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1. Introduction

After the introduction of fuzzy sets by Zadeh [12], several researchers explored on the

generalization of the notion of fuzzy set. The concept of intuitionistic L-fuzzy subset was

introduced by Atanassov [4,5], as a generalization of the notion of fuzzy set.

Rosenfeld [6] defined a fuzzy group. Ray [3] defined a product of fuzzy subgroups and

Solairaju and R.Nagarajan [10,11] introduced and defined a new algebraic structure called

Q-fuzzy subgroups. In this paper, we introduce the concept of Q-intuitionistic L-fuzzy

subring of a ring and establish some new results.
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2. Preliminaries

Definition 2.1. Let X be a non-empty set, and L = (L,≤) be a lattice with least element

0, and greatest element 1 and Q be a non-empty set. A (Q,L)-fuzzy subset A of X is a

function A : X ×Q→ L.

Definition 2.2. Let (L,≤) be a complete lattice with an involutive order reversing

operation N : L → L and Q be a non-empty set. A Q-intuitionistic L-fuzzy subset

(QILFS) A in X is defined as an object of the form A = {< (x, q), µA(x, q), νA(x, q) >

/x in X and q in Q}, where µA : X ×Q→ L, and νA : X ×Q→ L define the degree of

membership, and the degree of non-membership of the element x in X, respectively, and

for every x in X and q in Q satisfying µA(x, q) ≤ N(νA(x, q)).

Definition 2.3. Let (R,+, .) be a ring. A Q-intuitionistic L-fuzzy subset A of R is said

to be a Q-intuitionistic L-fuzzy subring (QILFSR) of R if it satisfies the following axioms:

(i) µA(x− y, q) ≥ µA(x, q) ∧ µA(y, q),

(ii) µA(xy, q) ≥ µA(x, q) ∧ µA(y, q),

(iii) νA(x− y, q) ≤ νA(x, q) ∨ νA(y, q),

(iv) νA(xy, q) ≤ νA(x, q) ∨ νA(y, q), for all x and y in R and q in Q.

Definition 2.4. Let X, and Y be any two sets. Let f : X → Y be any function and

A be a Q-intuitionistic L-fuzzy subset in X, V be a Q-intuitionistic L-fuzzy subset in

f(X) = Y , defined by µV (y, q) = supx∈f−1(y) µA(x, q) and νV (y, q) = infx∈f−1(y) νA(x, q),

for all x in X and y in Y . A is called a preimage of V under f and is denoted by f−1(V ).

Definition 2.5. Let (R,+, .) be a ring. A Q-intuitionistic L-fuzzy subring A of R is said

to be a Q-intuitionistic L-fuzzy normal subring (QILFNSR) of R if µA(xy, q) = µA(yx, q)

and νA(xy, q) = νA(yx, q), for all x and y in R and q in Q.

3. Some properties of Q-intuitionistic L-fuzzy subrings of a ring
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Theorem 3.1. Let (R,+, .) and (R1,+, .) be any two rings. The homomorphic image

of a Q-intuitionistic L-fuzzy subring of R is a Q-intuitionistic L-fuzzy subring of f(R) =

R1.

Proof. Let (R,+, .) and (R1,+, .) be any two rings and Q be a non-empty set. Let

f : R → R1 be a homomorphism. Then f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y),

for all x and y in R. Let A be a Q-intuitionistic L-fuzzy subring of R. We have to prove

that V is a Q-intuitionistic L-fuzzy subring of f(R) = R1. Now, for f(x), f(y) in R1 and

q in Q,

µV (f(x)− f(y), q) = µV (f(x− y), q)

≥ µA(x− y, q)

≥ µA(x, q) ∧ µA(y, q),

which implies that

µV (f(x)− f(y), q) ≥ µV (f(x), q) ∧ µV (f(y), q),

for all f(x) and f(y) in R1 and q in Q. Again,

µV (f(x)f(y), q) = µV (f(xy), q)

≥ µA(xy, q)

≥ µA(x, q) ∧ µA(y, q),

which implies that

µV (f(x)f(y), q) ≥ µV (f(x), q) ∧ µV (f(y), q),

for all f(x) and f(y) in R1 and q in Q. Also,

νV (f(x)− f(y), q) = νV (f(x− y), q)

≤ νA(x− y, q)

≤ νA(x, q)νA ∨ (y, q),

which implies that

νV (f(x)− f(y), q) ≤ νV (f(x), q) ∨ νV (f(y), q),
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for all f(x) and f(y) in R1 and q in Q. Again,

νV (f(x)f(y), q) = νV (f(xy), q)

≤ νA(xy, q)

≤ νA(x, q) ∨ νA(y, q),

which implies that

νV (f(x)f(y), q) ≤ νV (f(x), q) ∨ νV (f(y), q),

for all f(x) and f(y) in R1 and q in Q. Hence V is a Q-intuitionistic L-fuzzy subring of

R1. This completes the proof.

In view of Theorem 3.1, the following is not hard to derive.

Theorem 3.2. Let (R,+, .) and (R1,+, .) be any two rings. The homomorphic preimage

of a Q-intuitionistic L-fuzzy subring of f(R) = R1 is a Q-intuitionistic L-fuzzy subring

of R.

Theorem 3.3. Let (R,+, .) and (R1,+, .) be any two rings. The anti-homomorphic

image of a Q-intuitionistic L-fuzzy subring of R is a Q-intuitionistic L-fuzzy subring of

f(R) = R1.

Proof. Let (R,+, .) and (R1,+, .) be any two rings and Q be a non-empty set. Let f :

R→ R1 be an anti-homomorphism. Then f(x+ y) = f(y) + f(x) and f(xy) = f(y)f(x),

for all x and y in R. Let A be a Q-intuitionistic L-fuzzy subring of R. We have to prove

that V is a Q-intuitionistic L-fuzzy subring of f(R) = R1. Now, for f(x), f(y) in R1 and

q in Q,

µV (f(x)− f(y), q) = µV (f(y − x), q)

≥ µA(y − x, q)

≥ µA(y, q) ∧ µA(x, q),

which implies that

µV (f(x)− f(y), q) ≥ µV (f(x), q) ∧ µV (f(y), q),
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for all f(x) and f(y) in R1 and q in Q. Again,

µV (f(x)f(y), q) = µV (f(yx), q)

≥ µA(yx, q)

≥ µA(y, q) ∧ µA(x, q),

which implies that

µV (f(x)f(y), q) ≥ µV (f(x), q) ∧ µV (f(y), q),

for all f(x) and f(y) in R1 and q in Q. Also,

νV (f(x)− f(y), q) = νV (f(y − x), q)

≤ νA(y − x, q)

≤ νA(x, q)νA ∨ (y, q),

which implies that

νV (f(x)− f(y), q) ≤ νV (f(x), q) ∨ νV (f(y), q),

for all f(x) and f(y) in R1 and q in Q. Again,

νV (f(x)f(y), q) = νV (f(yx), q)

≤ νA(yx, q)

≤ νA(y, q) ∨ νA(x, q),

which implies that

νV (f(x)f(y), q) ≤ νV (f(x), q) ∨ νV (f(y), q),

for all f(x) and f(y) in R1 and q in Q. Hence V is a Q-intuitionistic L-fuzzy subring of

R1. This completes the proof.

In view of Theorem 3.3, the following is not hard to derive.

Theorem 3.4. Let (R,+, .) and (R1,+, .) be any two rings. The anti-homomorphic

preimage of a Q-intuitionistic L-fuzzy subring of f(R) = R1 is a Q-intuitionistic L-fuzzy

subring of R.
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Theorem 3.5. Let (R,+, .) and (R1,+, .) be any two rings. The homomorphic image

of a Q-intuitionistic L-fuzzy normal subring of R is a Q-intuitionistic L-fuzzy normal

subring of f(R) = R1.

Proof. Let (R,+, .) and (R1,+, .) be any two rings and Q be a non-empty set. Let

f : R → R1 be a homomorphism. Then f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y),

for all x and y in R. Let A be a Q-intuitionistic L-fuzzy normal subring of R. We have

to prove that V is a Q-intuitionistic L-fuzzy normal subring of f(R) = R1. Now, for

f(x), f(y) in R1, clearly V is a Q-intuitionistic L-fuzzy subring of a ring R1, since A is a

Q-intuitionistic L-fuzzy subring of a ring R. Now,

µV (f(x)f(y), q) = µV (f(xy), q)

≥ µA(xy, q)

= µA(yx, q)

≥ µV (f(yx), q)

= µV (f(y)f(x), q),

which implies that

µV (f(x)f(y), q) = µV (f(y)f(x), q),

for all f(x) and f(y) in R1 and q in Q. Also,

νV (f(x)f(y), q) = νV (f(xy), q)

≤ νA(xy, q)

= νA(yx, q)

≥ νV (f(yx), q)

= νV (f(y)f(x), q),

which implies that

νV (f(x)f(y), q) = νV (f(y)f(x), q),

for all f(x) and f(y) in R1 and q in Q. Hence V is a Q-intuitionistic L-fuzzy normal

subring of a ring R. This completes the proof.
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In view of Theorem 3.5, the following is not hard to derive.

Theorem 3.6. Let (R,+, .) and (R1,+, .) be any two rings. The homomorphic preimage

of a Q-intuitionistic L-fuzzy normal subring of f(R) = R1 is a Q-intuitionistic L-fuzzy

normal subring of R.

Theorem 3.7. Let (R,+, .) and (R1,+, .) be any two rings. The anti-homomorphic

image of a

Q-intuitionistic L-fuzzy normal subring of R is a Q-intuitionistic L-fuzzy normal subring

of f(R) = R1.

Proof. Let (R,+, .) and (R1,+, .) be any two rings and Q be a non-empty set. Let f :

R→ R1 be an anti-homomorphism. Then f(x+ y) = f(y) + f(x) and f(xy) = f(y)f(x),

for all x and y in R. Let A be a Q-intuitionistic L-fuzzy normal subring of R. We have

to prove that V is a Q-intuitionistic L-fuzzy normal subring of f(R) = R1. Now, for

f(x), f(y) in R1, clearly V is a Q-intuitionistic L-fuzzy subring of a ring R1, since A is a

Q-intuitionistic L-fuzzy subring of a ring R. Now,

µV (f(x)f(y), q) = µV (f(yx), q)

≥ µA(yx, q)

= µA(xy, q)

≤ µV (f(xy), q)

= µV (f(y)f(x), q),

which implies that

µV (f(x)f(y), q) = µV (f(y)f(x), q),
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for all f(x) and f(y) in R1 and q in Q. Also,

νV (f(x)f(y), q) = νV (f(yx), q)

≤ νA(yx, q)

= νA(xy, q)

≥ νV (f(xy), q)

= νV (f(y)f(x), q),

which implies that

νV (f(x)f(y), q) = νV (f(y)f(x), q),

for all f(x) and f(y) in R1 and q in Q. Hence V is a Q-intuitionistic L-fuzzy normal

subring of a ring f(R) = R1. This completes the proof.

In view of Theorem 3.7, the following is not hard to derive.

Theorem 3.8. Let (R,+, .) and (R1,+, .) be any two rings. The anti-homomorphic

preimage of a Q-intuitionistic L-fuzzy normal subring of f(R) = R1 is a Q-intuitionistic

L-fuzzy normal subring of R.
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