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1. Introduction

A real-valued function f is said to be convex on a closed interval I if

f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), for all x, y ∈ I, 0 ≤ t ≤ 1. If the inequality is

reversed, the f is called concave. It is known that f is convex if f ′′(x) ≥ 0.

The inequality

(1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x) dx ≤ f(a) + f(b)

2

which holds for all convex mapping f : [a, b]→ <, is known in the literature as Hadamard’s

inequality. In [2], Fejér generalized Hadamard’s inequality by giving the following :
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Theorem 1.1. If g : [a, b]→ < is non-negative integrable and symmetric to x = a+b
2
, and

if f is convex on [a,b], then

(2) f

(
a+ b

2

) b∫
a

g(x) dx ≤
b∫

a

f(x) g(x) dx ≤ f(a) + f(b)

2

b∫
a

g(x) dx.

2. Main Results

Lemma 2.1. If f, g : I → < are positive convex functions such that

(3) (f(a)− f(b)) (g(a)− g(b)) > 0, ∀a, b ∈ I,

then fg : I2 → < is convex.

Proof. By the hypothesis, we have for all a, b ∈ I,

f(a)g(b) + f(b)g(a) ≤ f(a)g(a) + f(b)g(b)

⇒ f(a)g(b) + f(b)g(a) + f(a)g(a) + f(b)g(b) ≤ 2 (f(a)g(a) + f(b)g(b))

⇒ (f(a) + f(b))

2

g(a) + g(b)

2
≤ f(a)g(a) + f(b)g(b)

2
.

Since f

(
a+ b

2

)
≤ f(a) + f(b)

2
, then

(fg)

(
a+ b

2

)
= f

(
a+ b

2

)
g

(
a+ b

2

)
≤ f(a) + f(b)

2

g(a) + g(b)

2

≤ (fg)(a) + (fg)(b)

2
.

Theorem 2.2. Let f, g, h : I ⊃ [x, y] → < be positive convex functions such that (3) is

satisfied, his integrable and symmetric to t = (x + y)/2. Then the following inequalities

hold

(4) (fg)

(
x+ y

2

)
≤ 1

y − x

y∫
x

(fg)(u) du ≤ (fg)(x) + (fg)(y)

2
,

(5) (fg)

(
x+ y

2

) y∫
x

h(u) du ≤
y∫

x

(fgh)(u) dx ≤ (fg)(x) + (fg)(y)

2

b∫
a

h(u) du.
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Proof. The proof follows from (1) and (2) .

Theorem 2.3. Assume that f : I → < is a convex function on I = [a, b] . Then for all

c ∈ [a, b], c = (1− λ)a+ λb, λ ∈ [0, 1] , we have

(6) f

(
a+ b

2

)
≤ l(c) ≤ 1

b− a

b∫
a

f(x) dx ≤ L(c) ≤ f(a) + f(b)

2

where

l(c) = λ f

(
a+ c

2

)
+ (1− λ) f

(
b+ c

2

)
,

L(c) =
1

2
(λ f(a) + f(c) + (1− λ) f(b)) .

Proof. We have

c− a = λ(b− a), b− c = (1− λ)(b− a) .

f

(
a+ b

2

)
= f

(
λ(a+ c) + (1− λ)(c+ b)

2

)
≤ λ f

(
a+ c

2

)
+ (1− λ) f

(
c+ b

2

)
(= l(c))

≤ λ

c− a

c∫
a

f(t) dt +
1− λ
b− c

b∫
c

f(t) dt

=
1

b− a

c∫
a

f(t) dt +
1

b− a

b∫
c

f(t) dt

=
1

b− a

b∫
a

f(t) dt


≤ λ

f(a) + f(c)

2
+ (1− λ)

f(c) + f(b)

2

=
1

2
(λ f(a) + f(c) + (1− λ) f(b)) (= L(c))

≤ 1

2
(λ f(a) + (1− λ) f(a) + λ f(b) + (1− λ) f(b))

=
f(a) + f(b)

2
.
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Theorem 2.4. Assume that f, g : I → < be positive convex functions on I = [a, b]. Then

for all c ∈ [a, b], c = (1− λ)a+ λb, λ ∈ [0, 1] , we have

(fg)

(
a+ b

2

)
≤ lf (c)lg(c) ≤

1

b− a

b∫
a

f(x)g(x) dx ≤ Lf (c)Lg(c)

≤ f(a) + f(b)

2

g(a) + g(b)

2
.(7)

where

lf (c) = λ f

(
a+ c

2

)
+ (1− λ) f

(
b+ c

2

)
, lg(c) = λ g

(
a+ c

2

)
+ (1− λ) g

(
b+ c

2

)

Lf (c) =
1

2
(λ f(a) + f(c) + (1− λ) f(b)) , Lg(c) =

1

2
(λ g(a) + f(c) + (1− λ) g(b)) .

Proof. Applying Theorem 2.3 twice, we have

(8) f

(
a+ b

2

)
≤ lf (c) ≤ 1

b− a

b∫
a

f(x) dx ≤ Lf (c) ≤ f(a) + f(b)

2
,

(9) g

(
a+ b

2

)
≤ lg(c) ≤

1

b− a

b∫
a

g(x) dx ≤ Lg(c) ≤
g(a) + g(b)

2
.

The proof follows by multiplying (8) and (9).

Theorem 2.5. Assume that f, g : I → < be positive convex functions on I = [a, b]

such that f and g are both non-increasing or non-decreasing. Then for all c ∈ [a, b], c =

(1− λ)a+ λb, λ ∈ [0, 1] , we have

(fg)

(
a+ b

2

)
≤ lf (c)lg(c) ≤

1

b− a

b∫
a

f(x) dx
1

b− a

b∫
a

g(x) dx ≤ 1

b− a

b∫
a

f(x) g(x) dx

≤ F (a, b),(10)

where lf (c), lg(c) are as defined in Theorem 2.4 and

F (a, b) = min

{(
fp(a) + fp(b)

2

)1/p(
gq(a) + gg(b)

2

)1/q

,
1

3
(f(a) + f(b)) (g(a) + g(b))

}
.
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Proof. As p, q > 1, then fp, gq are both convex. Hence via Chebyshev inequality and

Theorem 2.4, we have

(fg)

(
a+ b

2

)
≤ lf (c)lg(c) ≤

1

b− a

b∫
a

f(x) dx
1

b− a

b∫
a

g(x) dx ≤ 1

b− a

b∫
a

f(x) g(x) dx.

Also,

1

b− a

b∫
a

f(x) g(x) dx ≤

 1

b− a

b∫
a

fp(x) dx

1/p 1

b− a

b∫
a

gq(x) dx

1/q

≤
(
fp(a) + fp(b)

2

)1/p(
gq(a) + gg(b)

2

)1/q

.

and,

1

b− a

b∫
a

f(x) g(x) dx =

1∫
0

f ((1− λ)a+ λb) g ((1− λ)a+ λb) dλ

≤
1∫

0

((1− λ)f(a) + λf(b)) ((1− λ)g(a) + λg(b)) dλ

=
1

3
(f(a)g(a) + f(b)g(b) + f(a)g(b) + f(b)g(a))

=
1

3
(f(a) + f(b)) (g(a) + g(b)) .

The Theorem follows.

A positive function f is said to be log-convex if log f is convex function. Concerning

such function, we have

Theorem 2.6. Let f, g : [a, b]→ < such that f is convex and g is log-convex, both f and

log g are positive, and that one of these functions are increasing and the other decreasing.

Then the following inequality holds

(11)
1

b− a

b∫
a

gf(x)(x) dx ≤ (g(a) g(b))
f(a)+f(b)

4 .
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Proof. Applying Chebyshev inequality, we have

1

b− a

b∫
a

gf(x)(x) dx = exp

ln

 1

b− a

b∫
a

gf(x)(x) dx


≤ exp

 1

b− a

b∫
a

ln
(
gf(x)(x)

)
dx


= exp

 1

b− a

b∫
a

f(x) ln g(x) dx


≤ exp

 1

b− a

b∫
a

f(x) dx .
1

b− a

b∫
a

ln g(x) dx


≤ exp

(
f(a) + f(b)

2

)(
ln g(a) + ln g(b)

2

)
= (g(a) g(b))

f(a)+f(b)
4 .

Theorem 2.7. Let f, g : I ⊃ [a, b] → < be convex functions such that (3) is satisfied,

a ≥ 0. Let c ∈ [a, b] , c 6= (b− a)/2. Then

(12)
b− a− 3c

b− a− 2c

b−c∫
a+c

(fg)(t) dt ≤
b∫

a

(fg)(t) dt− 3c (fg)

(
a+ b

2

)
.

Proof. As fg is convex, then

(fg)

(
a+ b

2

)
= (fg)

(
a+ a+ c + a+ c+ b− c + b− c+ c

6

)
≤ 1

3

(
(fg)

(
a+ a+ c

2

)
+ (fg)

(
a+ c+ b− c

2

)
+ (fg)

(
b− c+ b

2

))

≤ 1

3

1

c

a+c∫
a

(fg)(t) dt +
1

b− a− 2c

b−c∫
a+c

(fg)(t) dt +
1

c

b∫
b−c

(fg)(t) dt


=

1

3c

 b∫
a

(fg)(t) dt +
3c+ a− b
b− a− 2c

b−c∫
a+c

(fg)(t) dt

 ,
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which implies

b− a− 3c

b− a− 2c

b−c∫
a+c

(fg)(t) dt ≤
b∫

a

(fg)(t) dt− 3c (fg)

(
a+ b

2

)
.

Corollary 2.8. Let f1, f2, g1, g2 : [a, b]→ < be positive convex functions such that (3) is

satisfied for f1, g1 and f2, g2, and h : [a, b] → < is positive, integrable and symmetric to

x = (a+ b)/2. Then the following inequalities hold

1

(f1g1)(a) + (f1g1)(b)

b∫
a

(f1g1)(x) +
1

(f2g2)(a) + (f2g2)(b)

b∫
a

(f2g2)(x)

≤
b∫

a

h(x) dx(13)

Proof. The proof follows from Theorem 1.1( the right inequality) by replacing f(x) by
(f1g1)(x)

(f1g1)(a) + (f1g1)(b)
+

(f2g2)(x)

(f2g2)(a) + (f2g2)(b)
and g(x) by h(x) .
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