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ON THE SQUARE AND CUBE ROOTS OF P-ADIC NUMBERS
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Abstract. The study of the field of p-adic numbers has been an important area of research in mathemat-
ics, giving rise to several important results such as the Hasse-Minkowski Theorem and the Local-Global
Principle. The analysis on the complete ultrametric space Q, reveals many interesting properties that
are radically different from R, the completion of Q with respect to the euclidean norm. The application
of different numerical methods, and the analysis of their convergence in @Q, has been a recent develop-
ment in computational number theory. The application of the Newton-Raphson, fixed-point, and secant
methods to compute for the square and cube roots of p-adic numbers in Q, have been respectively ad-
dressed in [2, 5, 6]. In this paper, we complete the problem in [2] by computing the gth root of p-adic
numbers in Q, where p < ¢ < 3. Given a root of order r, we determine the order of the nth iterate of
the Newton-Raphson method, provide sufficient conditions for its convergence, and give the number of

iterations required for any desired number of correct digits in the approximate.
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1. Introduction

The use of algorithmic techniques and concepts to compute for p-adic numbers dates

back to the time when Kurt Hensel developed the foundations of p-adic analysis. The basic

Received May 12, 2013
993



994 PAUL SAMUEL P. IGNACIO

idea behind the use of numerical root-finding methods to compute for p-adic numbers is
to determine the digits in their p-adic expansion using iterative methods. A classic result
in p-adic analysis that employs numerical concepts is Hensel’s lemma which provides the
conditions for the existence of p-adic integral solutions of polynomials in Z,[z]. A well-
known application of Hensel’s lemma is on the computation of the square roots in Z, of
p-adic numbers using a method now known as Hensel lifting. Serre in [4] explicitly laid
the conditions for the extension of the existence of square roots of p-adic numbers in Q,,.
The computation of the square roots and cube roots of p-adic numbers respectively using
the fixed-point method and the secant method have been addressed in [5, 6]. In [2], the
Newton-Raphson method was used to compute the square roots and cube roots of p-adic
numbers respectively for the cases where p > 2 and p > 3. In this paper, we complete
the problem in [2] by addressing the case where p = 2 for the square root and p < 3 for
the cube root of p-adic numbers. For both cases, we provide the order of the nth iterate
of the Newton-Raphson method, sufficient conditions for convergence, and the number of

iterations required for any desired number of correct digits in the approximate.
2. Preliminaries

We necessarily start by defining a valuation on Q.
Definition 2.1 Let p € N be a prime number, 0 # 2 € Q. The p-adic valuation v,(x) of

z is defined as

@) r if x € Z and r is the largest integer such that z = 0(mod p")
vp(x) =

vp(a) — vy(b) ifx:%, a,b € Z,(a,b)=1and b#0

With this valuation, we can define a map | - [, : Q — R as follows:
Definition 2.2 Let p € N be a prime number, z € Q. The p-adic norm | - |, of z is
defined as

p @i g £ 0
|z, =

0 itz =0
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Using the p-adic norm and the process of completion, we have the following definition.
Definition 2.3 The field of p-adic numbers Q, is the completion of Q with respect to
the p-adic norm | - |,. The elements of Q,, are equivalence classes of Cauchy sequences in

Q with respect to the extension of the p-adic norm defined as
= I
jal, L |anlp

where {a,} is a Cauchy sequence of rational numbers representing a € Q,,.

Because the p-adic norm | - |, is non-Archimedean, we call (Q,, |- |,) a complete ultra-
metric space. An interesting property of this complete ultrametric space is that we get a
stronger condition for convergent sequences in Q,,.

Theorem 2.4 A sequence {z,} in Q, is convergent if and only if
lim |z,41 — 2], =0 (1)
n—oo

Since each element in @, is an equivalence class, the following theorem provides a
convenient way to write the elements using its (unique) canonical representative.

Definition 2.5 Every p-adic number a € @, has a unique representation
_ n n+1 —1 2 _ i
a=app" + Qpp1p T+ ...+ a1p "+ ag+ap+agp +---—Zaip

where a; € Z and 0 < a; <p—1fori>nand n < 0.

A quick method of writing p-adic numbers is by writing just the coefficients of the
powers of p. For instance, in Q3, 12=0-3°+1-3"+1-3240-3%+ ... = .0110...
Definition 2.6 Let Z, denote the set of p-adic integers, then

Z, = {ae@p:azzfzip",ogai@—l}={ae@p:|a|p§1}
=0
The set Z,; of p-adic units is given by
Zy = {aEZp:a:Zaipi,ao#O} ={aeQ,:|al, =1}
i=0

1
One can verify that all integers are p-adic integers. However it can be checked that —,

among others, is an integer in Q5.
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An alternative way of writing p-adic numbers is in terms of their p-adic valuation.

Theorem 2.7 Let a € Qj, then

Jor some v € Z;.
The following result will be an important tool in our discussion.

Lemma 2.8 Let a,b € Q,. Then

a=0b( mod p*) & |a—0bl, <p*

We next define what we shall refer to as the nth root of a p-adic number.
Definition 2.9 A p-adic number b € Q, is said to be an nth root of a € QQ, of order
k € N if and only if b = a(mod p*).

This definition is the basis for the following results, the first of which is a simpler
restatement of one of Serre’s result in [4].

Theorem 2.10 Let p # 2 be a prime. An element x € Q,, is a square if and only if it can
be written x = p**y* with n € Z and y € ) a p-adic unit.

Theorem 2.11 Let p be a prime, then

i. Ifp# 3, then a has a cube root in Q, if and only if v,(a) = 3m, m € Z and u = v4
Jor some v € Z;.

ii. Ifp =3, then a has a cube root in Qs if and only if vy(a) = 3m, m € Z and u = 1(
mod 9) or u = 2(mod 3).

3. Main results

Theorem 3 on page 17.
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Since p-adic polynomials have continuous derivatives, for a € Q,, the function f(z) =

x? — a satisfies the conditions of the Newton-Raphson method with recurrence relation

Tpt1 = Tn — ;/ii:))

2
T, —a

::L‘n—
2%,
2
T, +a

= (2)

2x,

On the Square Roots of p-adic Numbers
We shall now use the Newton-Raphson method to compute the square root of p-adic
numbers in Q, where p = 2. We follow the method used in [2]. Let a € Q, such that

lal, = p~?™,m € Z.

Proposition 3.1. Let {z,} be the sequence of p-adic numbers obtained from the Newton-
Raphson iteration. If xy is a square root of a of order r, |zo|l, = p~™, r > 2m + 1, and

p =2, then
(1) |zulp=p ™ forn=1,2,3,..;

)

(ii) x% = a( mod p2”r—2(m+1)(2”—1)).

(iii) {z,} converges to the square root of a

Proof. We prove by induction. Note first that by our assumption, we have
2 _ T
x5 =a+bp

where 0 < b < p. Since p =2 and r > 2m + 1, Eq. (2) then gives us

2], = |2a + bp" |,
P |2$0‘p

maX{|2a|p, |bpr|p}

|2$0|p
B p@mt)
o p—(m—i-l)

=p " (3)
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Also, by equation (2), we have

1
Let ¢(xg) = P and notice that
0

[p(wo)lp = "+

Since xq is a square root of a of order r, we have
2 2 —2r
(x5 —a)’|, <p

and therefore

|$% . a|p < p2(m+1)p—2r
_ p2(m+1)72r
By Lemma 2.8

22 — a = 0( mod p*~2mH+D)

Now, assume that

|Tn-1lp=p""
37%71 = a( mod p2”_1r72(m+1)(2”_171))
Hence,
I?L—l —a+ bp2"_17'—2m(2"_1—1)

where 0 < b < p. By Eq. (2),

|Tnlp = |2a+prn_1r72(m+1)(2"_171)|p
nip —

221
max{|2al,, [pp* "2 DETD)
B 221
premiy
p~(m+1)
= p_m



ON THE SQUARE AND CUBE ROOTS OF P-ADIC NUMBERS 999

We also have

22— g= (754 — a)®
! oy
1 .
Let ¢(z,—1) = e and note that by equation (7)
n—1

[¢(@n-1)]p = p*" Y
Since x,,_; is a square root of a of order 2"7!r — 2(m + 1)(2"~! — 1), we have

|q;2 — a|p < p2(m+1)p—2(2”_1r—2(m+1)(2"—1_1))
n —

_ pQ(m—i—l)(Q"—l)—Q"r (8)

By Lemma 2.8, we have

22 —a = 0( mod p¥'"2m+DE"-1)) 9)

Finally, (iii) follows clearly from inequality (8) as n — +o0. This completes the proof.

Now, let v, = 2"r — 2(m + 1)(2" — 1). We then have the following result.
Proposition 3.2. Let {z,} be the sequence of approximates converging to the square

root of a obtained from the Newton-Raphson method in Proposition 3.1. If p = 2

(a) Then for every iteration, the number of correct digits in the approximate increases
by ¥ — (m+1) = 2" — (m + 1)(2""! - 1)

(b) The number of iterations to obtain at least M correct digits is

M —(m+2)
. In (m)
N In2

Proof. Consider two consecutive approximates x,.; and x,. Note that

—1
|In+1 - xn‘p = E p|<‘rn - a>|P
S p(m‘f'l)—%

Hence,

Tpt1 — Ty = O( mod pvn—(m-l—l))
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Since we want M correct digits in the approximate, we must set the order to M + m.

That is,

2"r —2(m+1)(2"—=1)=M+m

M —(m+2)

> =———=
r—2(m+1)

Since {z,} is the sequence of p-adic numbers in Proposition 3.1, we have r —2(m+1) > 0.

Hence we take

n (Mf(erQ))

r—2(m+1)
S B S VA 10
" In2 (10)

This n is a sufficient number of iterations to provide at least M correct digits in the

approximate.
On the Cube Roots of p-adic Numbers

We now compute for the cube roots of p-adic number in Q, where p < 3. Let |a|, =
p3™ m € Z and f(x) = 2* — a. Employing the Newton-Raphson method, we obtain the
new recurrence relation

222 +a
322

(11)

Tpt1 =

Proposition 3.3. Let {x,} be the sequence of p-adic numbers obtained from the Newton-
Raphson iteration. If zg is a cube root of a of order r, |z¢|, = p~™, and r > 3m for p = 2

or r > 3m + 2 for p = 3, then

(i) |zulp=p " forn=1,2,3,..

23 = a( mod p?"r—3m" 1) ifp=2

(i)
23 = a( mod p?'r-GmHNE"-D) if p =3

(iii) {x,} converges to the cube root of a

Proof. We again prove by induction. By our assumption, we have

T8 =a+bp"
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where 0 < b < p. Using Eq. (11), we have

13a + 2bp"|,
|‘T1‘P = T a2
|35,
 max{[3aly, 2697,
325,
—3m
p .
— ifp=2
= —(3m+1)
p .
p=Cm+D) ifp=3
= p_m
By equation (11),
(o)
! 2728
8 3
Let ¢(xg) = w and note that
27y
_|8bp" +9al,
’¢(x0>’p - ‘273:8‘1)
_ max{|8bp"|,, [9al,}
272,
( .—3m
P .
) = itp=2
- —(3m+2)
p .
\p—_(6m+3) ifp=3

(

p>m if p=2

p3m+1 if p= 3

\

Since g is a cube root of a of order r, we have
3 2 —2r
(x5 —a)’l, <p
and therefore

p3m72r lf p= 2
|J7? —al, <

p(3m+1)—2r if p= 3

1001
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By Lemma 2.8, we have

23 —a =0( mod p*=3m) if p=2

3 —a =0( mod p¥~GmH)if p =3

As in the square root, proceeding by induction completes the proof and (iii) follows as

n — +00. This completes the proof.

Now, let a = 2"r —3m(2" — 1) and § = 2"r — (3m + 1)(2" — 1). We then have the
following result.

Proposition 3.4. Let {x,} be the sequence of approximates in Proposition 3.3.

a. Then for every iteration, the number of correct digits in the approximate increases
by a, —2m =2"r —3m2"+mif p=2and 8, — (2m+1) =2"r— (3m+1)2"+m
if p=3.

b. The number of iterations to obtain at least M correct digits is

( [ M—2m
In ( 3 )
r—5m if p =2
In 2 np
n=<XT M—(2m+41)
In ( —(3m+1) ) " 5
1 g
In2 p
\

Proof. Consider two consecutive approximates x,.; and x,. Note that

(2, — a)l,

‘xn+1 xn’p 3 %L

prrenifp=2

p?mHl=bnifp =13
Hence,

0( mod p*»—2m) if p=2

Tpt+1 — T
0( mod pPr=Cm+y if p =3
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Since we require M correct digits in the approximate, we must set the order to M + m.

That is,

2"r —3m(2" — 1) if p=2
M+m=

2"r — (B3m+1)(2"—-1) ifp=3
Since {z,} is the sequence of p-adic numbers in Proposition 3.3, we have r — 3m > 0 if

p=2and r— (3m+2) > 0if p = 3. Hence we take

([ M—2m
In ( 3 )
_\reom /7 ifp=2
In2 np
n=+<7T M—(2m+1)
In ( r—(3m+1) ) =3
In2 b=
\

This n is a sufficient number of iterations to provide at least M correct digits in the

approximate.
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