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Abstract: In this paper a general form of continuous probability distribution is characterized through
conditional expectations of contrast of generalized order statistics, conditioned on a non-adjacent

generalized order statistics. Further, some of its deductions are also discussed.
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1. Introduction

The concept of generalized order statistics has been introduced as a unified approach to a
variety of models of ordered random variables (Kamps, 1995), such as ordinary order
statistics, sequential order statistics, progressive type Il censoring record values and
Pfeifer’s records .Generalized order statistics serve as a common approach to a structural

similarities and analogies.

Let Xq,X,,..., X, be a sequence of independent and identically distributed (iid) random
variables (rv's) with absolutely continuous distribution function (df) F(x ) and the

probability density function (pdf) f(x) , xe(«,) . Let neN , n>2, k>0
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M=(m,...m_)eR"™ , M =>m, such that y =k+(n-r)+M,>0 or

j=r

allref,...,n-13. Then X(r,n,m,k) ,r=12,...,n are called gos if their joint density
function is given by (Kamps, 1995)

n-1 n-1

k(l_[yjjl_[[l— FOOI™ f OO - F )1 f(x,) (1.1)

j=1 i=1
For F*(0)<x <---<x, <F7().
Choosing the parameters appropriately (Cramer, 2002),

Table 1.1: Variants of the generalized order statistics

7. =K 7 m,

i)  Sequential a, (n-r+de, =701
order statistics

i)  Ordinary order 1 n-r+1 0
statistics

iii)  Record 1 1 -1
statistics

iv) Progressivel n

) g y n—r+1+ Z R,

type I R, +1 i R,
censored order
statistics

v)  Pfeifer’s record f B, B — L.,
statistics

Here we consider two cases:

Casel: m=m,=---=m_, =m.
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Case ll: y, ey hbj=L12,---,n=1,1#].

For Case I, the pdf of X(r,n,m,k) is given by (Kamps, 1995)

Cr—l

i GG R G

fX(r,n,m,k) (X) =

and the joint pdf of X(r,n,m,k) and X(s,n,m,k), 1<r<s<n isgiven by

Cs—l C m r-1
fX(r,n,m,k),X(s,n,m,k)(X! y) = (r —1)'(3 r _]_)I[F (X)] gm (F(X))

x[hy (F(¥)) =y (FONT T [FWY () F(y), e <x<y<p

where
F(x)=1-F(X)
Cs—l = H7|
i=1

v, =k+(—-1)(m+1),

1 m+1
——@-x)", m=-1
ha (X) = m+l( )

—log (1-x) , m=-1
and
0,() = [ @-H"dt=h,(x)~h,(0), xe[01).
The conditional pdf of X(s,n,m,k) given X(r,n,mk)=x,1<r<s<n

IS given by

_ Cyy [, (F(y)) = h (FOI"
fX(s,n,m,k)|X(r,n,m,k)(y | X) - (S _r _1)!Cr_1 [lf(x)]}/,ﬂ

[FWIf(y), a<x<y<p
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(1.2)

(1.3)

(1.4)

(1.5)
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For Case Il, the pdf of X(r,n,m,k) is given by (Kamps and Cramer, 2001)

Fu gm0 =Cy F() D a,(N[F 1™ (1.6)
i=1
and the joint pdf of X(r,nmk) and X(s,nmk) , 1<r<s<n is

s Fiy)Y'
fo. - An(Xy)=c al” (s)| =
x(r,n,m,k),x(s,n,m,k)( y) s-1 ig;l [ ( )( F(X)J

) (Fogy | L0 1)
X|:§ai (N (F(x) } £ F(y) 1.7

where

i =k+n—i+M;, (1.8)

r 1
a0=115=5

j#

Y #E Yy, ISi<r<n

S

and al”(s) =
Hl(?”j —7:)

ji

Vi 2y, r+l<i<s<n

Thus, the conditional pdf of X(s,n,m,k) given X(r,n,mk)=x, 1<r<s<n

Franmaprnan (V10 =2 3 af ‘S)Eiiﬂ O X<y (1.9)

Characterization results of distributions based on generalized order statistics are given by
Ahsanullah (1995), Kamps (1995), Kamps and Gather (1997), Ahsanullah and Nevzorov
(2001), Cramer et al. (2003 a, b), Khan and Alzaid (2004) and Khan et al. (2006)

amongst others.

In particular, Keseling and Kamps (2003), Cramer and Kamps (2001), Cramer et al.
(2003b) and Khan et al. (2011) have characterized distributions using conditional spacing

of generalized order statistics. An attempt has been made here to characterize
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distributions through contrast of conditional expectation of generalized order statistics,

extending the earlier known results.

Now form, =m; =m, we have

1 r-i 1
B ]
(r) _; —1)s L
and a (S)—(m+1)s+1( 1 (i—r-Di(s-i)

Thus, case Il reduces to case |. Therefore, we will characterize the distribution for case 11

only and then deduce it for case I.
2. Main result (Characterization of distributions wheny; =y, i# j.)
Theorem 2.1: Let X be an absolutely continuous random variable with the df F(x)and

the pdf f(x)on the support(«, ), where  and S may be finite or infinite. Then for

1<r<s<t<n,

Zt:b,E[h{X (I,n,m,k)}| X(r,n,m,k) =x]= iibl le 1 (2.1)
I=s I=s j=r+l7/j

if and only if
F(x)=1-e® a>0 (2.2)

t
where b, are real numbers s<I<t, satisfying Zb| =0, for all b, #0 and h(x)is a

I=s

monotonic increasing and differentiable function of x.

Proof: First we will prove (2.2) implies (2.1). We have, (Khan and Alzaid, 2004)

ELRX (L0, ALK} X (rn, AK) =x] = h(o+ = Y -

j=r+l yj

Therefore,
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ib, E[M{X (I, n, /@, K)}| X (r,n, @, k) = x] = ib.{h(X)& IZ i}
=5 |=s j:r+17/'

Hence the ‘if” part.

For the sufficiency part. We have

Zt:b,E[h{X (I,n,m,k)}| X(r,n,m,k)=x]=b (2.3)
where b== Zb| ley—
Therefore,

jb o3 a0 hey) [[FF((V))];I (y)dy =b 2.4

Integrating by parts, we get

Zb Cl—l a(r)( )J‘ h' (y) [F(y)] y

r -1 i= r+l [F( )]7
_Zb S z a” (), -1 h(y) [[FF((y ))]] f{y)dy=b

Using the relation ¢, =y, ,c,, and a™ () =(y., —r,)a" (1), we get

Zt:b Ly 2" ()]’ h(y)EFEV;}i dy:O,asZi:bI:O (2.5)
Since,

LES S <r>()jﬂ[F(y)]y  f(y)dy=1, inview of (L9).

c r-1i= r+1 [F( )]y
Therefore,
i (r)( )J‘ﬁ[F(y)]yi (y)dy=0 (26)

_1 i= r+1 [F( )]7
Comparing (2.5) and (2.6), we get
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ah'(y)F(y)= f(y)
That is,
F(y) =1-exp[-ah(y)] ,a>0

and hence the Theorem.
Remark 2.1: Putting b, =1and b, =—1 in Theorem 2.1, we get the result as obtained by

Khan et al. (2011).
The result can be deduced for order statistics and records as well as for case |I.

Table 2.1: Examples based on the distribution function F(x) =1—-e?"® a>0

Distribution F(x) a h(x)
Exponential 1— e OX % X
O<x<w
Weibull 1_-0xP 0 x P
O<Xx<oo
Pareto )P p ( xj
1-1 2 log| —
(aj a
a<X<oo
Lomax 1-(1+ x)_k k log (1+ X)
O<Xx<oo
Gompertz 1_exp[_£(eﬂx_1)] A e HX _q
H H
O<x<w
Beta of the I kind 1-(1-x)P Y —log(1-x)
O<x<l1
Beta of the Il kind 1-(1+ X)—l 1 log(1+ x)
O<Xx<oo
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Extreme value | 1-exp[-e*] 1 o X

—00< X< 0o

Log logistic 1-(1+x¢)L 1 log(1+ x°)
O<Xx<owo

Burr Type IX -1 1 xyk
Y Iog{c{(ue ) 1}+1}

of+e) -3 |
5 2

—0< X<

Burr Type XII l_(1+xc)—k K log(1+x°)

O<X<oo
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