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Abstract. The study of the field of p-adic numbers has been an important area of research in mathemat-

ics, giving rise to several important results such as the Hasse-Minkowski Theorem and the Local-Global

Principle. The analysis on the complete ultrametric space Qp reveals many interesting properties that

are radically different from R, the completion of Q with respect to the euclidean norm. The application

of different numerical methods, and the analysis of their convergence in Qp has been a recent develop-

ment in computational number theory. The application of the Newton-Raphson, fixed-point, and secant

methods to compute for the square and cube roots of p-adic numbers in Qp have been respectively ad-

dressed in [2, 5, 6]. In this paper, we complete the problem in [2] by computing the qth root of p-adic

numbers in Qp where p ≤ q ≤ 3. Given a root of order r, we determine the order of the nth iterate of

the Newton-Raphson method, provide sufficient conditions for its convergence, and give the number of

iterations required for any desired number of correct digits in the approximate.
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1. Introduction

The use of algorithmic techniques and concepts to compute for p-adic numbers dates

back to the time when Kurt Hensel developed the foundations of p-adic analysis. The basic
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idea behind the use of numerical root-finding methods to compute for p-adic numbers is

to determine the digits in their p-adic expansion using iterative methods. A classic result

in p-adic analysis that employs numerical concepts is Hensel’s lemma which provides the

conditions for the existence of p-adic integral solutions of polynomials in Zp[x]. A well-

known application of Hensel’s lemma is on the computation of the square roots in Zp of

p-adic numbers using a method now known as Hensel lifting. Serre in [4] explicitly laid

the conditions for the extension of the existence of square roots of p-adic numbers in Qp.

The computation of the square roots and cube roots of p-adic numbers respectively using

the fixed-point method and the secant method have been addressed in [5, 6]. In [2], the

Newton-Raphson method was used to compute the square roots and cube roots of p-adic

numbers respectively for the cases where p > 2 and p > 3. In this paper, we complete

the problem in [2] by addressing the case where p = 2 for the square root and p ≤ 3 for

the cube root of p-adic numbers. For both cases, we provide the order of the nth iterate

of the Newton-Raphson method, sufficient conditions for convergence, and the number of

iterations required for any desired number of correct digits in the approximate.

2. Preliminaries

We necessarily start by defining a valuation on Q.

Definition 2.1 Let p ∈ N be a prime number, 0 6= x ∈ Q. The p-adic valuation vp(x) of

x is defined as

vp(x) =


r if x ∈ Z and r is the largest integer such that x ≡ 0(mod pr)

vp(a)− vp(b) if x =
a

b
, a, b ∈ Z, (a, b) = 1 and b 6= 0

With this valuation, we can define a map | · |p : Q→ R+ as follows:

Definition 2.2 Let p ∈ N be a prime number, x ∈ Q. The p-adic norm | · |p of x is

defined as

|x|p =


p−vp(x) if x 6= 0

0 if x = 0
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Using the p-adic norm and the process of completion, we have the following definition.

Definition 2.3 The field of p-adic numbers Qp is the completion of Q with respect to

the p-adic norm | · |p. The elements of Qp are equivalence classes of Cauchy sequences in

Q with respect to the extension of the p-adic norm defined as

|a|p = lim
n→∞

|an|p

where {an} is a Cauchy sequence of rational numbers representing a ∈ Qp.

Because the p-adic norm | · |p is non-Archimedean, we call (Qp, | · |p) a complete ultra-

metric space. An interesting property of this complete ultrametric space is that we get a

stronger condition for convergent sequences in Qp.

Theorem 2.4 A sequence {xn} in Qp is convergent if and only if

lim
n→∞

|xn+1 − xn|p = 0 (1)

Since each element in Qp is an equivalence class, the following theorem provides a

convenient way to write the elements using its (unique) canonical representative.

Definition 2.5 Every p-adic number a ∈ Qp has a unique representation

a = anp
n + an+1p

n+1 + ...+ a−1p
−1 + a0 + a1p+ a2p

2 + ... =
∞∑
i=n

aip
i

where ai ∈ Z and 0 ≤ ai ≤ p− 1 for i ≥ n and n < 0.

A quick method of writing p-adic numbers is by writing just the coefficients of the

powers of p. For instance, in Q3, 12 = 0 · 30 + 1 · 31 + 1 · 32 + 0 · 33 + ... = .0110...

Definition 2.6 Let Zp denote the set of p-adic integers, then

Zp =

{
a ∈ Qp : a =

∞∑
i=0

aip
i, 0 ≤ ai ≤ p− 1

}
= {a ∈ Qp : |a|p ≤ 1}

The set Z×p of p-adic units is given by

Z×p =

{
a ∈ Zp : a =

∞∑
i=0

aip
i, a0 6= 0

}
= {a ∈ Qp : |a|p = 1}

One can verify that all integers are p-adic integers. However it can be checked that
1

2
,

among others, is an integer in Q7.
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An alternative way of writing p-adic numbers is in terms of their p-adic valuation.

Theorem 2.7 Let a ∈ Q∗p, then

a = pvp(a)u

for some u ∈ Z×p .

The following result will be an important tool in our discussion.

Lemma 2.8 Let a, b ∈ Qp. Then

a ≡ b( mod pk)⇔ |a− b|p ≤ p−k

We next define what we shall refer to as the nth root of a p-adic number.

Definition 2.9 A p-adic number b ∈ Qp is said to be an nth root of a ∈ Qp of order

k ∈ N if and only if bn ≡ a(mod pk).

This definition is the basis for the following results, the first of which is a simpler

restatement of one of Serre’s result in [4].

Theorem 2.10 Let p 6= 2 be a prime. An element x ∈ Qp is a square if and only if it can

be written x = p2ny2 with n ∈ Z and y ∈ Z×p a p-adic unit.

Theorem 2.11 Let p be a prime, then

i. If p 6= 3, then a has a cube root in Qp if and only if vp(a) = 3m, m ∈ Z and u = vq

for some v ∈ Z×p .

ii. If p = 3, then a has a cube root in Q3 if and only if vp(a) = 3m, m ∈ Z and u ≡ 1(

mod 9) or u ≡ 2(mod 3).

3. Main results

Theorem 3 on page 17.
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Since p-adic polynomials have continuous derivatives, for a ∈ Qp, the function f(x) =

x2 − a satisfies the conditions of the Newton-Raphson method with recurrence relation

xn+1 = xn −
f(xn)

f ′(xn)

= xn −
x2n − a

2xn

=
x2n + a

2xn
(2)

On the Square Roots of p-adic Numbers

We shall now use the Newton-Raphson method to compute the square root of p-adic

numbers in Qp where p = 2. We follow the method used in [2]. Let a ∈ Qp such that

|a|p = p−2m,m ∈ Z.

Proposition 3.1. Let {xn} be the sequence of p-adic numbers obtained from the Newton-

Raphson iteration. If x0 is a square root of a of order r, |x0|p = p−m, r > 2m + 1, and

p = 2, then

(i) |xn|p = p−m for n = 1, 2, 3, ...;

(ii) x2n ≡ a( mod p2
nr−2(m+1)(2n−1));

(iii) {xn} converges to the square root of a

Proof. We prove by induction. Note first that by our assumption, we have

x20 = a+ bpr

where 0 < b < p. Since p = 2 and r > 2m+ 1, Eq. (2) then gives us

|x1|p =
|2a+ bpr|p
|2x0|p

=
max{|2a|p, |bpr|p}

|2x0|p

=
p−(2m+1)

p−(m+1)

= p−m (3)
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Also, by equation (2), we have

x21 − a =
(x20 − a)2

4x20

Let φ(x0) =
1

4x20
and notice that

|φ(x0)|p = p2(m+1)

Since x0 is a square root of a of order r, we have

|(x20 − a)2|p ≤ p−2r

and therefore

|x21 − a|p ≤ p2(m+1)p−2r

= p2(m+1)−2r

By Lemma 2.8

x21 − a ≡ 0( mod p2r−2(m+1)) (4)

Now, assume that

|xn−1|p = p−m (5)

x2n−1 ≡ a( mod p2
n−1r−2(m+1)(2n−1−1)) (6)

Hence,

x2n−1 = a+ bp2
n−1r−2m(2n−1−1)

where 0 < b < p. By Eq. (2),

|xn|p =
|2a+ bp2

n−1r−2(m+1)(2n−1−1)|p
|2xn−1|p

=
max{|2a|p, |bp2

n−1r−2(m+1)(2n−1−1)|p}
|2xn−1|p

=
p−(2m+1)

p−(m+1)

= p−m (7)
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We also have

x2n − a =
(x2n−1 − a)2

4x2n−1

Let φ(xn−1) =
1

4x2n−1
and note that by equation (7)

|φ(xn−1)|p = p2(m+1)

Since xn−1 is a square root of a of order 2n−1r − 2(m+ 1)(2n−1 − 1), we have

|x2n − a|p ≤ p2(m+1)p−2(2
n−1r−2(m+1)(2n−1−1))

= p2(m+1)(2n−1)−2nr (8)

By Lemma 2.8, we have

x2n − a ≡ 0( mod p2
nr−2(m+1)(2n−1)) (9)

Finally, (iii) follows clearly from inequality (8) as n→ +∞. This completes the proof.

Now, let γn = 2nr − 2(m+ 1)(2n − 1). We then have the following result.

Proposition 3.2. Let {xn} be the sequence of approximates converging to the square

root of a obtained from the Newton-Raphson method in Proposition 3.1. If p = 2

(a) Then for every iteration, the number of correct digits in the approximate increases

by γn − (m+ 1) = 2nr − (m+ 1)(2n+1 − 1)

(b) The number of iterations to obtain at least M correct digits is

n =


ln
(
M−(m+2)
r−2(m+1)

)
ln 2


Proof. Consider two consecutive approximates xn+1 and xn. Note that

|xn+1 − xn|p =

∣∣∣∣−1

2xn

∣∣∣∣
p

|(x2n − a)|p

≤ p(m+1)−γn

Hence,

xn+1 − xn ≡ 0( mod pγn−(m+1))
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Since we want M correct digits in the approximate, we must set the order to M + m.

That is,

2nr − 2(m+ 1)(2n − 1) = M +m

⇒ 2n =
M − (m+ 2)

r − 2(m+ 1)

Since {xn} is the sequence of p-adic numbers in Proposition 3.1, we have r−2(m+1) > 0.

Hence we take

n =


ln
(
M−(m+2)
r−2(m+1)

)
ln 2

 (10)

This n is a sufficient number of iterations to provide at least M correct digits in the

approximate.

On the Cube Roots of p-adic Numbers

We now compute for the cube roots of p-adic number in Qp where p ≤ 3. Let |a|p =

p−3m,m ∈ Z and f(x) = x3 − a. Employing the Newton-Raphson method, we obtain the

new recurrence relation

xn+1 =
2x3n + a

3x2n
(11)

Proposition 3.3. Let {xn} be the sequence of p-adic numbers obtained from the Newton-

Raphson iteration. If x0 is a cube root of a of order r, |x0|p = p−m, and r > 3m for p = 2

or r > 3m+ 2 for p = 3, then

(i) |xn|p = p−m for n = 1, 2, 3, ...

(ii)


x3n ≡ a( mod p2

nr−3m(2n−1)) if p = 2

x3n ≡ a( mod p2
nr−(3m+1)(2n−1)) if p = 3

(iii) {xn} converges to the cube root of a

Proof. We again prove by induction. By our assumption, we have

x30 = a+ bpr
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where 0 < b < p. Using Eq. (11), we have

|x1|p =
|3a+ 2bpr|p
|3x20|p

=
max{|3a|p, |2bpr|p}

|3x20|p

=


p−3m

p−2m
if p = 2

p−(3m+1)

p−(2m+1)
if p = 3

= p−m

By equation (11),

x31 − a =
(x30 − a)2(8x30 + a)

27x60

Let φ(x0) =
(8x30 + a)

27x60
and note that

|φ(x0)|p =
|8bpr + 9a|p
|27x60|p

=
max{|8bpr|p, |9a|p}

|27x60|p

=


p−3m

p−6m
if p = 2

p−(3m+2)

p−(6m+3)
if p = 3

=


p3m if p = 2

p3m+1 if p = 3

Since x0 is a cube root of a of order r, we have

|(x30 − a)2|p ≤ p−2r

and therefore

|x31 − a|p ≤


p3m−2r if p = 2

p(3m+1)−2r if p = 3
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By Lemma 2.8, we have


x31 − a ≡ 0( mod p2r−3m) if p = 2

x31 − a ≡ 0( mod p2r−(3m+1)) if p = 3

As in the square root, proceeding by induction completes the proof and (iii) follows as

n→ +∞. This completes the proof.

Now, let α = 2nr − 3m(2n − 1) and β = 2nr − (3m + 1)(2n − 1). We then have the

following result.

Proposition 3.4. Let {xn} be the sequence of approximates in Proposition 3.3.

a. Then for every iteration, the number of correct digits in the approximate increases

by αn− 2m = 2nr− 3m2n +m if p = 2 and βn− (2m+ 1) = 2nr− (3m+ 1)2n +m

if p = 3.

b. The number of iterations to obtain at least M correct digits is

n =



⌈
ln
(
M−2m
r−3m

)
ln 2

⌉
if p = 2

ln
(
M−(2m+1)
r−(3m+1)

)
ln 2

 if p = 3

Proof. Consider two consecutive approximates xn+1 and xn. Note that

|xn+1 − xn|p =

∣∣∣∣−1

3x2n

∣∣∣∣
p

|(x3n − a)|p

≤


p2m−αn if p = 2

p2m+1−βn if p = 3

Hence,

xn+1 − xn ≡


0( mod pαn−2m) if p = 2

0( mod pβn−(2m+1)) if p = 3
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Since we require M correct digits in the approximate, we must set the order to M + m.

That is,

M +m =


2nr − 3m(2n − 1) if p = 2

2nr − (3m+ 1)(2n − 1) if p = 3

Since {xn} is the sequence of p-adic numbers in Proposition 3.3, we have r − 3m > 0 if

p = 2 and r − (3m+ 2) > 0 if p = 3. Hence we take

n =



⌈
ln
(
M−2m
r−3m

)
ln 2

⌉
if p = 2

ln
(
M−(2m+1)
r−(3m+1)

)
ln 2

 if p = 3

This n is a sufficient number of iterations to provide at least M correct digits in the

approximate.
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