

Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 3, 808-822

ISSN: 1927-5307

QUADRATIC EQUATIONS OF PROJECTIVE $P G L_{2}(\mathbb{C})$-VARIETIES

CÉSAR MASSRI
Department of Mathematics, FCEN, University of Buenos Aires, Argentina

Abstract

In this paper we make explicit the equations of any projective $P G L_{2}(\mathbb{C})$-variety defined by quadrics. We study their zero-locus and their relationship with the geometry of the Veronese curve.

Keywords: Simple Lie algebra; Geometric plethysm; Veronese curve.
2000 AMS Subject Classification: 14N05; 14M17

1. Introduction

Due to the progress of mathematical computer systems, like Maple, Macaulay2, Singular, Bertini and others, it is important to know explicitly the equations defining some known varieties. In this paper, we address this task for projective varieties stable under $P G L_{2}(\mathbb{C})$, the simplest of the simple Lie groups. In fact, we give all the quadratic equations of any projective variety stable under $P G L_{2}(\mathbb{C})$. We restrict ourselves to varieties inside $\mathbb{P} S^{r}\left(\mathbb{C}^{2}\right)$, where r is a natural number.

Let $r \geq 2$ be a natural number. Recall from [1] that the $\mathfrak{s l}_{2}(\mathbb{C})$-module $S^{r}\left(\mathbb{C}^{2}\right)$ is simple, that $S^{r}\left(\mathbb{C}^{2}\right) \cong S^{r}\left(\mathbb{C}^{2}\right)^{\vee}$ and that the decomposition of $S^{2}\left(S^{r}\left(\mathbb{C}^{2}\right)\right)$ into simple submodules is given by

$$
S^{2}\left(S^{r}\left(\mathbb{C}^{2}\right)\right)=\bigoplus_{m \geq 0} S^{2 r-4 m}\left(\mathbb{C}^{2}\right)
$$

In this article, we investigate varieties $M_{m} \subseteq \mathbb{P}^{r}=\mathbb{P} S^{r}\left(\mathbb{C}^{2}\right)$ generated in degree two by $S^{2 r-4 m}\left(\mathbb{C}^{2}\right)^{\vee}$. Specifically, let $f_{m}: S^{2}\left(S^{r}\left(\mathbb{C}^{2}\right)\right) \rightarrow S^{2 r-4 m}\left(\mathbb{C}^{2}\right)$ be the projection and let

$$
M_{m}=\left\{x \in \mathbb{P} S^{r}\left(\mathbb{C}^{2}\right) \mid f_{m}(x x)=0\right\}
$$

If $f_{m}=\left(q_{0}, \ldots, q_{2 r-4 m}\right)$, then the generators of the ideal of M_{m} are given by

$$
\left\langle q_{0}, \ldots, q_{2 r-4 m}\right\rangle \cong S^{2 r-4 m}\left(\mathbb{C}^{2}\right)^{\vee}
$$

In the first section we study the equations defining M_{m}. In the second section we give a bound for the dimension of the variety M_{m}. It is unknown if it is irreducible. Any $P G L_{2}(\mathbb{C})$-variety X defined by quadrics is of the form

$$
X=M_{m_{1}} \cap \ldots \cap M_{m_{s}}, \quad I(X)_{2}=S^{2 r-4 m_{1}}\left(\mathbb{C}^{2}\right)^{\vee} \oplus \ldots \oplus S^{2 r-4 m_{s}}\left(\mathbb{C}^{2}\right)^{\vee}
$$

Then the knowledge of the quadratic equations of M_{m} gives the explicit quadratic equations defining X. Also, the bound on the dimension of M_{m} gives a bound on the dimension of X.

2. Quadrics defining $M_{m} \subseteq \mathbb{P}^{r}$.

Let us fix a natural number r and a projection $f_{m}: S^{2}\left(S^{r}\left(\mathbb{C}^{2}\right)\right) \rightarrow S^{2 r-4 m}\left(\mathbb{C}^{2}\right)$. For simplicity, let us denote $f=f_{m}$. Let $n=2 r-4 m$ be a fixed even number.

Consider the following basis in $\mathfrak{s l}_{2}(\mathbb{C})$:

$$
X=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Let $x_{0} \in S^{r}\left(\mathbb{C}^{2}\right)$ and $w_{0} \in S^{n}\left(\mathbb{C}^{2}\right)$ be maximal weight vectors. The action of $Y \in \mathfrak{s l}_{2}(\mathbb{C})$ on these vectors, generates bases $\left\{x_{0}, \ldots, x_{r}\right\}$ of $S^{r}\left(\mathbb{C}^{2}\right)$ and $\left\{w_{0}, \ldots, w_{n}\right\}$ of $S^{n}\left(\mathbb{C}^{2}\right)$. Specifically,

$$
x_{i}=\frac{Y^{i} x_{0}}{i!}, \quad w_{k}=\frac{Y^{k} w_{0}}{k!}, \quad 0 \leq i \leq r, \quad 0 \leq k \leq n
$$

Using these bases, $f=\sum_{0}^{n} q_{k} w_{k}$, where $\left\{q_{k}\right\}_{k=0}^{n}$ are the quadratic equations of M_{m}.

Given that f is $\mathfrak{s l}_{2}(\mathbb{C})$-linear, we have the following relations:

$$
\begin{gathered}
Y f\left(x_{i} x_{j}\right)=f\left(Y x_{i} x_{j}\right) \Longleftrightarrow \sum_{k=0}^{n} q_{k}\left(x_{i} x_{j}\right) Y w_{k}=\sum_{k=0}^{n} q_{k}\left(Y x_{i} x_{j}\right) w_{k} \Longleftrightarrow \\
\sum_{k=0}^{n-1} q_{k}\left(x_{i} x_{j}\right)(k+1) w_{k+1}=\sum_{k=0}^{n} q_{k}\left((i+1) x_{i+1} x_{j}+(j+1) x_{i} x_{j+1}\right) w_{k} \Longleftrightarrow \\
k q_{k-1}\left(x_{i} x_{j}\right)=(i+1) q_{k}\left(x_{i+1} x_{j}\right)+(j+1) q_{k}\left(x_{i} x_{j+1}\right), \quad 0 \leq k \leq n, 0 \leq i, j \leq r .
\end{gathered}
$$

Note that all the forms depend recursively on q_{n}. In particular, if $q_{n}=0$, the rest of the forms q_{k} are zero. Doing the same computation with X instead of Y, we get a similar recursion:

$$
(n-k) q_{k+1}\left(x_{i} x_{j}\right)=(r-i+1) q_{k}\left(x_{i-1} x_{j}\right)+(r-j+1) q_{k}\left(x_{i} x_{j-1}\right), \quad 0 \leq k \leq n, 0 \leq i, j \leq r .
$$

In these equations all the forms depend on q_{0}. With H we get conditions on each quadratic form,

$$
\begin{gathered}
H f\left(x_{i} x_{j}\right)=f\left(H x_{i} x_{j}\right) \Longleftrightarrow \sum_{k=0}^{n} q_{k}\left(x_{i} x_{j}\right) H w_{k}=\sum_{k=0}^{n} q_{k}\left(H x_{i} x_{j}\right) \Longleftrightarrow \\
\sum_{k=0}^{n} q_{k}\left(x_{i} x_{j}\right)(n-2 k) w_{k}=\sum_{k=0}^{n} q_{k}\left((r-2 i) x_{i} x_{j}+(r-2 j) x_{i} x_{j}\right) w_{k} \Longleftrightarrow \\
(n-2 k) q_{k}\left(x_{i} x_{j}\right)=(2 r-2(i+j)) q_{k}\left(x_{i} x_{j}\right) \Longleftrightarrow \\
(n-2 k-2 r+2 i+2 j) q_{k}\left(x_{i} x_{j}\right)=0, \quad 0 \leq k \leq n, 0 \leq i, j \leq r
\end{gathered}
$$

Note that if $n-2 r \neq 2 k-2 i-2 j$, then $q_{k}\left(x_{i} x_{j}\right)=0$. Saying this in a different way, $q_{k}\left(x_{i} x_{j}\right)=0$ except maybe for $j=2 m+k-i$.

Corollary 2.1.Let r, $n,\left\{x_{0}, \ldots, x_{r}\right\}$ and $\left\{w_{0}, \ldots, w_{n}\right\}$ be as before and let q_{0} be an arbitrary bilinear form on $S^{r}\left(\mathbb{C}^{2}\right)$ such that:
$0=(i+1) q_{0}\left(x_{i+1}, x_{j}\right)+(j+1) q_{0}\left(x_{i}, x_{j+1}\right), \quad(2 r-2 i-2 j-n) q_{0}\left(x_{i}, x_{j}\right)=0, \quad 0 \leq i, j \leq r$.
Then there exists a unique $\mathfrak{s l}_{2}(\mathbb{C})$-morphism $f: S^{r}\left(\mathbb{C}^{2}\right) \otimes S^{r}\left(\mathbb{C}^{2}\right) \rightarrow S^{n}\left(\mathbb{C}^{2}\right)$ such that its component over w_{0} is q_{0}. Even more, f is symmetric if and only if q_{0} is symmetric.

Proof. Let i, j, k be three integers such that $0 \leq k \leq n, 0 \leq i, j \leq r$. Assume we have defined q_{k} and let us define q_{k+1} using the recursive formula,

$$
(n-k) q_{k+1}\left(x_{i}, x_{j}\right)=(r-i+1) q_{k}\left(x_{i-1}, x_{j}\right)+(r-j+1) q_{k}\left(x_{i}, x_{j-1}\right) .
$$

Note that q_{k+1} is symmetric if and only if q_{0} is symmetric. Let $f=q_{0} w_{0}+\ldots+q_{n} w_{n}$. By construction it is a $\mathfrak{s l}_{2}(\mathbb{C})$-morphism and it is unique.

Corollary 2.2.A quadratic form q_{0} that extends to an $\mathfrak{s l}_{2}(\mathbb{C})$-map $f: S^{2}\left(S^{r}\left(\mathbb{C}^{2}\right)\right) \rightarrow$ $S^{2 r-4 m}\left(\mathbb{C}^{2}\right), f=q_{0} w_{0}+\ldots+q_{n} w_{n}$, is given by

$$
q_{0}\left(x_{i} x_{j}\right)= \begin{cases}(-1)^{i}\binom{2 m}{i} \lambda & \text { if } j=2 m-i \\ 0 & \text { otherwise }\end{cases}
$$

where λ is a complex number. In particular, if $\lambda \in \mathbb{Q}$, all the coefficients of q_{0} are rational. This implies that $q_{k}\left(x_{i} x_{j}\right) \in \mathbb{Q}$ for every $0 \leq k \leq n$ and $0 \leq i, j \leq r$.

Proof. Let us analyze in more detail the hypothesis on the quadratic form q_{0} given in the previous corollary. The first condition,

$$
0=(i+1) q_{0}\left(x_{i+1} x_{j}\right)+(j+1) q_{0}\left(x_{i} x_{j+1}\right)
$$

implies that q_{0} depends only on the values $q_{0}\left(x_{0} x_{j}\right)$. This is because, given $q_{0}\left(x_{0} x_{j}\right)$ for every $0 \leq j \leq r$, we may define

$$
q_{0}\left(x_{1} x_{j}\right)=-\frac{j+1}{2} q_{0}\left(x_{0} x_{j+1}\right) .
$$

Thus, if we have defined up to $q_{0}\left(x_{i} x_{j}\right)$ for some $0<i<r$, we have

$$
q_{0}\left(x_{i+1} x_{j}\right)=-\frac{j+1}{i+1} q_{0}\left(x_{i} x_{j+1}\right) .
$$

Let us discuss now the second hypothesis of the previous corollary,

$$
(2 r-2 i-2 j-n) q_{0}\left(x_{i} x_{j}\right)=0 .
$$

Given that $n=2 r-4 m$ we have $(2 r-2 i-2 j-n)=0$ if and only if $i+j=2 m$. Then

$$
q_{0}\left(x_{i} x_{j}\right) \neq 0 \Longrightarrow i+j=2 m
$$

Let $\lambda=q_{0}\left(x_{0} x_{2 m}\right)$ be arbitrary. Then applying the recursion we have

$$
q_{0}\left(x_{i} x_{2 m-i}\right)=(-1)^{i}\binom{2 m}{i} \lambda, \quad 0 \leq i \leq 2 m
$$

Corollary 2.3. $A \mathfrak{s l}_{2}(\mathbb{C})$-linear map $f: S^{2}\left(S^{r}\left(\mathbb{C}^{2}\right)\right) \rightarrow S^{2 r-4 m}\left(\mathbb{C}^{2}\right)$ depends on one parameter, $\lambda \in \mathbb{C}$. In other words,

$$
\operatorname{dim}_{\mathfrak{s l}_{2}(\mathbb{C})}\left(S^{2}\left(S^{r}\left(\mathbb{C}^{2}\right)\right), S^{2 r-4 m}\left(\mathbb{C}^{2}\right)\right)=1
$$

Proof. This fact is well known but in this case we are emphasizing the fact that every morphism depends just on one coefficient λ.

Now that we know exactly the coefficients of the quadratic form q_{0}, let us study the other forms, $\left\{q_{1}, \ldots, q_{n}\right\}$.

First, we investigate the forms $\left\{q_{1}, \ldots, q_{\frac{n}{2}}\right\}$. Then we prove that q_{k} and q_{n-k} are related $\left(0 \leq k \leq \frac{n}{2}\right)$.
Theorem 2.4. Let $\lambda=q_{0}\left(x_{0} x_{2 m}\right)$ and $j=2 m+k-i$. Then for $0 \leq k \leq \frac{n}{2}$,

$$
\binom{n}{k} q_{k}\left(x_{i} x_{j}\right)=\lambda \sum_{s=\max (0, i-k)}^{\min (2 m, i)}(-1)^{s}\binom{2 m}{s}\binom{r-s}{r-i}\binom{r-2 m+s}{r-j}
$$

Proof. Recall these identities:

$$
\begin{gathered}
X x_{i} x_{j}=(r-i+1) x_{i-1} x_{j}+(r-j+1) x_{j} x_{j-1} \\
X^{s} x_{i}=(r-i+1)(r-i+2) \ldots(r-i+s) x_{i-s}=s!\binom{r-i+s}{r-i} x_{i-s} . \\
X^{k} x_{i} x_{j}=\sum_{l=0}^{k}\binom{k}{l}\left(X^{l} x_{i}\right)\left(X^{k-l} x_{j}\right) .
\end{gathered}
$$

From the equation $X f\left(x_{i} x_{j}\right)=f\left(X x_{i} x_{j}\right)$, we get

$$
(n-k+1) q_{k}\left(x_{i} x_{j}\right)=q_{k-1}\left(X x_{i} x_{j}\right)
$$

Then

$$
\begin{aligned}
& (n-k+1)(n-k+2) \ldots(n) q_{k}\left(x_{i} x_{j}\right)=(n-k+2) \ldots(n) q_{k-1}\left(X x_{i} x_{j}\right)= \\
& =(n-k+3) \ldots(n) q_{k-2}\left(X^{2} x_{i} x_{j}\right)=\ldots=q_{0}\left(X^{k} x_{i} x_{j}\right) .
\end{aligned}
$$

Without loss of generality we may assume $r>2 m$. When $r=2 m$ (i.e. $n=0$) we obtain only q_{0} that we already know (Corollary 2.2). Then

$$
\begin{aligned}
& k!\binom{n}{k} q_{k}\left(x_{i} x_{j}\right)=q_{0}\left(X^{k} x_{i} x_{j}\right)=\sum_{l=0}^{k}\binom{k}{l} q_{0}\left(X^{l} x_{i} X^{k-l} x_{j}\right)= \\
= & \sum_{l=0}^{k}\binom{k}{l} l!\binom{r-i+l}{r-i}(k-l)!\binom{r-j+k-l}{r-j} q_{0}\left(x_{i-l} x_{j-k+l}\right)= \\
= & \sum_{l=0}^{k}\binom{k}{l} l!\binom{r-i+l}{r-i}(k-l)!\binom{r-j+k-l}{r-j}(-1)^{i-l}\binom{2 m}{i-l} \lambda .
\end{aligned}
$$

Dividing by k !, the binomial $\binom{k}{l}$ simplifies.
Finally, making the change of variable $s=i-l$, we get

$$
\binom{n}{k} q_{k}\left(x_{i} x_{j}\right)=\lambda \sum_{s=i-k}^{i}(-1)^{s}\binom{2 m}{s}\binom{r-s}{r-i}\binom{r-2 m+s}{r-j} .
$$

By convention, the binomials that do not make sense are zero.
Let us prove now the relationship between the forms q_{k} and q_{n-k}.
Proposition 2.5. Let k and i be two integers such that $0 \leq k \leq r-2 m$ and $0 \leq i \leq r$.
Let $j=2 m+k-i$ and let $n=2 r-4 m$. Then

$$
q_{k}\left(x_{i} x_{j}\right)=q_{n-k}\left(x_{r-i} x_{r-j}\right) .
$$

Proof. Recall the three conditions obtained from the fact that f is $\mathfrak{s l}_{2}(\mathbb{C})$-linear,

$$
\begin{gather*}
k q_{k-1}\left(x_{i} x_{j}\right)=(i+1) q_{k}\left(x_{i+1} x_{j}\right)+(j+1) q_{k}\left(x_{i} x_{j+1}\right) \tag{1}\\
(n-k) q_{k+1}\left(x_{i} x_{j}\right)=(r-i+1) q_{k}\left(x_{i-1} x_{j}\right)+(r-j+1) q_{k}\left(x_{i} x_{j-1}\right) \tag{2}\\
(n-2 k) q_{k}\left(x_{i} x_{j}\right)=(2 r-2(i+j)) q_{k}\left(x_{i} x_{j}\right) . \tag{3}
\end{gather*}
$$

Let us make the following change of variables in the second recursion, (Equation 2),

$$
k^{\prime}=n-k, i^{\prime}=r-i, j^{\prime}=r-j
$$

Note that $0 \leq k^{\prime} \leq n / 2$ and $0 \leq i^{\prime}, j^{\prime} \leq r$. Then

$$
\begin{equation*}
k^{\prime} q_{k^{\prime}-1}\left(x_{i^{\prime}} x_{j^{\prime}}\right)=\left(i^{\prime}+1\right) q_{k^{\prime}}\left(x_{i^{\prime}+1} x_{j^{\prime}}\right)+\left(j^{\prime}+1\right) q_{k^{\prime}}\left(x_{i^{\prime}} x_{j^{\prime}+1}\right) \tag{2'}
\end{equation*}
$$

Let $a_{k}(i, j)=q_{k}\left(x_{i} x_{j}\right)$ and $b_{k^{\prime}}\left(i^{\prime}, j^{\prime}\right)=q_{k^{\prime}}\left(x_{i^{\prime}} x_{j^{\prime}}\right)$. Then

$$
\begin{align*}
& k a_{k-1}(i, j)=(i+1) a_{k}(i+1, j)+(j+1) a_{k}(i, j+1) . \tag{1}\\
& k b_{k-1}(i, j)=(i+1) b_{k}(i+1, j)+(j+1) b_{k}(i, j+1) . \tag{2'}
\end{align*}
$$

Then the recursions are the same. If the initial data of these are equal, $a_{\frac{n}{2}}=b_{\frac{n}{2}}$, then $q_{k}\left(x_{i} x_{j}\right)=q_{n-k}\left(x_{r-i} x_{r-j}\right)$.

$$
\begin{gathered}
a_{\frac{n}{2}}\left(i, 2 m+\frac{n}{2}-i\right)=q_{\frac{n}{2}}\left(x_{i} x_{2 m+\frac{n}{2}-i}\right)=q_{\frac{n}{2}}\left(x_{i} x_{2 m+r-2 m-i}\right)=q_{\frac{n}{2}}\left(x_{i} x_{r-i}\right)= \\
q_{\frac{n}{2}}\left(x_{r-i} x_{i}\right)=b_{\frac{n}{2}}(i, r-i)=b_{\frac{n}{2}}\left(i, 2 m+\frac{n}{2}-i\right) .
\end{gathered}
$$

Corollary 2.6. For every $0 \leq k \leq n / 2$ we have $\operatorname{rk}\left(q_{k}\right)=\operatorname{rk}\left(q_{n-k}\right) \leq 2 m+k+1$.
Proof. The matrix assigned to the quadratic form q_{k} has at least $2 m+k+1$ nonzero coordinates. They appear in some anti-diagonal $(i+j=2 m+k)$ making nonzero rows linearly independent.

In general, the equality does not hold. For example, if $r=6$ and $n=4$ (that is, $m=2$), then $q_{2}\left(x_{1} x_{5}\right)=q_{2}\left(x_{5} x_{1}\right)=0$ making the rank less than or equal to $2+4+1$. In this case, $\operatorname{rk}\left(q_{0}\right)=\operatorname{rk}\left(q_{4}\right)=5, \operatorname{rk}\left(q_{1}\right)=\operatorname{rk}\left(q_{3}\right)=6$ and $\operatorname{rk}\left(q_{2}\right)=5<7$.

Finally, let us give a lemma that we are going to use in the next section.
Lemma 2.7. Let $\lambda=q_{0}\left(x_{0} x_{2 m}\right) \neq 0$ and let k be such that $0 \leq k \leq n / 2$. Then

$$
q_{k}\left(x_{0} x_{2 m+k}\right)=q_{n-k}\left(x_{r} x_{r-2 m}\right) \neq 0 .
$$

Even more, if $m=0$,

$$
q_{k}\left(x_{i} x_{k-i}\right)=q_{n-k}\left(x_{r-i} x_{r-k+i}\right) \neq 0, \quad 0 \leq i \leq r .
$$

Proof. From Theorem 2.4 we have the formula

$$
q_{k}\left(x_{0} x_{2 m+k}\right)=\lambda \frac{\binom{r-2 m}{k}}{\binom{n}{k}} \neq 0 .
$$

And from Proposition 2.5, $q_{n-k}\left(x_{r} x_{r-2 m}\right)=q_{k}\left(x_{0} x_{2 m+k}\right) \neq 0$.

Similarly if $m=0$,

$$
q_{n-k}\left(x_{r-i} x_{r-k+i}\right)=q_{k}\left(x_{i} x_{k-i}\right)=\lambda \frac{\binom{r}{r-i}\binom{r}{r-k+i}}{\binom{n}{k}} \neq 0, \quad 0 \leq i \leq r
$$

3. Geometric properties of $M_{m} \subseteq \mathbb{P}^{r}$.

In the previous section we computed the equations for M_{m}. Recall that $M_{m} \subseteq \mathbb{P} S^{r}\left(\mathbb{C}^{2}\right)$ is a projective $P G L_{2}(\mathbb{C})$-variety generated in degree two by

$$
\left\langle q_{0}, \ldots, q_{2 r-4 m}\right\rangle \subseteq S^{2}\left(S^{r}\left(\mathbb{C}^{2}\right)^{\vee}\right)
$$

In this section we use these equations to compute a bound for the dimension of M_{m}.
Let us introduce some new notation. Let

$$
b_{i}^{k}(m)=b_{i}^{k}:=q_{k}\left(x_{i} x_{2 m+k-i}\right)=q_{n-k}\left(x_{r-i} x_{r-2 m-k+i}\right), \quad 0 \leq k \leq \frac{n}{2}, 0 \leq i \leq r
$$

Given that q_{k} is symmetric, we have $b_{i}^{k}=b_{2 m+k-i}^{k}$.
If $x=a_{0} x_{0}+\ldots+a_{r} x_{r}$, then

$$
\begin{gathered}
q_{k}\left(a_{0}, \ldots, a_{r}\right)=\sum_{i=0}^{2 m+k} q_{k}\left(x_{i} x_{2 m+k-i}\right) a_{i} a_{2 m+k-i}=\sum_{i=0}^{2 m+k} b_{i}^{k} a_{i} a_{2 m+k-i} . \\
q_{n-k}\left(a_{0}, \ldots, a_{r}\right)=\sum_{i=0}^{2 m+k} q_{n-k}\left(x_{r-i} x_{r-2 m-k+i}\right) a_{r-i} a_{r-2 m-k+i}=\sum_{i=0}^{2 m+k} b_{i}^{k} a_{r-i} a_{r-2 m-k+i} .
\end{gathered}
$$

With this notation, let us write the derivatives of q_{k} with respect to a_{i},

$$
\frac{\partial q_{k}\left(a_{0}, \ldots, a_{r}\right)}{\partial a_{i}}=b_{i}^{k} a_{2 m+k-i}+b_{2 m+k-i}^{k} a_{2 m+k-i}=2 b_{i}^{k} a_{2 m+k-i}
$$

Proposition 3.1. The variety $M_{m} \subseteq \mathbb{P}^{r}$ has dimension $\operatorname{dim}\left(M_{m}\right)<2 m$. If $m=0$, $M_{m}=\emptyset$.

Proof. Let us compute the rank of the Jacobian matrix of

$$
\left(a_{0}, \ldots, a_{r}\right) \rightarrow\left(q_{0}\left(a_{0}, \ldots, a_{r}\right), \ldots, q_{n}\left(a_{0}, \ldots, a_{r}\right)\right)
$$

It is a $(n+1) \times(r+1)$-matrix.
$\left(\begin{array}{ccccccccc}b_{0}^{0} a_{2 m} & b_{1}^{0} a_{2 m-1} & \ldots & b_{2 m}^{0} a_{0} & 0 & 0 & 0 & \ldots & 0 \\ b_{0}^{1} a_{2 m+1} & \ldots & \ldots & \ldots & b_{2 m+1}^{1} a_{0} & 0 & 0 & \ldots & 0 \\ b_{0}^{2} a_{2 m+2} & \ldots & \ldots & \ldots & \ldots & b_{2 m+2}^{2} a_{0} & 0 & \ldots & 0 \\ & & & \vdots & & & & & \\ b_{0}^{r-2 m} a_{r} & b_{1}^{r-2 m} a_{r-1} & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & b_{r}^{r-2 m} a_{0} \\ 0 & b_{0}^{r-2 m-1} a_{r} & b_{1}^{r-2 m-1} a_{r-1} & \ldots & \ldots & \ldots & \ldots & \ldots & b_{r-1}^{r-2 m-1} a_{1} \\ 0 & 0 & b_{0}^{r-2 m-2} a_{r} & b_{1}^{r-2 m-2} a_{r-1} & \ldots & \ldots & \ldots & \ldots & b_{r-2}^{r-2 m-2} a_{2} \\ & & & \vdots & \ldots & & & & \\ 0 & 0 & \ldots & \ldots & b_{0}^{0} a_{r} & b_{1}^{0} a_{r-1} & \ldots & b_{2 m}^{0} a_{r-2 m}\end{array}\right)$

Let Z be the hyperplane given by $\left\{a_{r}=0\right\}$. From Lemma 2.7, we know that $b_{0}^{k} \neq 0$ for $0 \leq k \leq r-2 m$. Then for every point not in Z, the last $r-2 m+1$ rows of the previous matrix are linearly independent making the rank greater that or equal to $r-2 m+1$. If $m=0$, the rank is $r+1$.

Take X an irreducible component of M_{m}. It is also a $P G L_{2}(\mathbb{C})$-variety. Recall that the closure of an orbit must contain orbits of lesser dimension. In particular, X must contain a closed orbit. The unique closed orbit of $P G L_{2}(\mathbb{C})$ in $\mathbb{P} S^{r}\left(\mathbb{C}^{2}\right)$ is the orbit of the maximal weight vector, x_{0}, [1, Claim 23.52]. Using the equivariant isomorphism $S^{r}\left(\mathbb{C}^{2}\right) \cong S^{r}\left(\mathbb{C}^{2}\right)^{\vee}$, the vector x_{r} corresponds to the maximal weight vector of $\mathbb{P} S^{r}\left(\mathbb{C}^{2}\right)^{\vee}$. Then its orbit is closed in $\mathbb{P} S^{r}\left(\mathbb{C}^{2}\right)^{\vee}$. Applying the isomorphism again, we obtain a closed orbit in $\mathbb{P} S^{r}\left(\mathbb{C}^{2}\right)$, hence the orbit of x_{r} is equal to the orbit of x_{0}. This implies that the point corresponding to $x_{r},(0: \ldots: 0: 1)$ is in X, hence $X \backslash Z$ is non-empty. Then a generic smooth point of X has dimension less than $2 m$.

Notation 3.2. Our intention now is to relate the geometry of the Veronese curve with the geometry of M_{m}. This analysis gives a lower bound for the dimension of M_{m}.

Recall briefly the definition of the Veronese curve $c_{r} \subseteq \mathbb{P}^{r}$ and its osculating varieties $T^{p} c_{r}$. The Veronese curve may be given parametrically (over an open affine subset) by

$$
c_{r}: t \rightarrow\left(1, t, t^{2}, \ldots, t^{r}\right)
$$

Its tangential variety, denoted $T^{1} c_{r}$, may be given by

$$
\left(t, \lambda_{1}\right) \rightarrow c_{r}+\lambda_{1} c_{r}^{\prime}
$$

It depends on two parameters. One indicates the point in the curve and the other, the tangent vector on that point.

In general, its p-osculating variety, $T^{p} c_{r}$ is given by

$$
\left(t, \lambda_{1}, \ldots, \lambda_{p}\right) \rightarrow c_{r}+\lambda_{1} c_{r}^{\prime}+\ldots+\lambda_{p} c_{r}^{(p)}
$$

In each point of the curve, stands a p-dimensional plane.
We consider the curve c_{r} and its osculating varieties $T^{p} c_{r}$ inside \mathbb{P}^{r}. The dimensions of c_{r} and of $T^{p} c_{r}$ are the expected, $p+1$.

In the article [3], the author computed the Hilbert polynomials of the varieties $T^{p} c_{r}$,

$$
H_{T^{p} c_{r}}(d)=(d r-d p+1)\binom{p+d}{d}-(d r-d p+d-1)\binom{p+d-1}{d}
$$

This implies that $\operatorname{dim}\left(T^{p} c_{r}\right)=p+1, \operatorname{deg}\left(c_{r}\right)=r$ and $\operatorname{deg}\left(T^{1} c_{r}\right)=2(r-1)$.
Proposition 3.3. The variety M_{m} contains $T^{m-1} c_{r}$ but does not contain $T^{m} c_{r}$. In particular, $\operatorname{dim}\left(M_{m}\right) \geq m$.

Proof. This proposition follows from [1, Exercise 11.32]. It says that

$$
I\left(T^{p} c_{r}\right)_{2} \cong \bigoplus_{\alpha \geq p+1} S^{2 r-4 \alpha}\left(\mathbb{C}^{2}\right)
$$

Given that $S^{2 r-4 m}\left(\mathbb{C}^{2}\right) \subseteq I\left(T^{m-1} c_{r}\right)_{2}$ we get $I\left(M_{m}\right) \subseteq I\left(T^{m-1} c_{r}\right)$.
Similarly, if $I\left(M_{m}\right)_{2} \subseteq I\left(T^{m} c_{r}\right)_{2}$, then $S^{2 r-4 m}\left(\mathbb{C}^{2}\right) \subseteq I\left(T^{m} c_{r}\right)_{2}$. A contradiction.
Example 3.4. Suppose that r is even and that $m=r / 2$. Then we have exactly one equation q_{0}. It is a quadratic form whose matrix (diagonal of rank $r+1$) has coefficients $\lambda(-1)^{i}\binom{r}{i}$. In fact this is the only quadric in \mathbb{P}^{r} invariant under $P G L_{2}(\mathbb{C})$. For $r=4$ this quadric is well known, [2, 10.12].

The variety $M_{m}=\mathbb{P}\left\{q_{0}=0\right\} \subseteq \mathbb{P}^{r}$ is a quadric of maximal rank, hence irreducible. Being a hypersurface, it has $\operatorname{dim}\left(M_{m}\right)=r-1$. Then, by Proposition 3.3, we obtain

$$
\begin{cases}T^{\frac{r}{2}-1} c_{r} \subsetneq M_{m} & \text { if } r>2 \\ c_{2}=M_{m} & \text { if } r=2\end{cases}
$$

With this example we deduce that the dimension of M_{m} may be strictly greater than m. Theorem 3.5.If $r \geq 3$ is odd and $m=(r-1) / 2$, then M_{m} has codimension 3 and degree 8.

Proof. We know that $I\left(M_{m}\right)=\left\langle q_{0}, q_{1}, q_{2}\right\rangle$ where

$$
\begin{gathered}
q_{0}\left(a_{0}, \ldots, a_{r}\right)=b_{0}^{0} a_{0} a_{r-1}+b_{1}^{0} a_{1} a_{r-2}+\ldots+b_{r-1}^{0} a_{r-1} a_{0} \\
q_{1}\left(a_{0}, \ldots, a_{r}\right)=b_{0}^{1} a_{0} a_{r}+b_{1}^{1} a_{1} a_{r-1}+\ldots+b_{r}^{1} a_{r} a_{0} \\
q_{2}\left(a_{0}, \ldots, a_{r}\right)=b_{0}^{0} a_{r} a_{1}+b_{1}^{0} a_{r-1} a_{2}+\ldots+b_{r-1}^{0} a_{1} a_{r} .
\end{gathered}
$$

The coefficients of the quadratic forms satisfy the following relations

$$
\begin{gathered}
b_{0}^{0}=b_{r-1}^{0}, \quad b_{1}^{0}=b_{r-2}^{0}, \quad \ldots, \quad b_{m-1}^{0}=b_{m+1}^{0}, \\
b_{0}^{1}=b_{r}^{1}, \quad b_{1}^{1}=b_{r-1}^{1}, \quad \ldots, \quad b_{m-1}^{1}=b_{m+2}^{1}, \quad b_{m}^{1}=b_{m+1}^{1} .
\end{gathered}
$$

To see that the dimension is $r-3$ let us compute the rank of the Jacobian matrix at a specific point $p \in M_{m}$. The Jacobian matrix is given by

$$
\left(\begin{array}{ccccc}
b_{0}^{0} a_{r-1} & b_{1}^{0} a_{r-2} & \ldots & b_{r-1}^{0} a_{0} & 0 \\
b_{0}^{1} a_{r} & b_{1}^{1} a_{r-1} & \ldots & b_{r-1}^{1} a_{1} & b_{r}^{1} a_{0} \\
0 & b_{0}^{0} a_{r} & \ldots & b_{r-2}^{0} a_{2} & b_{r-1}^{0} a_{1}
\end{array}\right) .
$$

Let $p=\left(p_{0}: \ldots: p_{r}\right) \in \mathbb{P}^{r}$ be a point such that

$$
p_{i}= \begin{cases}1 & \text { if } i=0 \text { or } i=m-1 \\ 0 & \text { otherwise }\end{cases}
$$

Then $q_{0}(p)=q_{1}(p)=q_{2}(p)=0$, hence $p \in M_{m}$. The Jacobian matrix at p is equal to

$$
\left(\begin{array}{ccccccc}
0 \ldots 0 & b_{r-m}^{0} & 0 & 0 & 0 \ldots 0 & b_{r-1}^{0} & 0 \\
0 \ldots 0 & 0 & b_{r-m+1}^{1} & 0 & 0 \ldots 0 & 0 & b_{r}^{1} \\
0 \ldots 0 & 0 & 0 & b_{r-m+1}^{0} & 0 \ldots 0 & 0 & 0
\end{array}\right)
$$

Given that $b_{i}^{0} \neq 0$ for all $0 \leq i \leq r$ (see Corollary 2.2) and that $b_{r}^{1}=b_{0}^{1} \neq 0$ (see Lemma 2.7) the previous matrix has maximal rank, hence the codimension of M_{m} at p is equal to 3 . This implies that the codimension of M_{m} is 3 and the degree is 8 .

Note that the point p is in $T^{m-1} c_{r}$ and that the points on the curve c_{r} are singular.
Theorem 3.6.If $r \geq 8$ is even and $m=r / 2-1$, then M_{m} has codimension 5 and degree 32.

Proof. Let us argue as in the proof of Theorem 3.5. We know that $I\left(M_{m}\right)=\left\langle q_{0}, \ldots, q_{4}\right\rangle$,

$$
\begin{gathered}
q_{0}\left(a_{0}, \ldots, a_{r}\right)=\sum_{i=0}^{r-2} b_{i}^{0} a_{i} a_{r-2-i}, \quad q_{1}\left(a_{0}, \ldots, a_{r}\right)=\sum_{i=0}^{r-1} b_{i}^{1} a_{i} a_{r-1-i}, \\
q_{2}\left(a_{0}, \ldots, a_{r}\right)=\sum_{i=0}^{r} b_{i}^{2} a_{i} a_{r-i}, \\
q_{3}\left(a_{0}, \ldots, a_{r}\right)=\sum_{i=0}^{r-1} b_{i}^{1} a_{r-i} a_{i+1}, \quad q_{4}\left(a_{0}, \ldots, a_{r}\right)=\sum_{i=0}^{r-2} b_{i}^{0} a_{r-i} a_{i+2} .
\end{gathered}
$$

Let $p=\left(p_{0}: \ldots: p_{r}\right) \in \mathbb{P}^{r}$ be a point such that

$$
p_{i}= \begin{cases}1 & \text { if } i=0 \text { or } i=m-1 \\ 0 & \text { otherwise }\end{cases}
$$

Then $p \in M_{m}$. The Jacobian matrix at p is equal to

$$
\left(\begin{array}{cccccccccc}
0 \ldots 0 & b_{r-m-1}^{0} & 0 & 0 & 0 & 0 & 0 \ldots 0 & b_{r-2}^{0} & 0 & 0 \\
0 \ldots 0 & 0 & b_{r-m}^{1} & 0 & 0 & 0 & 0 \ldots 0 & 0 & b_{r-1}^{1} & 0 \\
0 \ldots 0 & 0 & 0 & b_{r-m+1}^{2} & 0 & 0 & 0 \ldots 0 & 0 & 0 & b_{r}^{2} \\
0 \ldots 0 & 0 & 0 & 0 & b_{r-m+1}^{1} & 0 & 0 \ldots 0 & 0 & 0 & 0 \\
0 \ldots 0 & 0 & 0 & 0 & 0 & b_{r-m+1}^{0} & 0 \ldots 0 & 0 & 0 & 0
\end{array}\right) .
$$

From Corollary 2.2 and Lemma 2.7, we know that $b_{0}^{2}, b_{0}^{1}, b_{r-2}^{0}$ and b_{r-m+1}^{0} are non-zero numbers. But given that $b_{r}^{2}=b_{0}^{2}$ and $b_{r-1}^{1}=b_{0}^{1}$, they are also non-zero. We need to prove that b_{r-m+1}^{1} is non-zero for $r \geq 8$. Recall that $b_{r-m+1}^{1}=b_{m-2}^{1}$.

$$
\begin{gathered}
b_{m-2}^{1} \neq 0 \Longleftrightarrow\binom{n}{1} q_{1}\left(x_{m-2} x_{m+3}\right) \neq 0 \Longleftrightarrow \\
\sum_{s=m-3}^{m-2}(-1)^{s}\binom{2 m}{s}\binom{r-s}{r-m+2}\binom{r-2 m+s}{r-m-3} \neq 0 \Longleftrightarrow \\
\binom{2 m}{m-3}(r-m+3)-\binom{2 m}{m-2}(r-m-2) \neq 0 \Longleftrightarrow \frac{m-2}{m+3} \neq \frac{r-m-2}{r-m+3} \Longleftrightarrow \\
(m-2)(r-m+3)-(r-m-2)(m+3) \neq 0 \Longleftrightarrow 10 m-5 r \neq 0 \Longleftrightarrow 2 m \neq r .
\end{gathered}
$$

Given that $2 m=r-2$, we obtain $b_{r-m+1}^{1} \neq 0$.
Example 3.7. We computed the dimension and the degree of M_{m} for several values of r and m :

$m \backslash r$	2	3	4	5	6	7	8	9	10	11	12	13
1	$\underline{1}$											
2			$\underline{3}$	$\underline{2}$	3	2	2	2	2	2	3	2
3					$\underline{5}$	$\underline{4}$	$\underline{3}$	3	5	3	3	3
4							$\underline{7}$	$\underline{6}$	$\underline{5}$	4	4	4
5									$\underline{9}$	$\underline{8}$	$\underline{7}$	6
6											$\underline{11}$	$\underline{10}$

Table: Dimension of $M_{m} \subseteq \mathbb{P}^{r}$.

$m \backslash r$	2	3	4	5	6	7	8	9	10	11	12	13
1	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{9}$	$\underline{10}$	$\underline{11}$	$\underline{12}$	$\underline{13}$
2			$\underline{2}$	$\underline{8}$	5	12	14	16	18	20	22	24
3					$\underline{2}$	$\underline{8}$	$\underline{32}$	21	12	27	30	33
4							$\underline{2}$	$\underline{8}$	$\underline{32}$	128	36	40
5								$\underline{2}$	$\underline{8}$	$\underline{32}$	128	
6										$\underline{2}$	$\underline{8}$	

Table: Degree of $M_{m} \subseteq \mathbb{P}^{r}$.

The numbers underlined are known in general (see Example 3.2, Theorem 3.5, Theorem 3.6). Recall also that $m \leq \operatorname{dim} M_{m}<2 m$.

Remark 3.8. To end this section, let us make a little remark and some more computations. Suppose now that we want to study the variety X defined by the quadrics that contain $T^{p} c_{r}$. In other words, X is generated in degree two and $I(X)_{2}=I\left(T^{p} c_{r}\right)_{2}$.

Given that c_{r} is generated in degree two, when $p=0$, we have the equality, $X=c_{r}$. In the general case, $T^{p} c_{r} \subseteq X$.

From Proposition 3.1 and the fact that $X=M_{p+1} \cap \ldots \cap M_{\lfloor r / 2\rfloor}$, we get

$$
p+1 \leq \operatorname{dim}(X) \leq 2 p+1
$$

We computed the dimension of the variety X in the case $I(X)_{2}=I\left(T^{p} c_{r}\right)_{2}$:

	\mathbb{P}^{4}	\mathbb{P}^{5}	\mathbb{P}^{6}	\mathbb{P}^{7}	\mathbb{P}^{8}	\mathbb{P}^{9}	\mathbb{P}^{10}	\mathbb{P}^{11}	\mathbb{P}^{12}	\mathbb{P}^{13}
$I\left(T^{1} c_{r}\right)_{2}$	$\underline{3}$	$\underline{2}$	2	2	2	2	2	2	2	2
$I\left(T^{2} c_{r}\right)_{2}$			$\underline{5}$	$\underline{4}$	3	3	3	3	3	3
$I\left(T^{3} c_{r}\right)_{2}$					$\underline{7}$	$\underline{6}$	4	4	4	4
$I\left(T^{4} c_{r}\right)_{2}$							$\underline{9}$	$\underline{8}$	6	5
$I\left(T^{5} c_{r}\right)_{2}$									$\underline{11}$	$\underline{10}$

The dimensions underlined are those in which $I\left(T^{p} C_{r}\right)_{2}=I\left(M_{m}\right)_{2}$ for some m, so it is information from a previous table.

In the variety 4 -osculating of $c_{12} \subseteq \mathbb{P}^{12}$ the pattern breaks. The dimension is 6 instead of 5 . We deduce that this variety is not generated in degree two.

Assume now that $5 \leq r \leq 8$. Let X_{r} be the variety generated in degree two by $I\left(T^{1} c_{r}\right)_{2}$. We computed that X_{r} is irreducible, $\operatorname{dim}\left(X_{r}\right)=2$ and $\operatorname{deg}\left(X_{r}\right)=2(r-1)$. Then we know explicitly the equations defining $T^{1} c_{5}, T^{1} c_{6}, T^{1} c_{7}$ and $T^{1} c_{8}$ (set-theoretically).

$$
\begin{gathered}
I\left(X_{5}\right)=\left\langle x_{5} x_{0}-3 x_{4} x_{1}+2 x_{3} x_{2}, x_{4} x_{0}-4 x_{3} x_{1}+3 x_{2}^{2}, x_{5} x_{1}-4 x_{4} x_{2}+3 x_{3}^{2}\right\rangle . \\
I\left(X_{6}\right)=\left\langle x_{4} x_{0}-4 x_{3} x_{1}+3 x_{2}^{2}, x_{6} x_{0}-9 x_{4} x_{2}+8 x_{3}^{2}, x_{6} x_{2}-4 x_{5} x_{3}+3 x_{4}^{2},\right. \\
\left.x_{5} x_{0}-3 x_{4} x_{1}+2 x_{3} x_{2}, x_{6} x_{1}-3 x_{5} x_{2}+2 x_{4} x_{3}, x_{6} x_{0}-6 x_{5} x_{1}+15 x_{4} x_{2}-10 x_{3}{ }^{2}\right\rangle .
\end{gathered}
$$

$$
\begin{gathered}
I\left(X_{7}\right)=\left\langle x_{7} x_{3}-4 x_{6} x_{4}+3 x_{5}^{2}, 2 x_{7} x_{3}+x_{6} x_{4}-3 x_{5}^{2}, x_{7} x_{2}+3 x_{6} x_{3}-4 x_{5} x_{4}, x_{3} x_{0}-x_{2} x_{1},\right. \\
x_{4} x_{0}-4 x_{3} x_{1}+3 x_{2}^{2}, x_{5} x_{0}+3 x_{4} x_{1}-4 x_{3} x_{2}, x_{7} x_{4}-x_{6} x_{5}, 2 x_{4} x_{0}+x_{3} x_{1}-3 x_{2}^{2}, \\
x_{5} x_{0}-3 x_{4} x_{1}+2 x_{3} x_{2}, x_{6} x_{0}-6 x_{5} x_{1}+15 x_{4} x_{2}-10 x_{3}^{2}, x_{6} x_{0}-x_{5} x_{1}-5 x_{4} x_{2}+5 x_{3}^{2}, \\
x_{6} x_{0}+8 x_{5} x_{1}+x_{4} x_{2}-10 x_{3}^{2}, x_{7} x_{0}+5 x_{6} x_{1}-21 x_{5} x_{2}+15 x_{4} x_{3}, x_{7} x_{0}+23 x_{6} x_{1}+51 x_{5} x_{2}-75 x_{4} x_{3}, \\
x_{7} x_{1}+8 x_{6} x_{2}+x_{5} x_{3}-10 x_{4}^{2}, x_{7} x_{1}-x_{6} x_{2}-5 x_{5} x_{3}+5 x_{4}^{2}, x_{7} x_{1}-6 x_{6} x_{2}+15 x_{5} x_{3}-10 x_{4}^{2}, \\
\left.x_{7} x_{2}-3 x_{6} x_{3}+2 x_{5} x_{4}, x_{7} x_{0}-5 x_{6} x_{1}+9 x_{5} x_{2}-5 x_{4} x_{3}, x_{2} x_{0}-x_{1}^{2}, x_{7} x_{5}-x_{6}^{2}\right\rangle . \\
x_{8} x_{1}+2 x_{7} x_{2}-12 x_{6} x_{3}+9 x_{5} x_{4}, x_{8} x_{3}-3 x_{7} x_{4}+2 x_{6} x_{5}, 3 x_{6} x_{0}-4 x_{5} x_{1}-11 x_{4} x_{2}+12 x_{3}^{2}, \\
x_{5} x_{0}-3 x_{4} x_{1}+2 x_{3} x_{2}, x_{7} x_{0}+2 x_{6} x_{1}-12 x_{5} x_{2}+9 x_{4} x_{3}, x_{7} x_{0}-5 x_{6} x_{1}+9 x_{5} x_{2}-5 x_{4} x_{3}, \\
x_{8} x_{1}-5 x_{7} x_{2}+9 x_{6} x_{3}-5 x_{5} x_{4}, x_{6} x_{0}-6 x_{5} x_{1}+15 x_{4} x_{2}-10 x_{3}^{2}, \\
x_{4} x_{0}-4 x_{3} x_{1}+3 x_{2}^{2}, x_{8} x_{2}-6 x_{7} x_{3}+15 x_{6} x_{4}-10 x_{5}^{2}, x_{8} x_{4}-4 x_{7} x_{5}+3 x_{6}^{2}, \\
x_{8} x_{0}+12 x_{7} x_{1}-22 x_{6} x_{2}-36 x_{5} x_{3}+45 x_{4}^{2}, 3 x_{8} x_{2}-4 x_{7} x_{3}-11 x_{6} x_{4}+12 x_{5}^{2}, \\
\left.x_{8} x_{0}-2 x_{7} x_{1}-8 x_{6} x_{2}+34 x_{5} x_{3}-25 x_{4}^{2}, x_{8} x_{0}-8 x_{7} x_{1}+28 x_{6} x_{2}-56 x_{5} x_{3}+35 x_{4}^{2}\right\rangle .
\end{gathered}
$$

Acknowledgments. This work was supported by CONICET, Argentina. The author thanks Fernando Cukierman, for useful discussions, ideas and suggestions.

References

[1] W. Fulton and J. Harris, Representation theory, vol. 129 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.
[2] J. Harris, Algebraic geometry, vol. 133 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1992. A first course.
[3] J. Weyman, The equations of strata for binary forms, J. Algebra, 122 (1989), pp. 244-249.

