Available online at http://scik.org

J. Math. Comput. Sci. 3 (2013), No. 3, 808-822

ISSN: 1927-5307

QUADRATIC EQUATIONS OF PROJECTIVE $PGL_2(\mathbb{C})$ -VARIETIES

CÉSAR MASSRI

Department of Mathematics, FCEN, University of Buenos Aires, Argentina

Abstract. In this paper we make explicit the equations of any projective $PGL_2(\mathbb{C})$ -variety defined by quadrics. We study their zero-locus and their relationship with the geometry of the Veronese curve.

Keywords: Simple Lie algebra; Geometric plethysm; Veronese curve.

2000 AMS Subject Classification: 14N05; 14M17

1. Introduction

Due to the progress of mathematical computer systems, like Maple, Macaulay2, Sin-

gular, Bertini and others, it is important to know explicitly the equations defining some

known varieties. In this paper, we address this task for projective varieties stable under

 $PGL_2(\mathbb{C})$, the simplest of the simple Lie groups. In fact, we give all the quadratic equa-

tions of any projective variety stable under $PGL_2(\mathbb{C})$. We restrict ourselves to varieties

inside $\mathbb{P}S^r(\mathbb{C}^2)$, where r is a natural number.

Let $r \geq 2$ be a natural number. Recall from [1] that the $\mathfrak{sl}_2(\mathbb{C})$ -module $S^r(\mathbb{C}^2)$ is simple,

that $S^r(\mathbb{C}^2) \cong S^r(\mathbb{C}^2)^\vee$ and that the decomposition of $S^2(S^r(\mathbb{C}^2))$ into simple submodules

is given by

 $S^{2}(S^{r}(\mathbb{C}^{2})) = \bigoplus_{m \geq 0} S^{2r-4m}(\mathbb{C}^{2}).$

Received April 29, 2013

808

In this article, we investigate varieties $M_m \subseteq \mathbb{P}^r = \mathbb{P}S^r(\mathbb{C}^2)$ generated in degree two by $S^{2r-4m}(\mathbb{C}^2)^{\vee}$. Specifically, let $f_m: S^2(S^r(\mathbb{C}^2)) \to S^{2r-4m}(\mathbb{C}^2)$ be the projection and let

$$M_m = \{ x \in \mathbb{P}S^r(\mathbb{C}^2) \mid f_m(xx) = 0 \}.$$

If $f_m = (q_0, \ldots, q_{2r-4m})$, then the generators of the ideal of M_m are given by

$$\langle q_0, \dots, q_{2r-4m} \rangle \cong S^{2r-4m}(\mathbb{C}^2)^{\vee}.$$

In the first section we study the equations defining M_m . In the second section we give a bound for the dimension of the variety M_m . It is unknown if it is irreducible. Any $PGL_2(\mathbb{C})$ -variety X defined by quadrics is of the form

$$X = M_{m_1} \cap \ldots \cap M_{m_s}, \quad I(X)_2 = S^{2r-4m_1}(\mathbb{C}^2)^{\vee} \oplus \ldots \oplus S^{2r-4m_s}(\mathbb{C}^2)^{\vee}.$$

Then the knowledge of the quadratic equations of M_m gives the explicit quadratic equations defining X. Also, the bound on the dimension of M_m gives a bound on the dimension of X.

2. Quadrics defining $M_m \subseteq \mathbb{P}^r$.

Let us fix a natural number r and a projection $f_m: S^2(S^r(\mathbb{C}^2)) \to S^{2r-4m}(\mathbb{C}^2)$. For simplicity, let us denote $f = f_m$. Let n = 2r - 4m be a fixed even number.

Consider the following basis in $\mathfrak{sl}_2(\mathbb{C})$:

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Let $x_0 \in S^r(\mathbb{C}^2)$ and $w_0 \in S^n(\mathbb{C}^2)$ be maximal weight vectors. The action of $Y \in \mathfrak{sl}_2(\mathbb{C})$ on these vectors, generates bases $\{x_0, \ldots, x_r\}$ of $S^r(\mathbb{C}^2)$ and $\{w_0, \ldots, w_n\}$ of $S^n(\mathbb{C}^2)$. Specifically,

$$x_i = \frac{Y^i x_0}{i!}, \quad w_k = \frac{Y^k w_0}{k!}, \quad 0 \le i \le r, \quad 0 \le k \le n.$$

Using these bases, $f = \sum_{k=0}^{n} q_k w_k$, where $\{q_k\}_{k=0}^n$ are the quadratic equations of M_m .

Given that f is $\mathfrak{sl}_2(\mathbb{C})$ -linear, we have the following relations:

$$Yf(x_{i}x_{j}) = f(Yx_{i}x_{j}) \iff \sum_{k=0}^{n} q_{k}(x_{i}x_{j})Yw_{k} = \sum_{k=0}^{n} q_{k}(Yx_{i}x_{j})w_{k} \iff$$

$$\sum_{k=0}^{n-1} q_{k}(x_{i}x_{j})(k+1)w_{k+1} = \sum_{k=0}^{n} q_{k}((i+1)x_{i+1}x_{j} + (j+1)x_{i}x_{j+1})w_{k} \iff$$

$$kq_{k-1}(x_{i}x_{j}) = (i+1)q_{k}(x_{i+1}x_{j}) + (j+1)q_{k}(x_{i}x_{j+1}), \quad 0 \le k \le n, \ 0 \le i, j \le r.$$

Note that all the forms depend recursively on q_n . In particular, if $q_n = 0$, the rest of the forms q_k are zero. Doing the same computation with X instead of Y, we get a similar recursion:

$$(n-k)q_{k+1}(x_ix_j) = (r-i+1)q_k(x_{i-1}x_j) + (r-j+1)q_k(x_ix_{j-1}), \quad 0 \le k \le n, \ 0 \le i, j \le r.$$

In these equations all the forms depend on q_0 . With H we get conditions on each quadratic form,

$$Hf(x_{i}x_{j}) = f(Hx_{i}x_{j}) \iff \sum_{k=0}^{n} q_{k}(x_{i}x_{j})Hw_{k} = \sum_{k=0}^{n} q_{k}(Hx_{i}x_{j}) \iff$$

$$\sum_{k=0}^{n} q_{k}(x_{i}x_{j})(n-2k)w_{k} = \sum_{k=0}^{n} q_{k}((r-2i)x_{i}x_{j} + (r-2j)x_{i}x_{j})w_{k} \iff$$

$$(n-2k)q_{k}(x_{i}x_{j}) = (2r-2(i+j))q_{k}(x_{i}x_{j}) \iff$$

$$(n-2k-2r+2i+2j)q_{k}(x_{i}x_{j}) = 0, \quad 0 \le k \le n, \ 0 \le i, j \le r.$$

Note that if $n - 2r \neq 2k - 2i - 2j$, then $q_k(x_i x_j) = 0$. Saying this in a different way, $q_k(x_i x_j) = 0$ except maybe for j = 2m + k - i.

Corollary 2.1.Let r, n, $\{x_0, \ldots, x_r\}$ and $\{w_0, \ldots, w_n\}$ be as before and let q_0 be an arbitrary bilinear form on $S^r(\mathbb{C}^2)$ such that:

$$0 = (i+1)q_0(x_{i+1},x_j) + (j+1)q_0(x_i,x_{j+1}), \quad (2r-2i-2j-n)q_0(x_i,x_j) = 0, \quad 0 \leq i,j \leq r.$$

Then there exists a unique $\mathfrak{sl}_2(\mathbb{C})$ -morphism $f: S^r(\mathbb{C}^2) \otimes S^r(\mathbb{C}^2) \to S^n(\mathbb{C}^2)$ such that its component over w_0 is q_0 . Even more, f is symmetric if and only if q_0 is symmetric.

Proof. Let i, j, k be three integers such that $0 \le k \le n$, $0 \le i, j \le r$. Assume we have defined q_k and let us define q_{k+1} using the recursive formula,

$$(n-k)q_{k+1}(x_i,x_j) = (r-i+1)q_k(x_{i-1},x_j) + (r-j+1)q_k(x_i,x_{j-1}).$$

Note that q_{k+1} is symmetric if and only if q_0 is symmetric. Let $f = q_0 w_0 + \ldots + q_n w_n$. By construction it is a $\mathfrak{sl}_2(\mathbb{C})$ -morphism and it is unique.

Corollary 2.2.A quadratic form q_0 that extends to an $\mathfrak{sl}_2(\mathbb{C})$ -map $f: S^2(S^r(\mathbb{C}^2)) \to S^{2r-4m}(\mathbb{C}^2)$, $f = q_0w_0 + \ldots + q_nw_n$, is given by

$$q_0(x_i x_j) = \begin{cases} (-1)^i {2m \choose i} \lambda & \text{if } j = 2m - i \\ 0 & \text{otherwise} \end{cases}$$

where λ is a complex number. In particular, if $\lambda \in \mathbb{Q}$, all the coefficients of q_0 are rational. This implies that $q_k(x_ix_j) \in \mathbb{Q}$ for every $0 \le k \le n$ and $0 \le i, j \le r$.

Proof. Let us analyze in more detail the hypothesis on the quadratic form q_0 given in the previous corollary. The first condition,

$$0 = (i+1)q_0(x_{i+1}x_j) + (j+1)q_0(x_ix_{j+1}),$$

implies that q_0 depends only on the values $q_0(x_0x_j)$. This is because, given $q_0(x_0x_j)$ for every $0 \le j \le r$, we may define

$$q_0(x_1x_j) = -\frac{j+1}{2}q_0(x_0x_{j+1}).$$

Thus, if we have defined up to $q_0(x_i x_i)$ for some 0 < i < r, we have

$$q_0(x_{i+1}x_j) = -\frac{j+1}{i+1}q_0(x_ix_{j+1}).$$

Let us discuss now the second hypothesis of the previous corollary,

$$(2r - 2i - 2j - n)q_0(x_i x_j) = 0.$$

Given that n = 2r - 4m we have (2r - 2i - 2j - n) = 0 if and only if i + j = 2m. Then

$$q_0(x_i x_j) \neq 0 \Longrightarrow i + j = 2m.$$

Let $\lambda = q_0(x_0x_{2m})$ be arbitrary. Then applying the recursion we have

$$q_0(x_i x_{2m-i}) = (-1)^i {2m \choose i} \lambda, \quad 0 \le i \le 2m$$

Corollary 2.3. A $\mathfrak{sl}_2(\mathbb{C})$ -linear map $f: S^2(S^r(\mathbb{C}^2)) \to S^{2r-4m}(\mathbb{C}^2)$ depends on one parameter, $\lambda \in \mathbb{C}$. In other words,

$$\dim_{\mathfrak{sl}_2(\mathbb{C})}(S^2(S^r(\mathbb{C}^2)), S^{2r-4m}(\mathbb{C}^2)) = 1.$$

Proof. This fact is well known but in this case we are emphasizing the fact that every morphism depends just on one coefficient λ .

Now that we know exactly the coefficients of the quadratic form q_0 , let us study the other forms, $\{q_1, \ldots, q_n\}$.

First, we investigate the forms $\{q_1, \ldots, q_{\frac{n}{2}}\}$. Then we prove that q_k and q_{n-k} are related $(0 \le k \le \frac{n}{2})$.

Theorem 2.4.Let $\lambda = q_0(x_0x_{2m})$ and j = 2m + k - i. Then for $0 \le k \le \frac{n}{2}$,

$$\binom{n}{k}q_k(x_ix_j) = \lambda \sum_{s=\max(0,i-k)}^{\min(2m,i)} (-1)^s \binom{2m}{s} \binom{r-s}{r-i} \binom{r-2m+s}{r-j}$$

Proof. Recall these identities:

$$Xx_{i}x_{j} = (r-i+1)x_{i-1}x_{j} + (r-j+1)x_{j}x_{j-1}.$$

$$X^{s}x_{i} = (r-i+1)(r-i+2)\dots(r-i+s)x_{i-s} = s! \binom{r-i+s}{r-i}x_{i-s}.$$

$$X^{k}x_{i}x_{j} = \sum_{l=0}^{k} \binom{k}{l} (X^{l}x_{i})(X^{k-l}x_{j}).$$

From the equation $Xf(x_ix_j) = f(Xx_ix_j)$, we get

$$(n-k+1)q_k(x_ix_j) = q_{k-1}(Xx_ix_j).$$

Then

$$(n-k+1)(n-k+2)\dots(n)q_k(x_ix_j) = (n-k+2)\dots(n)q_{k-1}(Xx_ix_j) =$$
$$= (n-k+3)\dots(n)q_{k-2}(X^2x_ix_j) = \dots = q_0(X^kx_ix_j).$$

Without loss of generality we may assume r > 2m. When r = 2m (i.e. n = 0) we obtain only q_0 that we already know (Corollary 2.2). Then

$$k! \binom{n}{k} q_k(x_i x_j) = q_0(X^k x_i x_j) = \sum_{l=0}^k \binom{k}{l} q_0(X^l x_i X^{k-l} x_j) =$$

$$= \sum_{l=0}^k \binom{k}{l} l! \binom{r-i+l}{r-i} (k-l)! \binom{r-j+k-l}{r-j} q_0(x_{i-l} x_{j-k+l}) =$$

$$= \sum_{l=0}^k \binom{k}{l} l! \binom{r-i+l}{r-i} (k-l)! \binom{r-j+k-l}{r-j} (-1)^{i-l} \binom{2m}{i-l} \lambda.$$

Dividing by k!, the binomial $\binom{k}{l}$ simplifies.

Finally, making the change of variable s = i - l, we get

$$\binom{n}{k}q_k(x_ix_j) = \lambda \sum_{s=i-k}^i (-1)^s \binom{2m}{s} \binom{r-s}{r-i} \binom{r-2m+s}{r-j}.$$

By convention, the binomials that do not make sense are zero.

Let us prove now the relationship between the forms q_k and q_{n-k} .

Proposition 2.5. Let k and i be two integers such that $0 \le k \le r - 2m$ and $0 \le i \le r$. Let j = 2m + k - i and let n = 2r - 4m. Then

$$q_k(x_i x_j) = q_{n-k}(x_{r-i} x_{r-j}).$$

Proof. Recall the three conditions obtained from the fact that f is $\mathfrak{sl}_2(\mathbb{C})$ -linear,

(1)
$$kq_{k-1}(x_ix_j) = (i+1)q_k(x_{i+1}x_j) + (j+1)q_k(x_ix_{j+1}).$$

(2)
$$(n-k)q_{k+1}(x_ix_j) = (r-i+1)q_k(x_{i-1}x_j) + (r-j+1)q_k(x_ix_{j-1}).$$

(3)
$$(n-2k)q_k(x_ix_j) = (2r-2(i+j))q_k(x_ix_j).$$

Let us make the following change of variables in the second recursion, (Equation 2),

$$k' = n - k, i' = r - i, j' = r - j.$$

Note that $0 \le k' \le n/2$ and $0 \le i', j' \le r$. Then

(2')
$$k'q_{k'-1}(x_{i'}x_{j'}) = (i'+1)q_{k'}(x_{i'+1}x_{j'}) + (j'+1)q_{k'}(x_{i'}x_{j'+1}).$$

Let $a_k(i,j) = q_k(x_i x_j)$ and $b_{k'}(i',j') = q_{k'}(x_{i'} x_{j'})$. Then

(1)
$$ka_{k-1}(i,j) = (i+1)a_k(i+1,j) + (j+1)a_k(i,j+1).$$

(2')
$$kb_{k-1}(i,j) = (i+1)b_k(i+1,j) + (j+1)b_k(i,j+1).$$

Then the recursions are the same. If the initial data of these are equal, $a_{\frac{n}{2}} = b_{\frac{n}{2}}$, then $q_k(x_ix_j) = q_{n-k}(x_{r-i}x_{r-j})$.

$$a_{\frac{n}{2}}(i, 2m + \frac{n}{2} - i) = q_{\frac{n}{2}}(x_i x_{2m + \frac{n}{2} - i}) = q_{\frac{n}{2}}(x_i x_{2m + r - 2m - i}) = q_{\frac{n}{2}}(x_i x_{r - i}) = q_{\frac{n}{2}}(x_i x_{r - i}) = q_{\frac{n}{2}}(x_i x_{2m + r - 2m - i}) = q_{\frac{n}{2}}(x_i x_{r - i}) = q_{\frac{n}{2}}(x_i x_{2m + r - 2m - i}) = q_{\frac{n}{2}}(x_i x_{r - i}) = q_{\frac{n}{2}}(x_i x_{2m + r - 2m - i}) = q_{\frac{n}{2}}(x_i x_{r - i}) = q_{\frac{n}{2}}(x_i x_{2m + r - 2m$$

Corollary 2.6. For every $0 \le k \le n/2$ we have $rk(q_k) = rk(q_{n-k}) \le 2m + k + 1$.

Proof. The matrix assigned to the quadratic form q_k has at least 2m + k + 1 nonzero coordinates. They appear in some anti-diagonal (i + j = 2m + k) making nonzero rows linearly independent.

In general, the equality does not hold. For example, if r = 6 and n = 4 (that is, m = 2), then $q_2(x_1x_5) = q_2(x_5x_1) = 0$ making the rank less than or equal to 2 + 4 + 1. In this case, $\operatorname{rk}(q_0) = \operatorname{rk}(q_4) = 5$, $\operatorname{rk}(q_1) = \operatorname{rk}(q_3) = 6$ and $\operatorname{rk}(q_2) = 5 < 7$.

Finally, let us give a lemma that we are going to use in the next section.

Lemma 2.7. Let $\lambda = q_0(x_0x_{2m}) \neq 0$ and let k be such that $0 \leq k \leq n/2$. Then

$$q_k(x_0x_{2m+k}) = q_{n-k}(x_rx_{r-2m}) \neq 0.$$

Even more, if m = 0,

$$q_k(x_i x_{k-i}) = q_{n-k}(x_{r-i} x_{r-k+i}) \neq 0, \quad 0 \le i \le r.$$

Proof. From Theorem 2.4 we have the formula

$$q_k(x_0 x_{2m+k}) = \lambda \frac{\binom{r-2m}{k}}{\binom{n}{k}} \neq 0.$$

And from Proposition 2.5, $q_{n-k}(x_rx_{r-2m}) = q_k(x_0x_{2m+k}) \neq 0$.

Similarly if m = 0,

$$q_{n-k}(x_{r-i}x_{r-k+i}) = q_k(x_ix_{k-i}) = \lambda \frac{\binom{r}{r-i}\binom{r}{r-k+i}}{\binom{n}{k}} \neq 0, \quad 0 \le i \le r.$$

3. Geometric properties of $M_m \subseteq \mathbb{P}^r$.

In the previous section we computed the equations for M_m . Recall that $M_m \subseteq \mathbb{P}S^r(\mathbb{C}^2)$ is a projective $PGL_2(\mathbb{C})$ -variety generated in degree two by

$$\langle q_0, \dots, q_{2r-4m} \rangle \subseteq S^2(S^r(\mathbb{C}^2)^\vee).$$

In this section we use these equations to compute a bound for the dimension of M_m .

Let us introduce some new notation. Let

$$b_i^k(m) = b_i^k := q_k(x_i x_{2m+k-i}) = q_{n-k}(x_{r-i} x_{r-2m-k+i}), \quad 0 \le k \le \frac{n}{2}, \ 0 \le i \le r.$$

Given that q_k is symmetric, we have $b_i^k = b_{2m+k-i}^k$.

If $x = a_0x_0 + \ldots + a_rx_r$, then

$$q_k(a_0,\ldots,a_r) = \sum_{i=0}^{2m+k} q_k(x_i x_{2m+k-i}) a_i a_{2m+k-i} = \sum_{i=0}^{2m+k} b_i^k a_i a_{2m+k-i}.$$

$$q_{n-k}(a_0,\ldots,a_r) = \sum_{i=0}^{2m+k} q_{n-k}(x_{r-i}x_{r-2m-k+i})a_{r-i}a_{r-2m-k+i} = \sum_{i=0}^{2m+k} b_i^k a_{r-i}a_{r-2m-k+i}.$$

With this notation, let us write the derivatives of q_k with respect to a_i ,

$$\frac{\partial q_k(a_0, \dots, a_r)}{\partial a_i} = b_i^k a_{2m+k-i} + b_{2m+k-i}^k a_{2m+k-i} = 2b_i^k a_{2m+k-i}.$$

Proposition 3.1. The variety $M_m \subseteq \mathbb{P}^r$ has dimension $\dim(M_m) < 2m$. If m = 0, $M_m = \emptyset$.

Proof. Let us compute the rank of the Jacobian matrix of

$$(a_0, \ldots, a_r) \to (q_0(a_0, \ldots, a_r), \ldots, q_n(a_0, \ldots, a_r)).$$

It is a $(n+1) \times (r+1)$ -matrix.

$$\begin{pmatrix} b_0^0 a_{2m} & b_1^0 a_{2m-1} & \dots & b_{2m}^0 a_0 & 0 & 0 & 0 & \dots & 0 \\ b_0^1 a_{2m+1} & \dots & \dots & \dots & b_{2m+1}^1 a_0 & 0 & 0 & \dots & 0 \\ b_0^2 a_{2m+2} & \dots & \dots & \dots & \dots & b_{2m+2}^2 a_0 & 0 & \dots & 0 \\ & & & & & \vdots & & & & & \\ b_0^{r-2m} a_r & b_1^{r-2m} a_{r-1} & \dots & \dots & \dots & \dots & \dots & b_r^{r-2m} a_0 \\ 0 & b_0^{r-2m-1} a_r & b_1^{r-2m-1} a_{r-1} & \dots & \dots & \dots & \dots & b_{r-1}^{r-2m-1} a_1 \\ 0 & 0 & b_0^{r-2m-2} a_r & b_1^{r-2m-2} a_{r-1} & \dots & \dots & \dots & \dots & b_{r-2}^{r-2m-2} a_2 \\ & & & & \vdots & & & & \\ 0 & 0 & \dots & \dots & 0 & b_0^0 a_r & b_1^0 a_{r-1} & \dots & b_{2m}^0 a_{r-2m} \end{pmatrix}$$

Let Z be the hyperplane given by $\{a_r = 0\}$. From Lemma 2.7, we know that $b_0^k \neq 0$ for $0 \leq k \leq r - 2m$. Then for every point not in Z, the last r - 2m + 1 rows of the previous matrix are linearly independent making the rank greater that or equal to r - 2m + 1. If m = 0, the rank is r + 1.

Take X an irreducible component of M_m . It is also a $PGL_2(\mathbb{C})$ -variety. Recall that the closure of an orbit must contain orbits of lesser dimension. In particular, X must contain a closed orbit. The unique closed orbit of $PGL_2(\mathbb{C})$ in $\mathbb{P}S^r(\mathbb{C}^2)$ is the orbit of the maximal weight vector, x_0 , [1, Claim 23.52]. Using the equivariant isomorphism $S^r(\mathbb{C}^2) \cong S^r(\mathbb{C}^2)^\vee$, the vector x_r corresponds to the maximal weight vector of $\mathbb{P}S^r(\mathbb{C}^2)^\vee$. Then its orbit is closed in $\mathbb{P}S^r(\mathbb{C}^2)^\vee$. Applying the isomorphism again, we obtain a closed orbit in $\mathbb{P}S^r(\mathbb{C}^2)$, hence the orbit of x_r is equal to the orbit of x_0 . This implies that the point corresponding to x_r , $(0:\ldots:0:1)$ is in X, hence $X\setminus Z$ is non-empty. Then a generic smooth point of X has dimension less than 2m.

Notation 3.2. Our intention now is to relate the geometry of the Veronese curve with the geometry of M_m . This analysis gives a lower bound for the dimension of M_m .

Recall briefly the definition of the Veronese curve $c_r \subseteq \mathbb{P}^r$ and its osculating varieties $T^p c_r$. The Veronese curve may be given parametrically (over an open affine subset) by

$$c_r: t \to (1, t, t^2, \dots, t^r).$$

Its tangential variety, denoted T^1c_r , may be given by

$$(t, \lambda_1) \rightarrow c_r + \lambda_1 c'_r$$
.

It depends on two parameters. One indicates the point in the curve and the other, the tangent vector on that point.

In general, its p-osculating variety, $T^p c_r$ is given by

$$(t, \lambda_1, \dots, \lambda_p) \to c_r + \lambda_1 c'_r + \dots + \lambda_p c_r^{(p)}.$$

In each point of the curve, stands a p-dimensional plane.

We consider the curve c_r and its osculating varieties $T^p c_r$ inside \mathbb{P}^r . The dimensions of c_r and of $T^p c_r$ are the expected, p+1.

In the article [3], the author computed the Hilbert polynomials of the varieties $T^p c_r$,

$$H_{T^{p}c_{r}}(d) = (dr - dp + 1) \binom{p+d}{d} - (dr - dp + d - 1) \binom{p+d-1}{d}.$$

This implies that $\dim(T^p c_r) = p + 1$, $\deg(c_r) = r$ and $\deg(T^1 c_r) = 2(r - 1)$.

Proposition 3.3. The variety M_m contains $T^{m-1}c_r$ but does not contain T^mc_r . In particular, $\dim(M_m) \geq m$.

Proof. This proposition follows from [1, Exercise 11.32]. It says that

$$I(T^p c_r)_2 \cong \bigoplus_{\alpha \ge p+1} S^{2r-4\alpha}(\mathbb{C}^2).$$

Given that $S^{2r-4m}(\mathbb{C}^2) \subseteq I(T^{m-1}c_r)_2$ we get $I(M_m) \subseteq I(T^{m-1}c_r)$.

Similarly, if $I(M_m)_2 \subseteq I(T^m c_r)_2$, then $S^{2r-4m}(\mathbb{C}^2) \subseteq I(T^m c_r)_2$. A contradiction. \square

Example 3.4. Suppose that r is even and that m = r/2. Then we have exactly one equation q_0 . It is a quadratic form whose matrix (diagonal of rank r + 1) has coefficients $\lambda(-1)^i\binom{r}{i}$. In fact this is the only quadric in \mathbb{P}^r invariant under $PGL_2(\mathbb{C})$. For r = 4 this quadric is well known, [2, 10.12].

The variety $M_m = \mathbb{P}\{q_0 = 0\} \subseteq \mathbb{P}^r$ is a quadric of maximal rank, hence irreducible. Being a hypersurface, it has $\dim(M_m) = r - 1$. Then, by Proposition 3.3, we obtain

$$\begin{cases} T^{\frac{r}{2}-1}c_r \subsetneq M_m & \text{if } r > 2. \\ c_2 = M_m & \text{if } r = 2. \end{cases}$$

With this example we deduce that the dimension of M_m may be strictly greater than m. **Theorem 3.5.** If $r \geq 3$ is odd and m = (r-1)/2, then M_m has codimension 3 and degree 8.

Proof. We know that $I(M_m) = \langle q_0, q_1, q_2 \rangle$ where

$$q_0(a_0, \dots, a_r) = b_0^0 a_0 a_{r-1} + b_1^0 a_1 a_{r-2} + \dots + b_{r-1}^0 a_{r-1} a_0,$$

$$q_1(a_0, \dots, a_r) = b_0^1 a_0 a_r + b_1^1 a_1 a_{r-1} + \dots + b_r^1 a_r a_0,$$

$$q_2(a_0, \dots, a_r) = b_0^0 a_r a_1 + b_1^0 a_{r-1} a_2 + \dots + b_{r-1}^0 a_1 a_r.$$

The coefficients of the quadratic forms satisfy the following relations

$$b_0^0 = b_{r-1}^0, \quad b_1^0 = b_{r-2}^0, \quad \dots, \quad b_{m-1}^0 = b_{m+1}^0,$$

$$b_0^1 = b_r^1, \quad b_1^1 = b_{r-1}^1, \quad \dots, \quad b_{m-1}^1 = b_{m+2}^1, \quad b_m^1 = b_{m+1}^1.$$

To see that the dimension is r-3 let us compute the rank of the Jacobian matrix at a specific point $p \in M_m$. The Jacobian matrix is given by

$$\begin{pmatrix} b_0^0 a_{r-1} & b_1^0 a_{r-2} & \dots & b_{r-1}^0 a_0 & 0 \\ b_0^1 a_r & b_1^1 a_{r-1} & \dots & b_{r-1}^1 a_1 & b_r^1 a_0 \\ 0 & b_0^0 a_r & \dots & b_{r-2}^0 a_2 & b_{r-1}^0 a_1 \end{pmatrix}.$$

Let $p = (p_0 : \ldots : p_r) \in \mathbb{P}^r$ be a point such that

$$p_i = \begin{cases} 1 & \text{if } i = 0 \text{ or } i = m - 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then $q_0(p) = q_1(p) = q_2(p) = 0$, hence $p \in M_m$. The Jacobian matrix at p is equal to

$$\begin{pmatrix} 0 \dots 0 & b_{r-m}^0 & 0 & 0 & 0 \dots 0 & b_{r-1}^0 & 0 \\ 0 \dots 0 & 0 & b_{r-m+1}^1 & 0 & 0 \dots 0 & 0 & b_r^1 \\ 0 \dots 0 & 0 & 0 & b_{r-m+1}^0 & 0 \dots 0 & 0 & 0 \end{pmatrix}.$$

Given that $b_i^0 \neq 0$ for all $0 \leq i \leq r$ (see Corollary 2.2) and that $b_r^1 = b_0^1 \neq 0$ (see Lemma 2.7) the previous matrix has maximal rank, hence the codimension of M_m at p is equal to 3. This implies that the codimension of M_m is 3 and the degree is 8.

Note that the point p is in $T^{m-1}c_r$ and that the points on the curve c_r are singular. \square **Theorem 3.6.** If $r \geq 8$ is even and m = r/2 - 1, then M_m has codimension 5 and degree 32.

Proof. Let us argue as in the proof of Theorem 3.5. We know that $I(M_m) = \langle q_0, \dots, q_4 \rangle$,

$$q_0(a_0, \dots, a_r) = \sum_{i=0}^{r-2} b_i^0 a_i a_{r-2-i}, \quad q_1(a_0, \dots, a_r) = \sum_{i=0}^{r-1} b_i^1 a_i a_{r-1-i},$$

$$q_2(a_0, \dots, a_r) = \sum_{i=0}^r b_i^2 a_i a_{r-i},$$

$$q_3(a_0, \dots, a_r) = \sum_{i=0}^{r-1} b_i^1 a_{r-i} a_{i+1}, \quad q_4(a_0, \dots, a_r) = \sum_{i=0}^{r-2} b_i^0 a_{r-i} a_{i+2}.$$

Let $p = (p_0 : \ldots : p_r) \in \mathbb{P}^r$ be a point such that

$$p_i = \begin{cases} 1 & \text{if } i = 0 \text{ or } i = m - 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then $p \in M_m$. The Jacobian matrix at p is equal to

From Corollary 2.2 and Lemma 2.7, we know that b_0^2 , b_0^1 , b_{r-2}^0 and b_{r-m+1}^0 are non-zero numbers. But given that $b_r^2 = b_0^2$ and $b_{r-1}^1 = b_0^1$, they are also non-zero. We need to prove that b_{r-m+1}^1 is non-zero for $r \geq 8$. Recall that $b_{r-m+1}^1 = b_{m-2}^1$.

$$b_{m-2}^{1} \neq 0 \iff \binom{n}{1} q_{1}(x_{m-2}x_{m+3}) \neq 0 \iff$$

$$\sum_{s=m-3}^{m-2} (-1)^{s} \binom{2m}{s} \binom{r-s}{r-m+2} \binom{r-2m+s}{r-m-3} \neq 0 \iff$$

$$\binom{2m}{m-3} (r-m+3) - \binom{2m}{m-2} (r-m-2) \neq 0 \iff \frac{m-2}{m+3} \neq \frac{r-m-2}{r-m+3} \iff$$

$$(m-2)(r-m+3) - (r-m-2)(m+3) \neq 0 \iff 10m-5r \neq 0 \iff 2m \neq r.$$

Given that 2m = r - 2, we obtain $b_{r-m+1}^1 \neq 0$.

Example 3.7. We computed the dimension and the degree of M_m for several values of r and m:

m r	2	3	4	5	6	7	8	9	10	11	12	13
1	1	1	1	1	1	1	1	1	1	1	1	1
2			<u>3</u>	2	3	2	2	2	2	2	3	2
3					<u>5</u>	4	3	3	5	3	3	3
4							7	<u>6</u>	<u>5</u>	4	4	4
5									9	8	7	6
6											<u>11</u>	<u>10</u>

Table: Dimension of $M_m \subseteq \mathbb{P}^r$.

$m \ r$	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	<u>5</u>	<u>6</u>	7	8	9	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>
2			2	<u>8</u>	5	12	14	16	18	20	22	24
3					2	8	<u>32</u>	21	12	27	30	33
4							2	8	<u>32</u>	128	36	40
5									2	8	<u>32</u>	128
6											2	<u>8</u>

Table: Degree of $M_m \subseteq \mathbb{P}^r$.

The numbers underlined are known in general (see Example 3.2, Theorem 3.5, Theorem 3.6). Recall also that $m \leq \dim M_m < 2m$.

Remark 3.8. To end this section, let us make a little remark and some more computations. Suppose now that we want to study the variety X defined by the quadrics that contain T^pc_r . In other words, X is generated in degree two and $I(X)_2 = I(T^pc_r)_2$.

Given that c_r is generated in degree two, when p = 0, we have the equality, $X = c_r$. In the general case, $T^p c_r \subseteq X$.

From Proposition 3.1 and the fact that $X = M_{p+1} \cap \ldots \cap M_{\lfloor r/2 \rfloor}$, we get

$$p+1 \le \dim(X) \le 2p+1.$$

We computed the dimension of the variety X in the case $I(X)_2 = I(T^p c_r)_2$:

	\mathbb{P}^4	\mathbb{P}^5	\mathbb{P}^6	\mathbb{P}^7	\mathbb{P}^8	\mathbb{P}^9	\mathbb{P}^{10}	\mathbb{P}^{11}	\mathbb{P}^{12}	\mathbb{P}^{13}
$I(T^1c_r)_2$	<u>3</u>	2	2	2	2	2	2	2	2	2
$I(T^2c_r)_2$			<u>5</u>	4	3	3	3	3	3	3
$I(T^3c_r)_2$					<u>7</u>	<u>6</u>	4	4	4	4
$I(T^4c_r)_2$							9	8	6	5
$I(T^5c_r)_2$									<u>11</u>	<u>10</u>

The dimensions underlined are those in which $I(T^pc_r)_2 = I(M_m)_2$ for some m, so it is information from a previous table.

In the variety 4-osculating of $c_{12} \subseteq \mathbb{P}^{12}$ the pattern breaks. The dimension is 6 instead of 5. We deduce that this variety is not generated in degree two.

Assume now that $5 \le r \le 8$. Let X_r be the variety generated in degree two by $I(T^1c_r)_2$. We computed that X_r is irreducible, $\dim(X_r) = 2$ and $\deg(X_r) = 2(r-1)$. Then we know explicitly the equations defining T^1c_5 , T^1c_6 , T^1c_7 and T^1c_8 (set-theoretically).

$$I(X_5) = \langle x_5 x_0 - 3x_4 x_1 + 2x_3 x_2, x_4 x_0 - 4x_3 x_1 + 3x_2^2, x_5 x_1 - 4x_4 x_2 + 3x_3^2 \rangle.$$

$$I(X_6) = \langle x_4 x_0 - 4x_3 x_1 + 3x_2^2, x_6 x_0 - 9x_4 x_2 + 8x_3^2, x_6 x_2 - 4x_5 x_3 + 3x_4^2,$$

$$x_5x_0 - 3x_4x_1 + 2x_3x_2, x_6x_1 - 3x_5x_2 + 2x_4x_3, x_6x_0 - 6x_5x_1 + 15x_4x_2 - 10x_3^2 \rangle.$$

$$I(X_7) = \langle x_7x_3 - 4x_6x_4 + 3x_5^2, 2x_7x_3 + x_6x_4 - 3x_5^2, x_7x_2 + 3x_6x_3 - 4x_5x_4, x_3x_0 - x_2x_1,$$

$$x_4x_0 - 4x_3x_1 + 3x_2^2, x_5x_0 + 3x_4x_1 - 4x_3x_2, x_7x_4 - x_6x_5, 2x_4x_0 + x_3x_1 - 3x_2^2,$$

$$x_5x_0 - 3x_4x_1 + 2x_3x_2, x_6x_0 - 6x_5x_1 + 15x_4x_2 - 10x_3^2, x_6x_0 - x_5x_1 - 5x_4x_2 + 5x_3^2,$$

$$x_6x_0 + 8x_5x_1 + x_4x_2 - 10x_3^2, x_7x_0 + 5x_6x_1 - 21x_5x_2 + 15x_4x_3, x_7x_0 + 23x_6x_1 + 51x_5x_2 - 75x_4x_3,$$

$$x_7x_1 + 8x_6x_2 + x_5x_3 - 10x_4^2, x_7x_1 - x_6x_2 - 5x_5x_3 + 5x_4^2, x_7x_1 - 6x_6x_2 + 15x_5x_3 - 10x_4^2,$$

$$x_7x_2 - 3x_6x_3 + 2x_5x_4, x_7x_0 - 5x_6x_1 + 9x_5x_2 - 5x_4x_3, x_2x_0 - x_1^2, x_7x_5 - x_6^2 \rangle.$$

$$I(X_8) = \langle x_4x_0 - 4x_3x_1 + 3x_2^2, x_8x_2 - 6x_7x_3 + 15x_6x_4 - 10x_5^2, x_8x_4 - 4x_7x_5 + 3x_6^2,$$

$$x_8x_1 + 2x_7x_2 - 12x_6x_3 + 9x_5x_4, x_8x_3 - 3x_7x_4 + 2x_6x_5, 3x_6x_0 - 4x_5x_1 - 11x_4x_2 + 12x_3^2,$$

$$x_5x_0 - 3x_4x_1 + 2x_3x_2, x_7x_0 + 2x_6x_1 - 12x_5x_2 + 9x_4x_3, x_7x_0 - 5x_6x_1 + 9x_5x_2 - 5x_4x_3,$$

$$x_8x_1 - 5x_7x_2 + 9x_6x_3 - 5x_5x_4, x_6x_0 - 6x_5x_1 + 15x_4x_2 - 10x_3^2,$$

$$x_8x_0 + 12x_7x_1 - 22x_6x_2 - 36x_5x_3 + 45x_4^2, 3x_8x_2 - 4x_7x_3 - 11x_6x_4 + 12x_5^2,$$

$$x_8x_0 - 2x_7x_1 - 8x_6x_2 + 34x_5x_3 - 25x_4^2, x_8x_0 - 8x_7x_1 + 28x_6x_2 - 56x_5x_3 + 35x_4^2 \rangle.$$

Acknowledgments. This work was supported by CONICET, Argentina. The author thanks Fernando Cukierman, for useful discussions, ideas and suggestions.

REFERENCES

- [1] W. Fulton and J. Harris, Representation theory, vol. 129 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.
- [2] J. Harris, Algebraic geometry, vol. 133 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1992. A first course.
- [3] J. WEYMAN, The equations of strata for binary forms, J. Algebra, 122 (1989), pp. 244–249.