;°’> + <1—A>f(cg") (= 1))
cia/f t)dt + —/f
1
b_a/f dt+—/f (ba
Af<);f<)+(1_»f<>;f(b>
%(A fla) + (&) + 1=NfB) (= L(e)
%()\f(a) F (1= fla) + Afb) + (1= A) f(b)
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Theorem 2.4. Assume that f,g: I — R be positive convex functions on I = [a,b]. Then

for all ¢ € [a,b], ¢=(1—XNa-+ b, X\€0,1], we have

09 (52) < oo < 7 [ fsta) e < 1L
fla) + f(b) g(a) + 9(b)
(7) = 2 2
where

ly(c) = /\f<a;LC> + (1—>\)f<b;rc), ly(c) = )\g(a;_C) n (l—A)g(b;C)

Li(e) = 5 (Afla) + f(c) + A=A f(0)) , Ly(c) = 5 (Agla) + f(e) + (1 =X)g(D).

N | —

Proof. Applying Theorem 2.3 twice, we have

The proof follows by multiplying (8) and (9).
Theorem 2.5. Assume that f,g : I — R be positive convex functions on I = |a,b]

such that f and g are both non-increasing or non-decreasing. Then for all ¢ € [a,b], ¢ =

(1 —=XNa+ A\b, A€ [0,1], we have

09 (“5) = 1o < / (@) de / ga)dr <2 [ 1o gla) d

—a

(10) < F(a,b),

where l¢(c), l,(c) are as defined in Theorem 2.4 and

P(q P Up s 0a(q g 1/q
Fa,b) = min {(M) (He ) ,§<f<a>+f<b>><g<a>+g<b>>}.
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Proof. As p,q > 1, then fP, g9 are both convex. Hence via Chebyshev inequality and

Theorem 2.4, we have

a+b

(fg)( 5 )Slf(c)lg(c)g bia/f(:c)dxbia/bg(:c)d:c Sbia/f(:c)g(:c)da:.

Also,
: b p b 1/q
bia/f(a:)g(a?)dx < (bla/fp(:v)dx> (bla/gq(x)dq:)
< (M fp<b>)”p (st gg<b>)”q
and,
bia/bf(x)g(x)dx = /1f((1—)\)a+)\b)g((1—)\)a+)\b)d)\

(T =XN)f(a) + Af(0) ((1 = A)gla) + Ag(b)) dA

(f(a)g(a) + f(b)g(b) + f(a)g(b) + f(b)g(a))
(f(a) + f(b)) (g(a) + g(b)) -

[\
Wl H— Wl O\H =

The Theorem follows.

A positive function f is said to be log-convex if log f is convex function. Concerning
such function, we have
Theorem 2.6. Let f, g : [a,b] — R such that fis convex and g is log-convez, both f and
log g are positive, and that one of these functions are increasing and the other decreasing.

Then the following inequality holds

(1) [P < o) T
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Proof. Applying Chebyshev inequality, we have

b b
ia /gf(z)(x) dr = exp (hl (b i - /gf(a:)(m) d$))

AN
D
i)
o]
~
o>
| | =
IS
—
=
—~
Q
=
B
s
=
oW
=
~

IA
e

i

o)

AN
D
I
o]
TN N
o>
| | =
IS
\Q‘
=
&
QL
S
.
[
=
=
&
QA
=
~

Theorem 2.7. Let f,g : I D [a,b] — R be convex functions such that (3) is satisfied,
a>0. Let c € [a,b], c# (b—a)/2. Then

b—c

(12) %/ t)dt < /b —3¢(fg) (a;b).

a-+c

Proof. As fg is convex, then

(fg)<a—2|—b> ~ (f9) <a—|—a+c + a—l—cg—b—c + b—c+c>
< 5 (0 (“*“C)+<fg>(—“+°jb‘c)+<fg>(b+"”’))
< %(E/fg i+ s b/_c<fg><>dt+ /b(fg)() )

a+c b

b b—c
_ Bi( [ua@ar+ 2220 g dt),

a-+c
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which implies
b 3 b—c b b
ﬁ/“gﬂﬂdt < /(fg)(t)dt—3c(fg) (a; )

a-+c a

Corollary 2.8. Let fi, fo, 91,92 : [a,b] — R be positive convex functions such that (3) is
satisfied for fi,g1 and fa, go, and h : [a,b] — R is positive, integrable and symmetric to

x = (a+b)/2. Then the following inequalities hold

b b

(f191)(a) f191 / fig)( f2g2)( f292 / f292)(x

b

(13) < /h(x) dx

a

Proof. The proof follows from Theorem 1.1( the right inequality) by replacing f(x) by
(fr91)(x) (f292)(2)
(f191)(a) + (f191)(D) * (f292)(a) + (f292)(D) and g(z) by h{z).
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