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Abstract: In this paper, we have defined the involute curves of the dual timelike curve M, in dual Lorentzian

space Df.We have seen that the dual involute curve M, must be a dual spacelike curve with a dual spacelike

(or timelike) binormal vector. The relationship between the Frenet frames of the spacelike — timelike involute —
evolute dual curve couple have been found and some new characterizations related to the couple of the dual

curve have been given.
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1.Introduction

The concept of the involute of a given curve is well-known in 3-dimensional
Euclidean space IR®, [7,8,9,11,14]. Some basic notions of Lorentzian space are given

[3,12,17,19]. M, is a timelike curve then the involute curve M, is a spacelike curve with a

spacelike or timelike binormal.On the other hand, it has been investigated that the involute

and evolute curves of the spacelike curve M, with a spacelike binormal in Minkowski 3-space
and it has been seen that the involute curve M, is timelike, [4,5]. The involute curves of the

spacelike curve M, with a timelike binormal is defined in Minkowski 3-space IR}, [2,15,16].

Lorentzian angle is defined in [13].

2. Preliminaries
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W. K. Clifford introduced dual numbers as the set
ID = {/i =A+el 4,1 €lR, &2=0 for ¢+ 0}, [6]. Product, addition, division and

absolute value operations are defined on ID like below, respectively:
(A+e)+(B+eB")=(A+p)+e(X+4),

(A+e1")(B+eB")=AB+e(AB + A" B),

A+él AH(A w],

p+ef B\ B B
|[A+627| = |4
ID3:{K=5+55* a3 e IR3} The elements of ID® are called dual vectors. On this set

addition and scalar product operations are respectively

@®:1D*xID® = ID?
(AB) ﬁz@§=a+5+g(a’*+5’*)

©:IDxID* — ID?
(2A) >ioA=(1+a1)o(area |=late(2a +1a)

The set (ID3, ®, @) is a module over the ring (ID,+,-)and it is denoted by (1D —Modul ).

The Lorentzian inner product of dual vectors A, B e ID® is defined by

<7x,§>:<a,5>+g(<a,5*>+<a*,5>)
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by means of the Lorentzian inner product, where a =(a,,a,,a,) and b=(b,b,,b,)e IR®* and

the Lorentzian inner product is

<5, B> =—ab +ab, +ab,.

Therefore, ID® with the Lorentzian inner product <K,§> is called 3-dimensional dual

Lorentzian space and denoted by of ID; ={K: a+ea

a,a c IRf}.For A=0, the norm of

A=a+ea e ID? is defined by

- -

For A, Be ID;}, the dual Lorentzian cross product is defined by

Z\AﬁzaA5+g(aA5*+a*A5)
by means of the Lorentzian cross-product, such that for every a , b e IR’ the Lorentzian cross

product is

anb= (a3b2 —a,b;,ab; —ab, ab, _azbl) [10].

The dual Frenet trihedron of the differentiable curve M in dual space ID} and instantaneous
dual rotation vector have given in [1,20].The dual angle between Aand B is¢=p+cp"
where g is the angle between two directed lines that A and B represent in IR, respectively

and ¢ is the shortest distance between these lines. See the Fig.1. In addition, the following

equations are true for the dual angle, @ .

sinh (¢ + 2" ) =sinh g+ £p” cosh

cosh(p+&¢") =cosh g+ £ sinh .
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Timeaxis

a) b)

Fig.2. a) The dual hyperbolic angle ¢ = ¢+ " between dual timelike unit vectors 0, and f,
and the Lorentzian geometrical interpretation of this angle, ¢ .

b) The geometrical representation of ¢ .

The dual Lorentzian sphere and the dual hyperbolic sphere of 1 radius in IR’are defined by

52 :{Az a+ga0| |A|=(10);a,3, € IR, and a is spacelike},

HZ :{A: a+ga0| |A|=(10);a,8, € IR}, and a istimelike},

respectively [19].

Lemma 2. 1.Let X and Y be nonzero Lorentz orthogonal vectors in ID?If X is timelike,

then Y is spacelike, [13].

Lemma 2. 2.Let X ,Y be positive (negative) timelike vectors in ID;. Then (X,Y)<|X|[Y||

is valid if and only if X and Y are linearly dependent, [13].

Lemma 2.3.i) Let X and Y be positive (negative) timelike vectors in ID;. There is a unique

nonnegative dual number ®(X,Y),such that
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(XY ) =[X[[¥[[cosh @ (X.Y)

where (D(X,Y) is the Lorentzian timelike dual angle between X and Y .
ii) Let X and Y be spacelike vectors in ID] that span a spacelike vector subspace. Then
wehave |<XY>|§||X||||Y|| Hence, there is a unique dual number ®(X,Y ) between 0 and
m,such that

(X.Y)=[X][[¥][cos(X.Y)
where (D(X,Y) is the Lorentzian spacelike dual angle between X and Y .
iii) Let X and Y be spacelike vectors in ID] that span a timelike vector subspace. Then we

have [(X,Y)|=|X]]Y]. Hence, there is a unique positive dual number ®(X,Y), such that

(X Y)=[X[lY |eosh @ (X.Y)
where (D(X,Y) is the Lorentzian timelike dual angle between X and Y .
iv) Let X be a spacelike vector and Y a positive timelike vector in 1D} . Then there is a unique

nonnegative dual number (D(X,Y) is the Lorentzian timelike dual angle between X and Y,
such that
(X,Y)=|X][lv[]sinh@(X,Y), [13].

Let {T,N,B} be the dual Frenet trihedron of the differentiable curve M.in the dual

space ID? andT =t+e&t” ,N=n+en” and B=Db+¢b™ be the tangent, the principal normal
and the binormal vectors of M , respectively. Depending on the causal character of the curve
M, we have an instantaneous dual rotation vector :i) Let M be a unit speed timelike dual
space curve with the dual curvature x =k, +&k; and the dual torsion z =k, + ¢k, .The Frenet
vectors T, N,B of M are timelike vector, spacelike vector, spacelike vector, respectively, such
that

TAN=-B , NAB=T , BAT =—N. (2.1)

From here,
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T 0 « OT

N' =| K 0 -7 N ,[18].
B’ 0 r 0} B

(2.2) leaves the real and dual components

[t'] [0 k Ot
n'|=|k —k, || n
] [0 k 0 |b
"1 To k ot} o k o]t
n" =k 0 -k [|[n|+|k —k, || n*
b'| |0 K o b [0k o0]b

The Frenet instantaneous rotation vector W of the timelike curve is given by

W =7T —xB, [17]

(2.3) leaves the real and dual components

w=k,t—kb

W =kt +kt —kb—kb’

(2.2)

(2.3)

Let ®=¢p+ecp be a Lorentzian timelike dual angle between the spacelike binormal unit

vector B and the Frenet instantaneous dual rotation vector W .Then,C =c+&c is the unit

dual vector in direction of W :

a) If|x|>|z|, W is a spacelike vector. In this case, we can write

LW =)=

{K = |W | cosh @

7 =|W||sinh @

(2.4)
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and
C =sinh ®T —cosh ®B. (2.5)

b) If|xc| <|z|, W is a timelike vector. In this case, we can write

{K=||W||sinhCD , ||\N||2=—<W,W>=—(K'2_TZ) (2.6)

7 =|W|cosh @

and
C =cosh®T —sinh ®B . (2.7)

i) Let M be a unit speed dual spacelike space curve with the spacelike binormal. The Frenet
vevtors T, N,B of M are spacelike vector, timelike vector, spacelike vector, respectively, such
that

TAN=-B , NAB=-T , BAT =N. (2.8)
From here,

T' 0 « O||T

N|=lx 0 7| N]|[18]. (2.9)

B’ 0 r 0|l B

(2.9) leaves the real and dual components

[t'] [0 Kk t

n|=lk, 0 k,|In

b'] [0 k, O

| o k o[t] [0 k o7t
"=kl 0 ky|In|+lk O k,|In
5| |0 K ofb] |0 Kk ofb

and the Frenet instantaneous rotation vector for the spacelike curve is given by

W =—7T + kB ,[17] (2.10)
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(2.10) leaves the real and dual components

w=-k,t+kb
W =—k;t—k,t"+kb+kb

Let ® =¢p+sp be the dual angle betweenBand W . If B and W spacelike vectors that span

a spacelike vector subspace, we can write

K:”W”COSCD 2 2 2
{T:”W”qu) . W[ =ww) =k +7 (2.11)

and
C=-sin®T +cos®B . (2.12)

iii) Let M be a unit speed dual spacelike space curve. The Frenet vectors T, N,B of M are

spacelike vector, timelike vector, spacelike vector, respectively, such that

TAN=B , NAB=-T , BAT =-N. (2.13)
From here,
T' 0 x« O||T
N'|=|-x 0 7| N|, [18]. (2.14)
B’ 0 r 0|l B

The equation, (2.14) leaves the real and dual components
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t 0 k ot]To k o]t
n"|=|-k 0 k[[n[+ -k 0 k,|n
b |0 K oflb] [0 k ofb

and the Frenet instantaneous dual rotation vector W of the spacelike curve is given by

W =—¢T + B ,[17]

The equation (2.15) leaves the real and dual components

w=k,t—kb

W =Kt+kt —kb—kb’

Let ® =p+ce be the Lorentzian timelike dual angle between Band W :

a)lf|x| <|z|, W is a spacelike vector. In this case, we can write

{K:Msm

Wjeoshe MW=

and
C =cosh®T —sinh®B .

b)If|xc| > || W is a timelike vector. In this case, we can write

o+ =)=

and

1062

(2.16)

(2.17)

(2.18)
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C =sinh ®T —cosh ®B . (2.19)

3.Main Results

Definition 3.1.Let M,:1 —> 1D} M, =M,(s) be the unit speed dual timelike curve and
M,:1 — 1D} M, =M, (s) be the unit speed dual curve. If the tangent vector of curve M, is
orthogonal to the tangent vector of M,, M, is called evolute of curve M,and M, is called
involute of M, . Thus, the dual involute — evolute curve couple is denoted by (M,, M,) . Since
the tangent vector of M, is timelike, the tangent vector of M, must be spacelike vector. So,

M, is a spacelike curve and (M,,M,) is called “spacelike — timelike involute — evolute dual

curve couple™ .

(Ml) N //

N J (M,)

Fig. 2. Involute — evolute curve couple.

Theorem 3.1:Let(M,,M,) be the spacelike — timelike involute — evolute dual curve couple.
Let {T,N,B} and {V,,V,,V;} be the dual Frenet frames of M, and M, respectively. The

dual distance between M, and M, at the corresponding points is

d(M,(s),M,(s))=|c,—s|-ec,, ¢, c,=constant

Proof: If M, is the dual involute of M, , we can write from the Fig. 2

M,(s)=M,(s)+AT(s), A=A +¢&4 €D (3.1)
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Differentiating (3.1) with respect to s, we have

Vl(iisz(1+/1’)T + kN

where s and s”are arc parameter of M,and M,, respectively. Since the direction of T is

orthogonal to the direction of V, we obtain

A=-1,

From here, it can be easily seen that

A=(c,—s)+ec, (3.2)

Furthermore, the dual distance between the points M, (s) and M, (s)

d (M, ()M, (5))=(2T (s) 2T (s))
=|A|-en

Since 4,=(c,-s), 4 =¢,, we have
d(M,(s).M,(s))=|c,—s|-zc,. (3.3)

Theorem 3.2. Let(M,, M,) be the spacelike — timelike involute — evolute dual curve couple.
Let {T,N,B} and {V,,V,,V,} be the dual Frenet frames of M, and M, respectively.

Since the dual curvature of M, is P=p+¢&p’ ,we have

(g —s) k? (c,—s) k? (c,—s) Kk

Where the dual curvature of M, isx =k, + &k,
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Proof: Differentiating (3.1) with respect to s, we get

M, o5 oM, di ,dT
ds ds’ ds ds ds

or

vl‘;iﬂ—T + &N = AxN.
S

From here, we can write
V,=N (3.4)
and

di:/IK
ds

By differentiating the last equation and using (2.2), we obtain

d—V*ldiq :d—N =xT —7B
ds ds® ds
or
PV, =—— (kT — 7B).
Ak

From here, we have

TZ—K'Z)

P2 :i( //LZKZ (35)

From the factthatP = p+¢ep”, A=A +&4, , kx =k +&k andz =k, + ¢k, , we get

(K2 + 26k, K 26Kk,
B (47 + 26,47 ) (K7 +22k)k;)

2

(kg—kf)_g 2k2(klk;—k1*k2)_2/11*(k22—kf)
P Z |

=7F
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From here, by using 4,=(c,—s), 4, =c,, we obtain

(K —k?) . 2k2(k1k;—kl*k2)_2c2(k22—kf)

P2 —T
+(cl—s)2 k/ " (c,—s)' K} (c,—s) Kk

(3.6)

Theorem 3.3. Let(M,, M,) be the spacelike — timelike involute — evolute dual curve couple
and{T,N,B} and {V,,V,,V,} be Frenet frames of M, and M, , respectively. The dual torsion

r =k, + ¢k, of M, and the dual torsion Q = q+&q” of M, is satisfy the following equation:

k' Kk, Kk, (klk;' KK ) Tk, (kl*kl' - kl*'kl)

Q:|k12—k22|k1|cl—s|+g k2 K2, ~s|K?

Proof: By differentiating (3.1) three times with respect to s, we get

M, =AxN
M," = AT +(Ax'— k)N — AxrB

m

M," = (34xx’ = 2x% )T +(Ax® + Axr® — 2"+ A" )N + (2«7 — 24k’ — AxT') B
The vector product of M, andM,” is

M, AM," =-2°k*rT + 2°x°B = A*k* (—7T +xB) (3.7)
From here, we obtain

LN PR (3.8)

and
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det(lvl M Mz"') = 2K (kt' - K'7).

(3.9)
det(MZ', M, M;’)
Substituting by (3.8) and (3.9) values into Q = 5 , We get
HMZI /\ M2”
(xr'—K'7)
- =) 3.10
< |/1|/<|K2—z'2| ( )

and then, substitutingQ=q+&q", A=A +&4 , k =k +¢ek; andz =k, +¢k, into the last
equation, we have

k' 'k, K, (klk;’ - kl'kz*) 1K, (kl*kl' - kf'kl)

°- " Al K]

k-G

By the fact that 4,=(c, —s), we get

klkZ’ B k1,k2 kl (klk: B kl'k;)_'_ k2 (kfkl’ B kf'kl) (3 ll)
= +& . .
o, = 5|k, [k ~ k3| o, —s|k? k7 k3|

Theorem 3.4.Let (M,,M,) be the spacelike — timelike involut — evolut dual curve couple,
{T,N,B} and {V,,V,,V,} be the dual Frenet frames of M, and M, , respectively and

® =@ +cp be the Lorentzian dual timelike angle between binormal vector B and W . For
(M,, M,) dual curve couple, the following equations is obtained:

1) If W is spacelike,

\'A 0 1 0 T
V, |=|—cosh® 0 sinh® || N
V, —sinh® 0 cosh® || B
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leaves the real and dual components

v, 0 1 0 |t

V, |=| —cosheg 0O sinhe

| Vs —-sinhgp 0 coshg

A o 0 o0 Tt o 1 o ]t
V," |=¢"| —=sinhp 0 coshe || n|+|—coshep 0 sinhg || n’
v, —coshgp 0 sinhg ||b| | -sinhp 0 coshg |l b

2) If W is timelike,

V, 0 1 0 T
V, |=|sinh® 0 -cosh® || N
V, —cos® 0 sinhd || B

leaves the real and dual components

v, 0 1 0 t
V, |=| sinhgp 0 —coshe (|n
| Vs —cosheg 0 sinhg || b
A o o0 o Tt 0o 1 0 t
V,”|=¢ | coshp 0 -sinhe|/n|+| sinhp 0 —coshe|/n
v, —sinhg 0 coshe ||b| |—coshg 0 sinhg ||b

Proof: 1) From (2.4), (3.4) and (3.8), we have

! "
HM2 AM,

=27k W (3.12)

! n
M, AM,

, We obtain
HM 2! /\ M 2[!

By using (3.7) and (3.12) and from the fact thatV, =

__LT +LB’

S T T
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Substituting (2.4) into the last equation, we obtain

V, =—-sinh®T +cosh ®B.. (3.13)

Since V, =V, AV, it can be easily seen that

V, =—cosh®T +sinh ©B.. (3.14)

Considering (3.4), (3.13) and (3.14) according to dual components, the following equations
are obtained:

V,=n+
V, = (coshgot+smh(pb) [(—coshgot*+sinh¢b*)+(p*(—sinhgot+coshgob)](3.15)
(-

[N

V, = (—sinh gt +cosh gb) + [(—sinh gt +coshpb”) +¢" (—cosh gt +sinh (/)b)]

Writing (3.15) in matrix form, the proof is completed.

2)From (3.4) , (3.7) and (3.12), we obtain
V,=N

and

V,=—- T+

Wi ||VV I

Substituting (2.6) into the last equation, we get

V, =—cosh®T +sinh B, (3.16)
V, =sinh®T —cosh ®B . (3.17)

Considering (3.4), (3.16) and (3.17) according to dual components, we obtain following

equations:
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V,=n+en’
V, = (sinh gt —cosh pb) + g[(sinh gt —coshpb”) +¢” (cosh gt —sinh (ob)] (3.18)

V, =(—cosh gt +sinhgb)+ & [(—cosh ot +sinh gb”)+ ¢ (~sinh ot + cosh gob)]

Writing (3.18) in matrix form, the proof is completed.

Theorem 3.5.Let (M,, M,) be the spacelike — timelike involute — evolute dual curve couple

andW =w+ew' and W =w+sw be the dual Frenet instantaneous rotation vectors of M,
and M, respectively. Thus,

DIf W is spacelike,

Woen-w —pn" —p ' n-w s kf(go'n+\2/v)
lc, 5|k, lc, 5|k, I, — 5|k

2) If W is timelike,

T AL —o'n —p n+w .\ kl*(go'n—\zlv)
lc, —s|k, lc, — 5|k

lc, —s|k,
Proof: 1)From (2.10), we can write

W =—QV, +PV,

using (3.4), (3.5), (3.10) and (3.13) , we have

N + |72—K2|(—SinhCDT +cosh®B) |.

Substituting (2.4) into the last equation, we obtain
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— 1 k' -k’
Ww[‘ [ ”‘W]

and then, we get
W =

—(~D'N-W). (3.19)

Considering (3.19) according to dual components and substituting 4,=(c, —s)into (3.19), we

leaves the real and dual components

_ —p'n—w
e, — 5|k,

=3

(3.20)

c_—¢n —g'n-w k; (¢'n+w)
e, — 5|k, |c, —s|k?

=

2) From (2.15), the dual Frenet instantaneous rotation vector of M, is
W =QV, - PV,
Using (3.4), (3.5), (3.10) and (3.16), we have

1 | xt'—K'7

|/1|K |1<2 —rz|

W = N — |12—z<2|(—cosh<DT +sinh ®B) |.

Substituting (2.6) into the last equation, we obtain
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— 1 | kr'-k'7
w _W[—|K2 —1'2| N +WJ

and then, we get

W =——(-®'N+W), (3.21)

Considering (3.21) according to dual components and substituting Alz(cl—s) into (3.21), we

leaves the real and dual components

_ —p'n+w
e, — 5|k,

=3

(3.22)

S~ g’ n+wW k, (¢'n—w)
e, — 5|k, lc, —s|k;

=

Theorem 3.6.Let (M,, M,) be the spacelike — timelike involute — evolute dual curve couple

and C=c+&c” and C =c+&c be unit dual vectors of W and W _respectively. Thus,

1) If W is spacelike,

_ o lk? — k| on +o N+ k2 —k2lc"
C= 2 2 2 n+ 2 2 2 Cl*+e 2 2 2 '
JiE-ki+o? -k o [
i) If W is timelike,
: |k2—k2| —((p’n*+go*'n)+ |k2—kzc*
E_ @ 1 2 1 2

_ﬂﬁ—@+¢”n+ﬂ@—@+¢ﬂc

JE -k + g2
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=

Proof: i) From the fact that the unit dual vector of W is C= "W” , We obtain
C- —O'N -W
P
or
_ / K —7°
C__ @ | | C.(3.24)

_ N
4/|1<2 —? + @ |K2 —7? +(D'2|

Considering (3.24) according to dual components, we see that

_ k; —kZ o+ n+ [k —k[c”
C= n— k] Cl+el - -k . (3.25)
|k12_k22+¢’2| |k12_k22"'§0’2 |k12_k22"'§0’2
i)Substituting (3.21) into (3.23) , we obtain
E= —O'N +W
P
or
_ Y K2 —1°
C=- o N + | | C.(3.26)
4/|K2—r2+CI)'2 «/|K2—z'2+q)’2|
Considering (3.26) according to dual components, we see that
ke —ks| —pn" —p"n+ [k -k |c

Ol
[

n cl+e (3.27)
Ik =k} + | Ik =k} + "] Ik =k} + |
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