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1. Introduction 

The concept of generalized order statistics has been introduced as a unified approach to a 

variety of models of ordered random variables (Kamps, 1995), such as ordinary order 

statistics, sequential order statistics, progressive type II censoring record values and 

Pfeifer’s records .Generalized order statistics serve as a common approach to a structural 

similarities and analogies. 

Let nXXX ,,, 21 
 
be a sequence of independent and identically distributed )(iid random 

variables )'( srv  with absolutely continuous distribution function )(df xF( ) and the 

probability density function )( pdf )(xf , ),( x . Let Nn , 0,2  kn  
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For )1()0( 1

1

1   FxxF n .  

Choosing the parameters appropriately (Cramer, 2002),   

Table 1.1: Variants of the generalized order statistics 

  kn   r  
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i) Sequential 

order statistics 

n  rrn )1(   )1( 1  rr   

ii) Ordinary order 

statistics 

1 1 rn  0  

iii) Record 

statistics 

1 1 1  

iv) Progressively 

type II 

censored order 

statistics 
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v) Pfeifer’s record 

statistics 

n  r  )1( 1  rr   

 

Here we consider two cases: 

Case I: mmmm n  121  .  
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Case II: ji   , 1,,2,1,  nji  , ji  . 

For Case I, the pdf of  ),,,( kmnrX  is given by (Kamps, 1995)
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and the joint pdf of  ),,,( kmnrX  and ),,,( kmnsX , nsr 1  is given by
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The conditional pdf  of  ),,,( kmnsX  given xkmnrX ),,,( , nsr 1  

is given by 
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For Case II, the pdf  of ),~,,( kmnrX  is given by (Kamps and Cramer, 2001) 
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and the joint pdf  of ),~,,( kmnrX  and ),~,,( kmnsX , nsr 1  is
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where     

 ii Mink  ,                                                                                          (1.8) 
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Thus, the conditional pdf   of  ),~,,( kmnsX  given xkmnrX ),~,,( , nsr 1   
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Characterization  results of distributions based on generalized order statistics are given by 

Ahsanullah (1995), Kamps (1995), Kamps and Gather (1997), Ahsanullah and Nevzorov 

(2001), Cramer et al. (2003 a, b), Khan and Alzaid (2004) and Khan et al. (2006) 

amongst others. 

In particular, Keseling and Kamps (2003), Cramer and Kamps (2001), Cramer et al. 

(2003b) and Khan et al. (2011) have characterized distributions using conditional spacing 

of generalized order statistics. An attempt has been made here to characterize 
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distributions through contrast of conditional expectation of generalized order statistics, 

extending the earlier known results. 
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Thus, case II reduces to case I. Therefore, we will characterize the distribution for case II 

only and then deduce it for case I. 

2.  Main result (Characterization of distributions when jiji  , .) 

Theorem 2.1: Let X  be an absolutely continuous random variable with the )(xFdf and 

the )(xfpdf on the support ),(  , where   and   may be finite or infinite. Then for 

,1 ntsr   
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if and only if  

 )(1)( xahexF    , 0a                                                                    (2.2) 

where lb
 
are  real numbers  ,tls   satisfying 0



t

sl

lb ,  for all 0lb  and )(xh is a 

monotonic increasing and differentiable function of x . 

Proof: First we will prove (2.2) implies (2.1). We have, (Khan and Alzaid, 2004) 
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Hence the ‘if’ part. 

For the sufficiency part. We have
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Integrating by parts, we get
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Comparing (2.5) and (2.6), we get  
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 )()()( yfyFyha      

That is,          

              )](exp[1)( yahyF   , 0a   

and hence the Theorem. 

  Remark 2.1: Putting 1tb and 1sb  in Theorem 2.1, we get the result as obtained by 

Khan et al. (2011). 

  The result can be deduced for order statistics and records as well as for case I. 

Table 2.1:  Examples based on the distribution function 0,1)( )(   aexF xha

  

Distribution )(xF  a  )(xh  

Exponential xe 1  

 x0  

  x  

Weibull pxe 1  

 x0  

  px  

Pareto p

a

x
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 xa  
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x
log  

Lomax kx  )1(1  

 x0  

k  )1(log x  

Gompertz 
)]1(exp[1  xe




 

 x0  




 1xe   

Beta of the I kind px)1(1   

10  x  

p  )1log( x  

Beta of the II kind 1)1(1  x  

 x0  

1 )1log( x  
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Extreme value I ]exp[1 xe  
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Log logistic 1)1(1  cx  
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