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1. Introduction

Due to the progress of mathematical computer systems, like Maple, Macaulay2, Sin-

gular, Bertini and others, it is important to know explicitly the equations defining some

known varieties. In this paper, we address this task for projective varieties stable under

PGL2(C), the simplest of the simple Lie groups. In fact, we give all the quadratic equa-

tions of any projective variety stable under PGL2(C). We restrict ourselves to varieties

inside PSr(C2), where r is a natural number.

Let r ≥ 2 be a natural number. Recall from [1] that the sl2(C)-module Sr(C2) is simple,

that Sr(C2) ∼= Sr(C2)∨ and that the decomposition of S2(Sr(C2)) into simple submodules

is given by

S2(Sr(C2)) =
⊕
m≥0

S2r−4m(C2).
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In this article, we investigate varieties Mm ⊆ Pr = PSr(C2) generated in degree two by

S2r−4m(C2)∨. Specifically, let fm : S2(Sr(C2))→ S2r−4m(C2) be the projection and let

Mm = {x ∈ PSr(C2) | fm(xx) = 0}.

If fm = (q0, . . . , q2r−4m), then the generators of the ideal of Mm are given by

〈q0, . . . , q2r−4m〉 ∼= S2r−4m(C2)∨.

In the first section we study the equations defining Mm. In the second section we give

a bound for the dimension of the variety Mm. It is unknown if it is irreducible. Any

PGL2(C)-variety X defined by quadrics is of the form

X = Mm1 ∩ . . . ∩Mms , I(X)2 = S2r−4m1(C2)∨ ⊕ . . .⊕ S2r−4ms(C2)∨.

Then the knowledge of the quadratic equations of Mm gives the explicit quadratic equa-

tions defining X. Also, the bound on the dimension of Mm gives a bound on the dimension

of X.

2. Quadrics defining Mm ⊆ Pr.

Let us fix a natural number r and a projection fm : S2(Sr(C2)) → S2r−4m(C2). For

simplicity, let us denote f = fm. Let n = 2r − 4m be a fixed even number.

Consider the following basis in sl2(C):

X =

 0 1

0 0

 , H =

 1 0

0 −1

 , Y =

 0 0

1 0

 .

Let x0 ∈ Sr(C2) and w0 ∈ Sn(C2) be maximal weight vectors. The action of Y ∈ sl2(C)

on these vectors, generates bases {x0, . . . , xr} of Sr(C2) and {w0, . . . , wn} of Sn(C2).

Specifically,

xi =
Y ix0
i!

, wk =
Y kw0

k!
, 0 ≤ i ≤ r, 0 ≤ k ≤ n.

Using these bases, f =
∑n

0 qkwk, where {qk}nk=0 are the quadratic equations of Mm.
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Given that f is sl2(C)-linear, we have the following relations:

Y f(xixj) = f(Y xixj) ⇐⇒
n∑
k=0

qk(xixj)Y wk =
n∑
k=0

qk(Y xixj)wk ⇐⇒

n−1∑
k=0

qk(xixj)(k + 1)wk+1 =
n∑
k=0

qk((i+ 1)xi+1xj + (j + 1)xixj+1)wk ⇐⇒

kqk−1(xixj) = (i+ 1)qk(xi+1xj) + (j + 1)qk(xixj+1), 0 ≤ k ≤ n, 0 ≤ i, j ≤ r.

Note that all the forms depend recursively on qn. In particular, if qn = 0, the rest of the

forms qk are zero. Doing the same computation with X instead of Y , we get a similar

recursion:

(n−k)qk+1(xixj) = (r− i+1)qk(xi−1xj)+(r− j+1)qk(xixj−1), 0 ≤ k ≤ n, 0 ≤ i, j ≤ r.

In these equations all the forms depend on q0. With H we get conditions on each quadratic

form,

Hf(xixj) = f(Hxixj) ⇐⇒
n∑
k=0

qk(xixj)Hwk =
n∑
k=0

qk(Hxixj) ⇐⇒

n∑
k=0

qk(xixj)(n− 2k)wk =
n∑
k=0

qk((r − 2i)xixj + (r − 2j)xixj)wk ⇐⇒

(n− 2k)qk(xixj) = (2r − 2(i+ j))qk(xixj) ⇐⇒

(n− 2k − 2r + 2i+ 2j)qk(xixj) = 0, 0 ≤ k ≤ n, 0 ≤ i, j ≤ r.

Note that if n − 2r 6= 2k − 2i − 2j, then qk(xixj) = 0. Saying this in a different way,

qk(xixj) = 0 except maybe for j = 2m+ k − i.

Corollary 2.1.Let r, n, {x0, . . . , xr} and {w0, . . . , wn} be as before and let q0 be an

arbitrary bilinear form on Sr(C2) such that:

0 = (i+1)q0(xi+1, xj)+(j+1)q0(xi, xj+1), (2r−2i−2j−n)q0(xi, xj) = 0, 0 ≤ i, j ≤ r.

Then there exists a unique sl2(C)-morphism f : Sr(C2)⊗ Sr(C2)→ Sn(C2) such that its

component over w0 is q0. Even more, f is symmetric if and only if q0 is symmetric.

Proof. Let i, j, k be three integers such that 0 ≤ k ≤ n, 0 ≤ i, j ≤ r. Assume we have

defined qk and let us define qk+1 using the recursive formula,

(n− k)qk+1(xi, xj) = (r − i+ 1)qk(xi−1, xj) + (r − j + 1)qk(xi, xj−1).
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Note that qk+1 is symmetric if and only if q0 is symmetric. Let f = q0w0 + . . .+ qnwn.

By construction it is a sl2(C)-morphism and it is unique. �

Corollary 2.2.A quadratic form q0 that extends to an sl2(C)-map f : S2(Sr(C2)) →

S2r−4m(C2), f = q0w0 + . . .+ qnwn, is given by

q0(xixj) =


(−1)i

(
2m
i

)
λ if j = 2m− i

0 otherwise

where λ is a complex number. In particular, if λ ∈ Q, all the coefficients of q0 are rational.

This implies that qk(xixj) ∈ Q for every 0 ≤ k ≤ n and 0 ≤ i, j ≤ r.

Proof. Let us analyze in more detail the hypothesis on the quadratic form q0 given in

the previous corollary. The first condition,

0 = (i+ 1)q0(xi+1xj) + (j + 1)q0(xixj+1),

implies that q0 depends only on the values q0(x0xj). This is because, given q0(x0xj) for

every 0 ≤ j ≤ r, we may define

q0(x1xj) = −j + 1

2
q0(x0xj+1).

Thus, if we have defined up to q0(xixj) for some 0 < i < r, we have

q0(xi+1xj) = −j + 1

i+ 1
q0(xixj+1).

Let us discuss now the second hypothesis of the previous corollary,

(2r − 2i− 2j − n)q0(xixj) = 0.

Given that n = 2r − 4m we have (2r − 2i− 2j − n) = 0 if and only if i+ j = 2m. Then

q0(xixj) 6= 0 =⇒ i+ j = 2m.

Let λ = q0(x0x2m) be arbitrary. Then applying the recursion we have

q0(xix2m−i) = (−1)i
(

2m

i

)
λ, 0 ≤ i ≤ 2m

�
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Corollary 2.3.A sl2(C)-linear map f : S2(Sr(C2)) → S2r−4m(C2) depends on one pa-

rameter, λ ∈ C. In other words,

dimsl2(C)(S
2(Sr(C2)), S2r−4m(C2)) = 1.

Proof. This fact is well known but in this case we are emphasizing the fact that every

morphism depends just on one coefficient λ. �

Now that we know exactly the coefficients of the quadratic form q0, let us study the

other forms, {q1, . . . , qn}.

First, we investigate the forms {q1, . . . , qn
2
}. Then we prove that qk and qn−k are related

(0 ≤ k ≤ n
2
).

Theorem 2.4.Let λ = q0(x0x2m) and j = 2m+ k − i. Then for 0 ≤ k ≤ n
2
,

(
n

k

)
qk(xixj) = λ

min(2m,i)∑
s=max(0,i−k)

(−1)s
(

2m

s

)(
r − s
r − i

)(
r − 2m+ s

r − j

)

Proof. Recall these identities:

Xxixj = (r − i+ 1)xi−1xj + (r − j + 1)xjxj−1.

Xsxi = (r − i+ 1)(r − i+ 2) . . . (r − i+ s)xi−s = s!

(
r − i+ s

r − i

)
xi−s.

Xkxixj =
k∑
l=0

(
k

l

)
(X lxi)(X

k−lxj).

From the equation Xf(xixj) = f(Xxixj), we get

(n− k + 1)qk(xixj) = qk−1(Xxixj).

Then

(n− k + 1)(n− k + 2) . . . (n)qk(xixj) = (n− k + 2) . . . (n)qk−1(Xxixj) =

= (n− k + 3) . . . (n)qk−2(X
2xixj) = . . . = q0(X

kxixj).
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Without loss of generality we may assume r > 2m. When r = 2m (i.e. n = 0) we

obtain only q0 that we already know (Corollary 2.2). Then

k!

(
n

k

)
qk(xixj) = q0(X

kxixj) =
k∑
l=0

(
k

l

)
q0(X

lxiX
k−lxj) =

=
k∑
l=0

(
k

l

)
l!

(
r − i+ l

r − i

)
(k − l)!

(
r − j + k − l

r − j

)
q0(xi−lxj−k+l) =

=
k∑
l=0

(
k

l

)
l!

(
r − i+ l

r − i

)
(k − l)!

(
r − j + k − l

r − j

)
(−1)i−l

(
2m

i− l

)
λ.

Dividing by k!, the binomial
(
k
l

)
simplifies.

Finally, making the change of variable s = i− l, we get(
n

k

)
qk(xixj) = λ

i∑
s=i−k

(−1)s
(

2m

s

)(
r − s
r − i

)(
r − 2m+ s

r − j

)
.

By convention, the binomials that do not make sense are zero. �

Let us prove now the relationship between the forms qk and qn−k.

Proposition 2.5. Let k and i be two integers such that 0 ≤ k ≤ r − 2m and 0 ≤ i ≤ r.

Let j = 2m+ k − i and let n = 2r − 4m. Then

qk(xixj) = qn−k(xr−ixr−j).

Proof. Recall the three conditions obtained from the fact that f is sl2(C)-linear,

(1) kqk−1(xixj) = (i+ 1)qk(xi+1xj) + (j + 1)qk(xixj+1).

(2) (n− k)qk+1(xixj) = (r − i+ 1)qk(xi−1xj) + (r − j + 1)qk(xixj−1).

(3) (n− 2k)qk(xixj) = (2r − 2(i+ j))qk(xixj).

Let us make the following change of variables in the second recursion, (Equation 2),

k′ = n− k, i′ = r − i, j′ = r − j.

Note that 0 ≤ k′ ≤ n/2 and 0 ≤ i′, j′ ≤ r. Then

(2’) k′qk′−1(xi′xj′) = (i′ + 1)qk′(xi′+1xj′) + (j′ + 1)qk′(xi′xj′+1).
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Let ak(i, j) = qk(xixj) and bk′(i
′, j′) = qk′(xi′xj′). Then

(1) kak−1(i, j) = (i+ 1)ak(i+ 1, j) + (j + 1)ak(i, j + 1).

(2’) kbk−1(i, j) = (i+ 1)bk(i+ 1, j) + (j + 1)bk(i, j + 1).

Then the recursions are the same. If the initial data of these are equal, an
2

= bn
2
, then

qk(xixj) = qn−k(xr−ixr−j).

an
2
(i, 2m+

n

2
− i) = qn

2
(xix2m+n

2
−i) = qn

2
(xix2m+r−2m−i) = qn

2
(xixr−i) =

qn
2
(xr−ixi) = bn

2
(i, r − i) = bn

2
(i, 2m+

n

2
− i).

�

Corollary 2.6.For every 0 ≤ k ≤ n/2 we have rk(qk) = rk(qn−k) ≤ 2m+ k + 1.

Proof. The matrix assigned to the quadratic form qk has at least 2m + k + 1 nonzero

coordinates. They appear in some anti-diagonal (i + j = 2m + k) making nonzero rows

linearly independent. �

In general, the equality does not hold. For example, if r = 6 and n = 4 (that is, m = 2),

then q2(x1x5) = q2(x5x1) = 0 making the rank less than or equal to 2 + 4 + 1. In this

case, rk(q0) = rk(q4) = 5, rk(q1) = rk(q3) = 6 and rk(q2) = 5 < 7.

Finally, let us give a lemma that we are going to use in the next section.

Lemma 2.7. Let λ = q0(x0x2m) 6= 0 and let k be such that 0 ≤ k ≤ n/2. Then

qk(x0x2m+k) = qn−k(xrxr−2m) 6= 0.

Even more, if m = 0,

qk(xixk−i) = qn−k(xr−ixr−k+i) 6= 0, 0 ≤ i ≤ r.

Proof. From Theorem 2.4 we have the formula

qk(x0x2m+k) = λ

(
r−2m
k

)(
n
k

) 6= 0.

And from Proposition 2.5, qn−k(xrxr−2m) = qk(x0x2m+k) 6= 0.
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Similarly if m = 0,

qn−k(xr−ixr−k+i) = qk(xixk−i) = λ

(
r
r−i

)(
r

r−k+i

)(
n
k

) 6= 0, 0 ≤ i ≤ r.

�

3. Geometric properties of Mm ⊆ Pr.

In the previous section we computed the equations for Mm. Recall that Mm ⊆ PSr(C2)

is a projective PGL2(C)-variety generated in degree two by

〈q0, . . . , q2r−4m〉 ⊆ S2(Sr(C2)∨).

In this section we use these equations to compute a bound for the dimension of Mm.

Let us introduce some new notation. Let

bki (m) = bki := qk(xix2m+k−i) = qn−k(xr−ixr−2m−k+i), 0 ≤ k ≤ n

2
, 0 ≤ i ≤ r.

Given that qk is symmetric, we have bki = bk2m+k−i.

If x = a0x0 + . . .+ arxr, then

qk(a0, . . . , ar) =
2m+k∑
i=0

qk(xix2m+k−i)aia2m+k−i =
2m+k∑
i=0

bki aia2m+k−i.

qn−k(a0, . . . , ar) =
2m+k∑
i=0

qn−k(xr−ixr−2m−k+i)ar−iar−2m−k+i =
2m+k∑
i=0

bki ar−iar−2m−k+i.

With this notation, let us write the derivatives of qk with respect to ai,

∂qk(a0, . . . , ar)

∂ai
= bki a2m+k−i + bk2m+k−ia2m+k−i = 2bki a2m+k−i.

Proposition 3.1. The variety Mm ⊆ Pr has dimension dim(Mm) < 2m. If m = 0,

Mm = ∅.

Proof. Let us compute the rank of the Jacobian matrix of

(a0, . . . , ar)→ (q0(a0, . . . , ar), . . . , qn(a0, . . . , ar)).
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It is a (n+ 1)× (r + 1)-matrix.



b00a2m b01a2m−1 . . . b02ma0 0 0 0 . . . 0

b10a2m+1 . . . . . . . . . b12m+1a0 0 0 . . . 0

b20a2m+2 . . . . . . . . . . . . b22m+2a0 0 . . . 0

...

br−2m
0 ar br−2m

1 ar−1 . . . . . . . . . . . . . . . . . . br−2m
r a0

0 br−2m−1
0 ar br−2m−1

1 ar−1 . . . . . . . . . . . . . . . br−2m−1
r−1 a1

0 0 br−2m−2
0 ar br−2m−2

1 ar−1 . . . . . . . . . . . . br−2m−2
r−2 a2

...

0 0 . . . . . . 0 b00ar b01ar−1 . . . b02mar−2m



Let Z be the hyperplane given by {ar = 0}. From Lemma 2.7, we know that bk0 6= 0 for

0 ≤ k ≤ r − 2m. Then for every point not in Z, the last r − 2m+ 1 rows of the previous

matrix are linearly independent making the rank greater that or equal to r − 2m + 1. If

m = 0, the rank is r + 1.

Take X an irreducible component of Mm. It is also a PGL2(C)-variety. Recall that the

closure of an orbit must contain orbits of lesser dimension. In particular, X must contain

a closed orbit. The unique closed orbit of PGL2(C) in PSr(C2) is the orbit of the maximal

weight vector, x0, [1, Claim 23.52]. Using the equivariant isomorphism Sr(C2) ∼= Sr(C2)∨,

the vector xr corresponds to the maximal weight vector of PSr(C2)∨. Then its orbit is

closed in PSr(C2)∨. Applying the isomorphism again, we obtain a closed orbit in PSr(C2),

hence the orbit of xr is equal to the orbit of x0. This implies that the point corresponding

to xr, (0 : . . . : 0 : 1) is in X, hence X \ Z is non-empty. Then a generic smooth point of

X has dimension less than 2m. �

Notation 3.2. Our intention now is to relate the geometry of the Veronese curve with

the geometry of Mm. This analysis gives a lower bound for the dimension of Mm.

Recall briefly the definition of the Veronese curve cr ⊆ Pr and its osculating varieties

T pcr. The Veronese curve may be given parametrically (over an open affine subset) by

cr : t→ (1, t, t2, . . . , tr).
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Its tangential variety, denoted T 1cr, may be given by

(t, λ1)→ cr + λ1c
′
r.

It depends on two parameters. One indicates the point in the curve and the other, the

tangent vector on that point.

In general, its p-osculating variety, T pcr is given by

(t, λ1, . . . , λp)→ cr + λ1c
′
r + . . .+ λpc

(p)
r .

In each point of the curve, stands a p-dimensional plane.

We consider the curve cr and its osculating varieties T pcr inside Pr. The dimensions of

cr and of T pcr are the expected, p+ 1.

In the article [3], the author computed the Hilbert polynomials of the varieties T pcr,

HT pcr(d) = (dr − dp+ 1)

(
p+ d

d

)
− (dr − dp+ d− 1)

(
p+ d− 1

d

)
.

This implies that dim(T pcr) = p+ 1, deg(cr) = r and deg(T 1cr) = 2(r − 1).

Proposition 3.3. The variety Mm contains Tm−1cr but does not contain Tmcr. In

particular, dim(Mm) ≥ m.

Proof. This proposition follows from [1, Exercise 11.32]. It says that

I(T pcr)2 ∼=
⊕
α≥p+1

S2r−4α(C2).

Given that S2r−4m(C2) ⊆ I(Tm−1cr)2 we get I(Mm) ⊆ I(Tm−1cr).

Similarly, if I(Mm)2 ⊆ I(Tmcr)2, then S2r−4m(C2) ⊆ I(Tmcr)2. A contradiction. �

Example 3.4. Suppose that r is even and that m = r/2. Then we have exactly one

equation q0. It is a quadratic form whose matrix (diagonal of rank r + 1) has coefficients

λ(−1)i
(
r
i

)
. In fact this is the only quadric in Pr invariant under PGL2(C). For r = 4 this

quadric is well known, [2, 10.12].
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The variety Mm = P{q0 = 0} ⊆ Pr is a quadric of maximal rank, hence irreducible.

Being a hypersurface, it has dim(Mm) = r − 1. Then, by Proposition 3.3, we obtain
T

r
2
−1cr (Mm if r > 2.

c2 = Mm if r = 2.

With this example we deduce that the dimension of Mm may be strictly greater than m.

Theorem 3.5.If r ≥ 3 is odd and m = (r− 1)/2, then Mm has codimension 3 and degree

8.

Proof. We know that I(Mm) = 〈q0, q1, q2〉 where

q0(a0, . . . , ar) = b00a0ar−1 + b01a1ar−2 + . . .+ b0r−1ar−1a0,

q1(a0, . . . , ar) = b10a0ar + b11a1ar−1 + . . .+ b1rara0,

q2(a0, . . . , ar) = b00ara1 + b01ar−1a2 + . . .+ b0r−1a1ar.

The coefficients of the quadratic forms satisfy the following relations

b00 = b0r−1, b01 = b0r−2, . . . , b0m−1 = b0m+1,

b10 = b1r, b11 = b1r−1, . . . , b1m−1 = b1m+2, b1m = b1m+1.

To see that the dimension is r− 3 let us compute the rank of the Jacobian matrix at a

specific point p ∈Mm. The Jacobian matrix is given by
b00ar−1 b01ar−2 . . . b0r−1a0 0

b10ar b11ar−1 . . . b1r−1a1 b1ra0

0 b00ar . . . b0r−2a2 b0r−1a1

 .

Let p = (p0 : . . . : pr) ∈ Pr be a point such that

pi =


1 if i = 0 or i = m− 1,

0 otherwise.
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Then q0(p) = q1(p) = q2(p) = 0, hence p ∈Mm. The Jacobian matrix at p is equal to
0 . . . 0 b0r−m 0 0 0 . . . 0 b0r−1 0

0 . . . 0 0 b1r−m+1 0 0 . . . 0 0 b1r

0 . . . 0 0 0 b0r−m+1 0 . . . 0 0 0

 .

Given that b0i 6= 0 for all 0 ≤ i ≤ r (see Corollary 2.2) and that b1r = b10 6= 0 (see Lemma

2.7) the previous matrix has maximal rank, hence the codimension of Mm at p is equal

to 3. This implies that the codimension of Mm is 3 and the degree is 8.

Note that the point p is in Tm−1cr and that the points on the curve cr are singular. �

Theorem 3.6.If r ≥ 8 is even and m = r/2− 1, then Mm has codimension 5 and degree

32.

Proof. Let us argue as in the proof of Theorem 3.5. We know that I(Mm) = 〈q0, . . . , q4〉,

q0(a0, . . . , ar) =
r−2∑
i=0

b0i aiar−2−i, q1(a0, . . . , ar) =
r−1∑
i=0

b1i aiar−1−i,

q2(a0, . . . , ar) =
r∑
i=0

b2i aiar−i,

q3(a0, . . . , ar) =
r−1∑
i=0

b1i ar−iai+1, q4(a0, . . . , ar) =
r−2∑
i=0

b0i ar−iai+2.

Let p = (p0 : . . . : pr) ∈ Pr be a point such that

pi =


1 if i = 0 or i = m− 1,

0 otherwise.

Then p ∈Mm. The Jacobian matrix at p is equal to

0 . . . 0 b0r−m−1 0 0 0 0 0 . . . 0 b0r−2 0 0

0 . . . 0 0 b1r−m 0 0 0 0 . . . 0 0 b1r−1 0

0 . . . 0 0 0 b2r−m+1 0 0 0 . . . 0 0 0 b2r

0 . . . 0 0 0 0 b1r−m+1 0 0 . . . 0 0 0 0

0 . . . 0 0 0 0 0 b0r−m+1 0 . . . 0 0 0 0


.
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From Corollary 2.2 and Lemma 2.7, we know that b20, b
1
0, b

0
r−2 and b0r−m+1 are non-zero

numbers. But given that b2r = b20 and b1r−1 = b10, they are also non-zero. We need to prove

that b1r−m+1 is non-zero for r ≥ 8. Recall that b1r−m+1 = b1m−2.

b1m−2 6= 0 ⇐⇒
(
n

1

)
q1(xm−2xm+3) 6= 0 ⇐⇒

m−2∑
s=m−3

(−1)s
(

2m

s

)(
r − s

r −m+ 2

)(
r − 2m+ s

r −m− 3

)
6= 0 ⇐⇒

(
2m

m− 3

)
(r −m+ 3)−

(
2m

m− 2

)
(r −m− 2) 6= 0 ⇐⇒ m− 2

m+ 3
6= r −m− 2

r −m+ 3
⇐⇒

(m− 2)(r −m+ 3)− (r −m− 2)(m+ 3) 6= 0 ⇐⇒ 10m− 5r 6= 0 ⇐⇒ 2m 6= r.

Given that 2m = r − 2, we obtain b1r−m+1 6= 0. �

Example 3.7. We computed the dimension and the degree of Mm for several values of r

and m:

m\r 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1

2 3 2 3 2 2 2 2 2 3 2

3 5 4 3 3 5 3 3 3

4 7 6 5 4 4 4

5 9 8 7 6

6 11 10

Table: Dimension of Mm ⊆ Pr.

m\r 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

2 2 8 5 12 14 16 18 20 22 24

3 2 8 32 21 12 27 30 33

4 2 8 32 128 36 40

5 2 8 32 128

6 2 8

Table: Degree of Mm ⊆ Pr.
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The numbers underlined are known in general (see Example 3.2, Theorem 3.5, Theorem

3.6). Recall also that m ≤ dimMm < 2m.

Remark 3.8. To end this section, let us make a little remark and some more compu-

tations. Suppose now that we want to study the variety X defined by the quadrics that

contain T pcr. In other words, X is generated in degree two and I(X)2 = I(T pcr)2.

Given that cr is generated in degree two, when p = 0, we have the equality, X = cr. In

the general case, T pcr ⊆ X.

From Proposition 3.1 and the fact that X = Mp+1 ∩ . . . ∩Mbr/2c, we get

p+ 1 ≤ dim(X) ≤ 2p+ 1.

We computed the dimension of the variety X in the case I(X)2 = I(T pcr)2:

P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

I(T 1cr)2 3 2 2 2 2 2 2 2 2 2

I(T 2cr)2 5 4 3 3 3 3 3 3

I(T 3cr)2 7 6 4 4 4 4

I(T 4cr)2 9 8 6 5

I(T 5cr)2 11 10

The dimensions underlined are those in which I(T pcr)2 = I(Mm)2 for some m, so it is

information from a previous table.

In the variety 4-osculating of c12 ⊆ P12 the pattern breaks. The dimension is 6 instead

of 5. We deduce that this variety is not generated in degree two.

Assume now that 5 ≤ r ≤ 8. Let Xr be the variety generated in degree two by I(T 1cr)2.

We computed that Xr is irreducible, dim(Xr) = 2 and deg(Xr) = 2(r−1). Then we know

explicitly the equations defining T 1c5, T
1c6, T

1c7 and T 1c8 (set-theoretically).

I(X5) = 〈x5x0 − 3x4x1 + 2x3x2, x4x0 − 4x3x1 + 3x2
2, x5x1 − 4x4x2 + 3x3

2〉.

I(X6) = 〈x4x0 − 4x3x1 + 3x2
2, x6x0 − 9x4x2 + 8x3

2, x6x2 − 4x5x3 + 3x4
2,

x5x0 − 3x4x1 + 2x3x2, x6x1 − 3x5x2 + 2x4x3, x6x0 − 6x5x1 + 15x4x2 − 10x3
2〉.
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I(X7) = 〈x7x3 − 4x6x4 + 3x2
5, 2x7x3 + x6x4 − 3x2

5, x7x2 + 3x6x3 − 4x5x4, x3x0 − x2x1,

x4x0 − 4x3x1 + 3x2
2, x5x0 + 3x4x1 − 4x3x2, x7x4 − x6x5, 2x4x0 + x3x1 − 3x2

2,

x5x0 − 3x4x1 + 2x3x2, x6x0 − 6x5x1 + 15x4x2 − 10x2
3, x6x0 − x5x1 − 5x4x2 + 5x2

3,

x6x0 + 8x5x1 + x4x2 − 10x2
3, x7x0 + 5x6x1 − 21x5x2 + 15x4x3, x7x0 + 23x6x1 + 51x5x2 − 75x4x3,

x7x1 + 8x6x2 + x5x3 − 10x2
4, x7x1 − x6x2 − 5x5x3 + 5x2

4, x7x1 − 6x6x2 + 15x5x3 − 10x2
4,

x7x2 − 3x6x3 + 2x5x4, x7x0 − 5x6x1 + 9x5x2 − 5x4x3, x2x0 − x2
1, x7x5 − x2

6〉.

I(X8) = 〈x4x0 − 4x3x1 + 3x2
2, x8x2 − 6x7x3 + 15x6x4 − 10x2

5, x8x4 − 4x7x5 + 3x2
6,

x8x1 + 2x7x2 − 12x6x3 + 9x5x4, x8x3 − 3x7x4 + 2x6x5, 3x6x0 − 4x5x1 − 11x4x2 + 12x2
3,

x5x0 − 3x4x1 + 2x3x2, x7x0 + 2x6x1 − 12x5x2 + 9x4x3, x7x0 − 5x6x1 + 9x5x2 − 5x4x3,

x8x1 − 5x7x2 + 9x6x3 − 5x5x4, x6x0 − 6x5x1 + 15x4x2 − 10x2
3,

x8x0 + 12x7x1 − 22x6x2 − 36x5x3 + 45x2
4, 3x8x2 − 4x7x3 − 11x6x4 + 12x2

5,

x8x0 − 2x7x1 − 8x6x2 + 34x5x3 − 25x2
4, x8x0 − 8x7x1 + 28x6x2 − 56x5x3 + 35x2

4〉.
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