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1. Introduction

Bělohlávek [1-3] developed the notion of fuzzy contexts using Galois connections with

R ∈ LX×Y on a complete residuated lattice. Georgescu and Popescue [4.5] introduced

non-commutative fuzzy Galois connection in a generalized residuated lattice which is

induced by two implications. Kim [7] investigated the properties of right and left closure

on a generalized residuated lattice.

In this paper, we investigate the relations between right (left) closure operators and

residuated (Galois) connections on generalized residuated lattices. We give their examples.
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Definition 1.1. [4,5] A structure (L,∨,∧,�,→,⇒,⊥,>) is called a generalized residu-

ated lattice if it satisfies the following conditions:

(GR1) (L,∨,∧,>,⊥) is a bounded where > is the universal upper bound and ⊥ denotes

the universal lower bound;

(GR2) (L,�,>) is a monoid;

(GR3) it satisfies a residuation , i.e.

a� b ≤ c iff a ≤ b→ c iff b ≤ a⇒ c.

We call that a generalized residuated lattice has the law of double negation if a =

(a∗)0 = (a0)∗ where a0 = a→ ⊥ and a∗ = a⇒ ⊥.

Remark 1.2.[4-8] (1) A generalized residuated lattice is a residuated lattice (→=⇒) iff

� is commutative.

(2) A left-continuous t-norm ([0, 1],≤,�) defined by a → b =
∨
{c | a � c ≤ b} is a

residuated lattice

(3) Let (L,≤,�,⊥,>) be a quantale. For each x, y ∈ L, we define

x→ y =
∨
{z ∈ L | z � x ≤ y}, x⇒ y =

∨
{z ∈ L | x� z ≤ y}.

Then it satisfies Galois correspondence, that is,

(x� y) ≤ z iff x ≤ (y → z) iff y ≤ (x⇒ z).

Hence (L,∨,∧,�,→,⇒,⊥,>) is a generalized residuated lattice.

(4) A pseudo MV-algebra is a generalized residuated lattice with the law of double

negation.

In this paper, we assume (L,∧,∨,�,→,⇒,⊥,>) is a generalized residuated lattice with

the law of double negation and if the family supremum or infumum exists, we denote
∨

and
∧

.

Lemma 1.3.[4-8] For each x, y, z, xi, yi ∈ L, we have the following properties.

(1) If y ≤ z, (x� y) ≤ (x� z), x→ y ≤ x→ z and z → x ≤ y → x for →∈ {→,⇒}.

(2) x� y ≤ x ∧ y ≤ x ∨ y.

(3) x→ (
∧

i∈Γ yi) =
∧

i∈Γ(x→ yi) and (
∨

i∈Γ xi)→ y =
∧

i∈Γ(xi → y) for →∈ {→,⇒}.
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(4) x→ (
∨

i∈Γ yi) ≥
∨

i∈Γ(x→ yi), for →∈ {→,⇒}.

(5) (
∧

i∈Γ xi)→ y ≥
∨

i∈Γ(xi → y), for →∈ {→,⇒}.

(6) (x� y)→ z = x→ (y → z) and (x� y)⇒ z = y ⇒ (x⇒ z).

(7) x→ (y ⇒ z) = y ⇒ (x→ z) and x⇒ (y → z) = y → (x⇒ z).

(8) x� (x⇒ y) ≤ y and (x→ y)� x ≤ y.

(9) (x⇒ y)� (y ⇒ z) ≤ x⇒ z and (y → z)� (x→ y) ≤ x→ z.

(10) (x⇒ z) ≤ (y � x)⇒ (y � z) and (x→ z) ≤ (x� y)→ (z � y).

(11) (x⇒ y) ≤ (y ⇒ z)→ (x⇒ z) and (y ⇒ z) ≤ (x⇒ y)⇒ (x⇒ z).

(12) xi → yi ≤ (
∧

i∈Γ xi)→ (
∧

i∈Γ yi) for →∈ {→,⇒}.

(13) xi → yi ≤ (
∨

i∈Γ xi)→ (
∨

i∈Γ yi) for →∈ {→,⇒}.

(14) x→ y = > iff x ≤ y.

(15) x→ y = y0 ⇒ x0 and x⇒ y = y∗ → x∗.

(16)
∧

i∈Γ x
∗
i = (

∨
i∈Γ xi)

∗ and
∨

i∈Γ x
∗
i = (

∧
i∈Γ xi)

∗.

(17)
∧

i∈Γ x
0
i = (

∨
i∈Γ xi)

0 and
∨

i∈Γ x
0
i = (

∧
i∈Γ xi)

0.

Definition 1.4.[7] Let X be a set. A function eX : X ×X → L is called a right preorder

if it satisfies:

(E1) eX(x, x) = > for all x ∈ X,

(R) eX(x, y)� eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X.

A function eX is called a left preorder if it satisfies (E1) and

(L) eX(y, z)� eX(x, y) ≤ eX(x, z), for all x, y, z ∈ X.

The pair (X, eX) is a right preorder (resp. left-preorder) set.

Remark 1.5.(1) We define two functions e⇑L, e
↑
L : L × L → L as e⇑L(x, y) = x ⇒ y and

e↑L(x, y) = x → y. Then e⇑L is a right preorder and e↑L is a left preorder from Lemma 1.3

(9).

(2) We define two functions e⇑
LX , e

↑
LX : LX × LX → L as

e⇑
LX (A,B) =

∧
x∈X

(A(x)⇒ B(x)), e↑
LX (A,B) =

∧
x∈X

(A(x)→ B(x)).

Then e⇑
LX is a right preorder and e↑

LX is a left preorder from Lemma 1.3 (9).
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Definition 1.6.[7,10] Let X and Y be two sets. Let F,H : LX → LY and G,K : LY → LX

be operators.

(1) The pair (F,G) is called a residuated connection between X and Y if for A ∈ LX

and B ∈ LY , F (A) ≤ B iff A ≤ G(B).

(2) The pair (H,K) is called a Galois connection between X and Y if for A ∈ LX and

B ∈ LY , B ≤ H(A) iff A ≤ K(B).

Definition 1.7.[7] (1) A map G : LX → LY is a right isotone map if for all A,B ∈ LX ,

e⇑
LX (A,B) ≤ e⇑

LY (G(A), G(B)).

(2) A map G : LX → LY is a left isotone map if for all A,B ∈ LX , e↑
LX (A,B) ≤

e↑
LY (G(A), G(B)).

(3) A map G : LX → LY is a right antitone map if for all A,B ∈ LX , e↑
LX (A,B) ≤

e⇑
LY (G(B), G(A)).

(4) A map G : LX → LY is a left antitone map if for all A,B ∈ LX , e⇑
LX (A,B) ≤

e↑
LY (G(B), G(A)).

Definition 1.8.[7] A map C : LX → LX is called a right (resp. left) closure operator if it

satisfies the following conditions:

(C1) A ≤ C(A), for all A ∈ LX .

(C2) C(C(A)) = C(A), for all A ∈ LX .

(C3) C is a right (resp. left) isotone map.

A map I : LX → LX is called a right (resp. left) interior operator if it satisfies the

following conditions:

(I1) I(A) ≤ A, for all A ∈ LX .

(I2) I(I(A)) = I(A), for all A ∈ LX .

(I3) I is a right (resp. left) isotone map.

Theorem 1.9.[7]Let G : LX → LY and H : LY → LX be two maps.

(1) A pair (G,H) is a residuated connection with two right isotone maps G and H iff

for all A ∈ LX and B ∈ LY , e⇑
LY (G(A), B) = e⇑

LX (A,H(B)).
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(2) A pair (G,H) is a residuated connection with two left isotone maps G and H iff for

all A ∈ LX and B ∈ LY , e↑
LY (G(A), B) = e↑

LX (A,H(B)).

(3) A pair (G,H) is a Galois connection with right antitone map G and left antitone

map H iff for all A ∈ LX and B ∈ LY , e↑
LX (A,H(B)) = e⇑

LY (B,G(A)).

(4) A pair (G,H) is a Galois connection with left antitone map G and right antitone

map H iff for all A ∈ LX and B ∈ LY , e⇑
LX (A,H(B)) = e↑

LY (B,G(A)).

Theorem 1.10.[7]Let G : LX → LY and H : LY → LX be right isotone maps with a

residuated connection (G,H). Then the following statements hold:

(1) H ◦G is a right closure operator.

(2) G ◦H is a right interior operator.

Corollary 1.11.[7]Let G : LX → LY and H : LY → LX be left isotone maps with a

residuated connection (G,H). Then the following statements hold:

(1) H ◦G is a left closure operator.

(2) G ◦H is a left interior operator.

Theorem 1.12.[7]Let G : LX → LY be a right antitone map and H : LY → LX be a left

antitone map with a Galois connection (G,H). Then

(1) H ◦G is a left closure operator.

(2) G ◦H is a right closure operator.

Corollary 1.13.[7]Let G : LX → LY be a left antitone map and H : LY → LX be a right

antitone map with a Galois connection (G,H). Then

(1) H ◦G is a right closure operator.

(2) G ◦H is a left closure operator.

2. Galois connections and right closure operators

Theorem 2.1.Let (X, eX) be a left preordered set. Let (eX)⇑, (eX)�, : LX → LX be maps

as follows:

(eX)⇑(A)(x) =
∧
y∈X

(eX(x, y)⇒ A(y)), (eX)�(A)(x) =
∨
y∈X

(eX(y, x)� A(y)).
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Then the following statements hold.

(1) (eX)⇑ is a right interior operator.

(2) (eX)� is a right closure operator.

(3) e⇑
LX ((eX)�(A), B) = e⇑

LX (A, (eX)⇑(B)).

(4) (eX)⇑ ◦ (eX)� = (eX)�.

(5) (eX)� ◦ (eX)⇑ = (eX)⇑.

Proof. (1) (I1) (eX)⇑(A)(x) ≤ (eX(x, x)⇒ A(x)) = A(x).

(I2) Since eX is a left preorder,
∨

y∈X((eX(y, z)� eX(x, y)) = eX(x, z). Thus

(eX)⇑((eX)⇑(B))(x)

=
∧

y∈X(eX(x, y)⇒ (eX)⇑(B)(y))

=
∧

y∈X

(
eX(x, y)⇒

∧
z∈X(eX(y, z)⇒ B(z))

)
=
∧

y∈X
∧

z∈X

(
(eX(y, z)� eX(x, y))⇒ B(z)

)
(by Lemma 1.3(6))

=
∧

z∈X

(
(
∨

y∈X((eX(y, z)� eX(x, y)))⇒ B(z)
)

=
∧

z∈X

(
eX(x, z)⇒ B(z)

)
= (eX)⇑(B)(x).

(I3) Since (eX(x, y)⇒ A(y))� (A(y)⇒ B(y)) ≤ eX(x, y)⇒ B(y), then

e⇑
LX (A,B) ≤ e⇑

LX ((eX)⇑(A), (eX)⇑(B)).

Thus (eX)⇑ is a right interior operator.

(2) (C1) A ≤ (eX)�(A).

(C2) Since eX is a left preorder,
∨

y∈X((eX(y, z)� eX(x, y)) = eX(x, z).

(eX)�((eX)�(A))(y) =
∨

z∈X(eX(z, y)� (eX)�(A)(z))

=
∨

z∈X((eX(z, y)�
∨

x∈X(eX(x, z)� A(x)))

=
∨

z∈X(
∨

x∈X((eX(z, y)� eX(x, z))� A(x)))

=
∨

x∈X(
∨

z∈X((eX(z, y)� eX(x, z))� A(x)))

=
∨

x∈X((eX(x, y)� A(x))

= (eX)�(A)(y).



GALOIS CONNECTIONS AND RIGHT CLOSURE OPERATORS 963

(C3) Since eX(x, y)� A(x)� (A(x)⇒ B(x)) ≤ eX(x, y)�B(y), then

(A(x)⇒ B(x)) ≤ (eX(x, y)� A(x))⇒ (eX(x, y)�B(y)),

e⇑
LX (A,B) ≤ e⇑

LX ((eX)�(A), (eX)�(B)).

Thus (eX)� is a right closure operator.

(3)

e⇑
LX ((eX)�(A), B) =

∧
y∈X((eX)�(A)(y)⇒ B(y))

=
∧

y∈X

(∨
x∈X(eX(x, y)� A(x))⇒ B(y)

)
=
∧

y∈X
∧

x∈X

(
(eX(x, y)� A(x))⇒ B(y)

)
=
∧

x∈X
∧

y∈X

(
A(x)⇒ (eX(x, y)⇒ B(y))

)
=
∧

x∈X

(
A(x)⇒

∧
y∈Y (eX(x, y)⇒ B(y))

)
=
∧

x∈X(A(x)⇒ (eX)⇑(B)(x))

= e⇑
LX (A, (eX)⇑(B)).

(4) By (1), since (eX)� ≥ (eX)⇑ ◦ (eX)�, we only show (eX)� ≤ (eX)⇑ ◦ (eX)� from:

> = e⇑
LX ((eX)�(A), (eX)�(A)) = e⇑

LX ((eX)�((eX)�(A)), (eX)�(A))

= e⇑
LX ((eX)�(A), (eX)⇑((eX)�(A))) (by (3)).

(5) By (2), since (eX)� ◦ (eX)⇑ ≥ (eX)⇑, we only show (eX)� ◦ (eX)⇑ ≤ (eX)⇑ from:

> = e⇑
LX ((eX)⇑(B), (eX)⇑(B)) = e⇑

LX ((eX)⇑(B), (eX)⇑((eX)⇑(B)))

= e⇑
LX ((eX)�((eX)⇑(B)), (eX)⇑(B)) (by (3)).

Theorem 2.2.Let (X, eX) be a right preordered set. Let (eX)↑,� (eX), : LX → LX be maps

as follows:

(eX)↑(A)(x) =
∧
y∈X

(eX(x, y)→ A(y)), �(eX)(A)(x) =
∨
y∈X

(A(y)� eX(y, x)).

Then the following statements hold.

(1) (eX)↑ is a left interior operator.

(2) �(eX) is a left closure operator.

(3) e↑
LX (�(eX)(A), B) = e↑

LX (A, (eX)↑(B)).

(4) (eX)↑ ◦� (eX) =� (eX).
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(5) �(eX) ◦ (eX)↑ = (eX)↑.

Proof. (1) (I1) (eX)↑(A) ≤ A. (I2) Since eX is a right preorder,
∨

y∈X((eX(x, y) �

eX(y, z)) = eX(x, z). Thus

(eX)↑((eX)↑(B))(x)

=
∧

y∈X(eX(x, y)→ (eX)↑(B)(y))

=
∧

y∈X

(
eX(x, y)→

∧
z∈X(eX(y, z)→ B(z))

)
=
∧

y∈X
∧

z∈X

(
(eX(x, y)� eX(y, z))→ B(z)

)
(by Lemma 1.3(6))

=
∧

z∈X

(
(
∨

y∈X((eX(x, y)� eX(y, z)))→ B(z)
)

=
∧

z∈X

(
eX(x, z)→ B(z)

)
= (eX)↑(B)(x).

(I3) Since (A(y)→ B(y))� (eX(x, y)→ A(y)) ≤ eX(x, y)→ B(y), then

e↑
LX (A,B) ≤ e↑

LX ((eX)↑(A), (eX)↑(B)).

Thus (eX)↑ is a left interior operator.

(2) (C1) A ≤ (eX)�(A).

(C2) Since eX is a right preorder,
∨

y∈X((eX(x, y)� eX(y, z)) = eX(x, z). Thus

�(eX)(�(eX)(A))(y) =
∨

z∈X(�(eX)(A)(z)� eX(z, y))

=
∨

z∈X(
∨

x∈X(A(x)� eX(x, z))� (eX(z, y))

=
∨

x∈X(A(x)�
∨

z∈X((eX(x, z)� eX(z, y)))

=
∨

x∈X(A(x)� eX(x, y))

=� (eX)(A)(y).

(C3) Since (A(y)→ B(y))� A(y)� eX(x, y) ≤ B(y)� eX(x, y),

e↑
LX (A,B) ≤ e↑

LX (�(eX)(A),� (eX)(B)).

Thus �(eX) is a left closure operator.

(3)
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e↑
LX (�(eX)(A), B) =

∧
y∈X(�(eX)(A)(y)→ B(y))

=
∧

y∈X

(∨
x∈X(A(x)� eX(x, y))→ B(y)

)
=
∧

y∈X
∧

x∈X

(
(A(x)� eX(x, y))→ B(y)

)
=
∧

x∈X
∧

y∈X

(
A(x)→ (eX(x, y)→ B(y))

)
=
∧

x∈X

(
A(x)→

∧
y∈Y (eX(x, y)→ B(y))

)
=
∧

x∈X(A(x)→ (eX)↑(B)(x))

= e↑
LX (A, (eX)↑(B)).

(4) By (1), since �(eX) ≥ (eX)↑ ◦� (eX), we only show �(eX) ≤ (eX)↑ ◦� (eX) from:

> = e↑
LX (�(eX)(A),� (eX)(A)) = e↑

LX (�(eX)(�(eX)(A)),� (eX)(A))

= e↑
LX (�(eX)(A), (eX)↑(�(eX)(A))).

(5) By (2), since �(eX) ◦ (eX)↑ ≥ (eX)↑, we only show �(eX) ◦ (eX)↑ ≤ (eX)↑ from:

> = e↑
LX ((eX)↑(B), (eX)↑(B)) = e↑

LX ((eX)↑(B), (eX)↑((eX)↑(B)))

= e↑
LX (�(eX)((eX)↑(B)), (eX)↑(B)).

Theorem 2.3.For each A ∈ LX and B ∈ LY and R ∈ LX×Y , we define: R→, R⇒ : LX →

LY is defined as:

R→(A)(y) =
∧
x∈X

(A(x)→ R(x, y)), R⇒(A)(y) =
∧
x∈X

(A(x)⇒ R(x, y))

and R⇐, R← : LY → LX is defined as:

R←(B)(x) =
∧
y∈Y

(B(y)→ R(x, y)), R⇐(B)(x) =
∧
y∈Y

(B(y)⇒ R(x, y)).

(1) R⇒ is a left antitone map and R→ is a right antitone map.

(2) R⇐ is a left antitone map and R← is a right antitone map.

(3) Let R⇒ be a left antitone map and R← a right antitone map with a Galois connection

(R⇒, R←).

(4) R⇒ ◦ R← : LY → LY is a left closure operator and R← ◦ R⇒ : LX → LX is a right

closure operator.

(5) e⇑
LY (B,R→(A)) = e↑

LX (A,R⇐(B)).
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(6) R→ ◦ R⇐ : LY → LY is a right closure operator and R⇐ ◦ R→ : LX → LX is a left

closure operator.

Proof. (1) Since (A(x)⇒ B(x))� (B(x)⇒ R(x, y)) ≤ (A(x)⇒ R(x, y)),

e⇑
LX (A,B) ≤ e↑

LY (R⇒(B), R⇒(A)).

(2) Since (B(y)→ R(x, y))� (A(y)→ B(y)) ≤ (A(y)→ R(x, y)),

e↑
LY (A,B) ≤ e⇑

LX (R←(B), R←(A)).

(3) From Theorem 1.9(4), we only show that e⇑
LX (A,R←(B)) = e↑

LY (B,R⇒(A)) from:

e⇑
LX (A,R←(B))

=
∧

x∈X(A(x)⇒ R←(B)(x))

=
∧

x∈X(A(x)⇒
∧

y∈X(B(y)→ R(x, y))

=
∧

x∈X
∧

y∈X(A(x)⇒ (B(y)→ R(x, y))

=
∧

y∈X(B(y)→
∧

x∈X(A(x)⇒ R(x, y)) (by Lemma 1.3(7))

=
∧

y∈X(B(y)→ R⇒(A)(y)) = e↑
LY (B,R⇒(A)).

(5) From Theorem 1.9(3), e⇑
LY (B,R→(A)) = e↑

LX (A,R⇐(B)) from

e↑
LX (A,R⇐(B)) =

∧
x∈X(A(x)→ R⇐(B)(x))

=
∧

x∈X(A(x)→
∧

y∈X(B(y)⇒ R(x, y))

=
∧

x∈X
∧

y∈X(A(x)→ (B(y)⇒ R(x, y))

=
∧

y∈X(B(y)⇒
∧

x∈X(A(x)→ R(x, y))

=
∧

y∈X(B(y)⇒ R→(A)(y)) = e⇑
LY (B,R→(B)).

(4) and (6) are proved from Corollary 1.12 and Theorem 1.13, respectively.

Theorem 2.4.Let F,G : LX → LX be maps such that

e⇑
LX (F (A), B) = e⇑

LX (A,G(B)).

Then the following statements are equivalent.

(1) F is a right interior operator.

(2) G is a right closure operator.

(3) F ◦G = F .
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(4) G ◦ F = G.

Proof. Since e⇑
LX (F (A), B) = e⇑

LX (A,G(B)), by Theorem 1.9(1), F and G are right

isotone maps.

(1) ⇒(2). Since > = e⇑
LX (F (A), A) = e⇑

LX (A,G(A)), then A ≤ G(A).

e⇑
LX (G(G(A)), G(A)) = e⇑

LX (F (G(G(A))), A) = e⇑
LX (F (F (G(G(A)))), A)

= e⇑
LX (F (G(G(A))), G(A)) = e⇑

LX (G(G(A)), G(G(A))) = >.

Thus G is a right closure operator.

(2) ⇒(3). Since F is a right isotone map, > = e⇑
LX (A,G(A)) ≤ e⇑

LX (F (A), F (G(A))).

Then F (A) ≤ F (G(A)). Moreover, F (A) = F (G(A)) from:

e⇑
LX (F (G(A)), F (A)) = e⇑

LX (G(A), G(F (A))) = e⇑
LX (G(A), G(G(F (A))))

≥ e⇑
LX (A,G(F (A))) = >. ( G is a right isotone map)

(3) ⇒(4). Let F ◦ G = F . Then G ◦ F ◦ G = G ◦ F . Since G ◦ F ◦ G ≥ G and

F ◦G(A) ≤ A implies G ◦ F ◦G(A) ≤ G(A). So, G ◦ F = G ◦ F ◦G = G.

(4) ⇒(3). It follows from F ◦G ◦ F = F .

(3) and (4)⇒(1). e⇑
LX (F (A), A) ≥ e⇑

LX (F (A), F (G(A)))�e⇑
LX (F (G(A)), A) = >�> =

>. Moreover, e⇑
LX (F (A), F (F (A))) = e⇑

LX (A,G(F (F (A)))) = e⇑
LX (A,G(F (A))) = >.

The following corollary are similarly proved as Theorem 2.4.

Corollary 2.5.Let F,G : LX → LX be maps such that

e↑
LX (F (A), B) = e↑

LX (A,G(B)).

Then the following statements are equivalent.

(1) F is a left interior operator.

(2) G is a left closure operator.

(3) F ◦G = F .

(4) G ◦ F = G.

Theorem 2.6.Let F,G : LX → LX be maps such that

e↑
LX (F (A), B) = e↑

LX (A,G(B)).
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Then the following statements are equivalent.

(1) F is a left closure operator.

(2) G is a left interior operator.

(3) G ◦ F = F .

(4) F ◦G = G.

Proof. Since e↑
LX (F (A), B) = e↑

LX (A,G(B)), by Theorem 1.9(2), F and G are left

isotone maps.

(1) ⇒(3). Since F (A) = F (G(F (A))), we have

e↑
LX (G(F (A)), F (A)) = e↑

LX (G(F (A)), F (G(F (A)))) = >.

Then G(F (A)) ≤ F (A). Moreover,

e↑
LX (F (A), G(F (A))) = e↑

LX (F (F (A)), F (G(F (A)))) = e↑
LX (F (F (A)), F (A)) = >.

Then G(F (A)) ≥ F (A).

(3) ⇒(1). Since F is a left isotone map and A ≤ G(F (A)),

e↑
LX (A,F (A)) = e↑

LX (A,G(F (A))) = >.

Then A ≤ F (A).

e↑
LX (F (F (A)), F (A)) = e↑

LX (F (A), G(F (A))) = e⇑
LX (F (A), F (A)) = >.

Thus F (A) = F (F (A)).

(3) ⇔(4). It follows from G ◦ F ◦G = G and F ◦G ◦ F = F .

(2) ⇔(4). We prove a similar method as (1) ⇔(3).

The following corollary are similarly proved as Theorem 2.5.

Corollary 2.7.Let F,G : LX → LX be maps such that

e⇑
LX (F (A), B) = e⇑

LX (A,G(B)).

Then the following statements are equivalent.

(1) F is a right closure operator.

(2) G is a right interior operator.
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(3) G ◦ F = F .

(4) F ◦G = G.

Example 2.8.Let K = {(x, y) ∈ R2 | x > 0} be a set and we define an operation

⊗ : K ×K → K as follows:

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + y1).

Then (K,⊗) is a group with e = (1, 0), (x, y)−1 = ( 1
x
,− y

x
).

We have a positive cone P = {(a, b) ∈ R2 | a = 1, b ≥ 0 , or a > 1} because P ∩ P−1 =

{(1, 0)}, P �P ⊂ P , (a, b)−1�P �(a, b) = P and P ∪P−1 = K. For (x1, y1), (x2, y2) ∈ K,

we define

(x1, y1) ≤ (x2, y2) ⇔ (x1, y1)−1 � (x2, y2) ∈ P, (x2, y2)� (x1, y1)−1 ∈ P

⇔ x1 < x2 or x1 = x2, y1 ≤ y2.

Then (K,≤ ⊗) is a lattice-group.

The structure (L,�,⇒,→, (1
2
, 1), (1, 0)) is a generalized residuated lattice with strong

negation where ⊥ = (1
2
, 1) is the least element and > = (1, 0) is the greatest element from

the following statements:

(x1, y1)� (x2, y2) = (x1, y1)⊗ (x2, y2) ∨ (1
2
, 1) = (x1x2, x1y2 + y1) ∨ (1

2
, 1),

(x1, y1)⇒ (x2, y2) = ((x1, y1)−1 ⊗ (x2, y2)) ∧ (1, 0) = (x2

x1
, y2−y1

x1
) ∧ (1, 0),

(x1, y1)→ (x2, y2) = ((x2, y2)⊗ (x1, y1)−1) ∧ (1, 0) = (x2

x1
,−x2y1

x1
+ y2) ∧ (1, 0).

Furthermore, we have (x, y) = (x, y)∗◦ = (x, y)◦∗ from:

(x, y)∗ = (x, y)⇒ (
1

2
, 1) = (

1

2x
,
1− y

x
),

(x, y)∗◦ = (
1

2x
,
1− y

x
)→ (

1

2
, 1) = (x, y).

Let X = {a, b, c} be a set. Define (e1
X(a, b)), (e2

X(a, b)) ∈ LX×X as

e1
X =


(1, 0) (5

8
, 5

2
) (5

6
, 5

3
)

(5
7
, 30

7
) (1, 0) (5

8
,−5

4
)

(1,−2) (5
7
, 10

3
) (1, 0)

 e2
X =


(1, 0) (2

3
, 5) (5

6
, 1)

(5
7
, 3) (1, 0) (6

7
, 4)

(5
6
,−1) (3

4
, 2) (1, 0)


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We easily show that e1
X is a right partial order and e2

X is a left partial order. But e2
X is

not a right partial order because

e2
X(b, c)� e2

X(c, a) = (
6

7
, 4)� (

5

6
,−1) = (

5

7
,
22

7
) 6≤ e2

X(b, a) = (
5

7
, 3).

For A = ((2
3
, 1), (3

5
,−1), (1,−1))t,

�(e2
X)(A) = ((

5

6
,−2), (

3

4
, 1), (1,−1))t,

(e2
X)↑(�(e2

X)(A)) =� (e2
X)(A),

(e2
X)�(A) = ((

5

6
,−11

6
), (

3

4
, 1), (1,−1))t,

(e2
X)⇑((e2

X)�(A)) = ((
5

6
,−11

6
), (

3

4
, 1), (1,−4

3
))t 6= (e2

X)�(A).

Since e2
X is not a right partial order, by Theorem 2.1 (4), (e2

X)⇑((e2
X)�(A)) 6= (e2

X)�(A).

Let X = {a, b, c} and Y = {u, v} be sets. Define R ∈ LX×Y as

R =


(1, 0) (5

8
, 5

2
)

(5
7
, 30

7
) (5

8
,−5

4
)

(1
2
, 2) (5

6
, 10

3
)


For A = ((2

3
, 1), (1

2
, 2), (2

3
,−1))t,

R→(A) = ((
3

4
,
11

4
), (

15

16
,−25

16
))t, R⇒(A) = ((

3

4
,
9

2
), (

15

16
,
9

4
))t

R⇐(R→(A)) = ((
2

3
,
13

3
), (

2

3
,
1

3
), (

2

3
,−1))t,

R←(R⇒(A)) = ((
2

3
,
85

24
), (

2

3
,− 5

24
), (

2

3
,
1

6
))t.
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