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1. Introduction

Mathematical modeling of real-life problems usually results in functional equa-
tions, e.g. partial differential equations, integral and integro-differential equation, par-
tial integro-differential equation, stochastic equations and others. Many mathematical
formulations of physical phenomena arise in fluid dynamics, biological models and
chemical kinetics. Partial integro-differential equation is an equation that the unknown
function appears under the sign of integration and contains the derivatives of the un-
known function. It can be classified into Fredholm equations and Volterra equations.
The upper bound of the region for integral part of Volterra type is variable, while it is
a fixed number for that of Fredholm type. In this paper we focus on Volterra inte-
gro-differential equation. The fundamental problems on linear second order partial
differential equations of parabolic type with different boundary conditions have been
substantially investigated in [1-9] and others. Recently, Bange [10] and Pau [11] have
reported certain results on the existence and uniqueness of solutions of quasilinear
parabolic partial differential equations of second order. The problem of the existence
and uniqueness of solution for systems governed by linear integro-partial differential
equations of parabolic has been considered in [12].

Consider the following initial boundary value problem for the one-dimensional

partial integro-differential equation with memory term,

ou u

5—§_jok(t, s)u(x,s)ds+ f(x,f), xe[0]1], tel=[0,T], (1.1)
u(a,t)=g,@), ulb,t)=g,(t), t=0, (1.2)
u(0,1) =uy(x), a<x<bh. (1.3)

The solution of the linear problem of the form (1.1) is usually difficult to solve
analytically so it is required to obtain an efficient approximate solution. Typically, the
time discretization is affected by a combination of finite difference and quadratures.

Finite difference in time and finite elements in space have been discussed in the case
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of a smooth kernel (see e.g., Sloan & Thomee, 1986; Cannon & Lin, 1988, 1990;
Yanik & Fairweather, 1988; Thomée & Zhang, 1989; Lin et al., 1991; Zhang, 1993).
For the non-smooth kernel case we refer to Chen et al. (1992) and Larsson et al.
(1998).

Our contribution in this paper is to develop a new fourth and six order accurate
schemes for solving partial integro-differential equations in one dimensional space
with non-homogeneous Dirichlet boundary conditions. The suggested numerical
scheme starts with the discretization in time by the 2-point Euler backward finite dif-
ference method. After that we deal with a combination of the compact finite differ-
ence method and the trapezoidal rule for calculating the integral term and then we use
a collocation method to compute the unknown function and finally the obtained sys-
tem of algebraic equations is solved by iterative methods. The proposed technique is
programmed using Matlab ver. 7.8.0.347 (R2009a).

The paper is organized as follows: In Section 2, we give a brief introduction to the
fourth and sixth order compact finite difference formula for ordinary differential
equations and partial integro-differential equations with varying boundary conditions.
In Section 3, the proposed schemes are directly applicable to solve one numerical
example to support the efficiency of the suggested numerical scheme. Conclusions are

drawn in Section 4.

2. Formulation of High-Order Compact Schemes
Compact Schemes are based on a fourth and sixth order accurate approximation to
the derivative calculated from ordinary differential equation. To developed the scheme

for one-dimensional uniform Cartesian grids with spacing Ax =/, let us introduce

the following notations [13]: If u; =u(x;), then we use notations

:—J+1 ] ; 0 (2'1)

to denote the standard forward finite difference and backward finite difference

schemes for first derivative. Also,
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Ui —U;
e et (2.2)

80uj=%(6+uj+8_uj): 7

is the first-order central finite difference with respect to x. The standard second-order

central finite difference is denoted as Sfcu ; and is defined as

8 8 " _uj+1—2uj+uj_1_6+_5_
4+ O_ =

J 52 - (2.3)

By using the Taylor’s series expansion, a fourth and sixth orders accurate finite dif-

ference for the first and second derivatives can be approximated by

2 43 2 2 2
Sou= B A | B AT du [ B e o (2.42)
dx 3! dx® 6 dx? dx 6
2 43 4 45 2 4
su=du W du W du [ W B aldu oy (2.4b)
dc 3 a5 dy’ 6 120 dx

and

2 2 44 2 2 2 2
§2, o hdu _(Hh_d_jﬂ:(n’f—zazjazum(fz“), (2.52)

* d® 12 gx* 12 gx? | dx?
2 2 44 4 2 4
g2y=du hdu b s st s o). (2.5b)
de 12 dx4 360 12 360

2.1 Compact finite difference method for solving ordinary differential equations
In this section, A fourth and sixth order compact finite difference method is used
to obtain a numerical solution to the following second order ordinary differential

equation

u"(x)= f(x), a<x<b (2.1.1)
ua) =Py, u'(a)=Py, (2.1.2)
where [, and 3, are constant values. From equation (2.5a) the fourth-order accurate

finite difference estimate for u"(x) is,

2
St =u +h ) _ (1+i’—252}62u+0(h4) (2.1.3)
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Noting that O(h2 ) term is included in equation (2.1.3), because we want to ap-

proximate it in order to construct an O(h4) scheme. Applying 8)26 to ] , we get

uf =82 u +0(h*). (2.1.4)
Substituting equation (2.1.4) into (2.1.3) yields

2 R (2 2 4
Sy =uj+ (5 u'+O(h ))+0(h ) (2.1.5)
From (2.1.1) into (2.1.5)
2 W 4
Oxuj=f; +ESX fi+Oh™), (2.1.6)

Suppose that w;

is the discrete approximation to u(x;), and using the above
scheme we get
hZ

where f;_y, f;, fj+1,w;_1 are known and w; can be determined from equation

(2.1.2), so we can calculate w; .

For the sixth-order accurate finite difference estimate of equation (2.1.1), we have

from equation (2.5b):

h? nt
82 — 0 B (BN YA 2.1.8

Noting that O(h4) term is included in equation (2.1.8), because we want to ap-

proximate it in order to construct an O(hé) scheme. Applying 6 to u(’v) we get
u$ =83 ul™ + o(n?). (2.1.9)
Substituting equation (2.1.9) into (2.1.8) yields
h? h
Souj =uy+—ull) 5™ +o(n*) )+ 0(h° 2.1.10
oo 360( (h))+ O(h). (2.1.10)

From (2.1.1) into (2.1.10)
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2 4
8 =ﬂ+(?—2+%5§}f”(xj)+0(h6), (2.1.11)

Suppose that w; is the discrete approximation to u(x;), and using the above

scheme we get

4
h "

o I (2.1.12)

h? h
Wj+1 —2WJ +Wj_1 :E(fi_H +10f] +_fj_l)+%(fi+l + j—l)

where /iy, fi_1, [, fj-15 fj» fj are known and w; can be determined from

equation (2.1.2), so we can calculate w; ;.

2.2 The fourth-order compact finite difference method for solving partial inte-

gro-differential equations
Here, we use the fourth order compact finite difference method to solve problem
(1.1)-(1.3). To construct a numerical solution, we first consider the nodal points

(xj,tl-) defined in the region [a, b]x[0,T] where

a=xy<x<--<x,_1<x,=Db, Xj1—x;=h,

J
and

0:t0<t1<"'<l~

l<"'<T, ti+1_ti:T'

In such a case we have xj=a+jh for j=0,1,2,....,n, and ¢, =it for

i=0,1,2,....
The initial condition in equation (1.2) is approximated as follows:
u(x, 0)=uy =u(x,ty), a<x<b. (2.2.1)

Next, the 2-point Euler backward differentiation formula is manipulated to approxi-

mate u,, given in equation (1.1), at the time-level ¢, for i=0,1, 2,.... Therefore,
we have
2
w1 (X)—u;(x)  d7u 1 (x)  ptia
i+l : i\x) 6;+21 — J'Ol+ ki1 (s)u(x,s)ds+ fi1(x), (2.2.2)
x
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where f; 1(x)=f(x,t.1), ki1(s)=k(t,,s) and u; (x)=u(x,t,;). Equivalently,
we can rewrite equation (2.2.2) as
y w1 (xX)—u;(x) ot
uj1(x) = M—J‘JH ki1 () u(x, s)ds— f;1(x) (2.2.3)

Putting X=X, j=L--,n—-1 1n(2.2.3), then

P I A A AN
Yivl,j == )y

kiy1(s) u(xj,s) ds—fiH,j, j=0,...,n, (2.2.4)
where
uiy, j =u" (X, 041, gy =u(x;, ), w p=u(x;, ), and fig o= f(x;, 640).

The fourth order accurate finite difference estimate for u"(x) is used from (2.1.5) to

give

14 h2 14
oty =l {56’2‘] (um, j)+ o(h™). (2.2.5)

Then, a compact (implicit) approximation for u"(x) with fourth-order accuracy will

be given as

82U
roo= 2L L og®, (2.2.6)

Uin,j = 2
h*
1+-—38

Using this estimate and considering the discrete solution of equation (2.2.4) which

satisfies the approximation, we get

h? 2 Uirl,j  tinl h* Livl 2
T e e +j ki+1(s)u(xj,s)ds+EJ.0 ki1 (5) 85u(xj, 5) ds =

127 0
Ui j n? 2 n? b
=-— TJ _Esx”i,j_fiﬂ,j ~15 Oxfin g (2.2.7)

1 1 -2 5 5 ¢tin
el ) g g o i

|
+_
12

5 1 5
T (ui,j+1 + u,',j—l)_aui,j 1 (fi+1,j+1 + fj+1,j_1)—gf,-+1,j. (2.2.8)

t t
Jy " b s [} 6y 1513 -
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The later integral will be handled numerically using the composite weighted trape-
zoidal rule given by:

J‘;(;'H f(s)ds~1 z [wf(l‘m)-l-(l_w) f(tm+1)]

m=0

={Wf(fo)+(1—W) UTIED) f(tm)il (2.2.9)

m=1

Using (2.2.9) we get

[ 5 by () uCx, ) ds ~

~T (W i 1(0) g (X) + (1= w) kg (1) i1 (X + D Ky () U1y (x)} (2.2.10)

m=1

The substitutions of this equation into equation (2.2.8) yields
1 1 -2 5
h—z—a (ui+l,j+l +ui+1,j—1)+ h—z—a Uirl,j T

i
whi1(0) ug j + 0 =w) kg () i1+ D kit () i1 ] +
m=1

+
(V)]
Y
1

. i
+E{W ki1 (0) ttg oy + (U= W) Ky () tn, o1 + D it (G i1, ] +
m=1

. i
+E{W ki1 (0) g iy + (U =W) kg (Gy) Uy, jo1 + D Ky () U1, j—l} =

m=1

5 1 5
12t (ui’f+1 " u"’f—l)_ 6 T (fi+1,j+1 + fi+l,j—1)_ ¢ i (2.2.11)

Let U;(x) be a function that approximates u(x,?;) for the time-level ¢, =it, and

1s a linear combination of n+1 shape functions which is expressed as:

Uj(x)= i Cmi Om(X), (2.2.12)

m=0
where {c,,;}m—o are the unknown real coefficients, to be evaluated, and the ©,,(x)
are any knowing basis functions

The approximate solutions U;(x) for different time-levels are determined itera-
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tively as follows. Starting with the time-level #,=0, the value of
up(x;), up(x;41), andug(x;_), for j=1,2,...,n—1 are found from equation (1.2).
Next, we will approximate the solution U,,; for i = 0 in equation (2.2.8) by the

shape functions Uj, as is given in equation (2.2.12). Hence equation (2.2.8) is ap-

proximated by:

1 1 -2 5
(h_z < ](U1J+1+U1J l) [hz 6’[)U1]+_[Wk1(0)u01+(1 W)kl(tl)U1]]+

T T
+ ok O g o+ =W k) Uy e Sk @ g+ 0= w) ) U=

-1

=50 (“0,j+1 U, j-1 )—

5 1 5
- — (£ +f1,j_1)—gf1’j. (2.2.13)

6t >/ 12

Replacing U, by the approximate solution given by equation (2.2.12) yields the fol-

lowing linear system of n—1 equations

1 1
{h_2 12 j|[zcml@mj+l+zcml (Pm] 1]+|: __Ti| zcml (ij

m=0

|:(1 W) kl(tl) Zcml (ij:l |:(1 W) kl(tl) Zcml Pm ]+1:|+

m=0 m=0

m=0

+—{(l WA S em O i i—ﬂrwkl(owﬂuo,j—

| twk(0) N 1
12 121

}(uo el Fg 1)~ (fl - 1) fl,ja (2.2.14)

n n
where z Cpl P j+1 = z Cm1 Pm(x;41) - Rewrite equation (2.2.14) as
m=0 m=0

n
Z le[al Om j+11ta2 Oy j (ij—1]=
m=0

1 5
=azug ;+ay (g ;4 +u0,j—1)_E(fl,j+l +f1,j—1)—gf1,j, , (2.2.15)

where
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1 1 T -2 5 5t
e S ew k@), T2 2 2N 0w k),
A= e 12( w) ki (1) Q=07 e 6( w) ky(t)
-5 1 twk(0) 1
_ twk (0)+— |, = (REA 2.2.16
4= ( w k(0) Tj ay { T 121} ( )

The system (2.2.15) consists of (n—1) equation in the (n+1) unknowns

{em1im—o- To get a solution of this system we need two additional conditions. These

conditions are obtained from the boundary conditions (1.2)

n
u(a,t)= Y, cn@m(a) =g (), i=0,...n (2.2.17)
m=0
n
u(b,t;) = D, cp1®m(b) = g2(8;), i=0,...n (2.2.18)
m=0

Since fand u, are known at every grid point, the right hand side of equation (2.2.15)

is known for all nodes. The system (2.2.15), equations (2.2.17) and (2.2.18) consist of

(n+1) equations in (n+1) unknowns; this system is of the form

AC=F. (2.2.19)

Upon solving the system (2.2.19), the function U;(x) is approximated by the sum:

n
Ui(x))= D ¢ Op(x,), j=0,12,..,n. (2.2.20)
m=0
Next, we find the approximate solution at time-levels #,¢,,... recursively by solving

the following system for i=1,2,....

n

-1 ( ) 5
Ui jat TUG jo1 )= Uy

Cmi (al b 1 +a2 9y j+a ¢mj—1)=a 61

m=0

1 5 51
+tagug ;+ay (g o +ug ;) I (fist, jor + Jivn o) — 6 Jinj— s Zkiﬂ(tm) Uislem,j —

m=1

TW TW
- ka (E) Ui j1 = ka (Z) Uisiom j1s (2.2.21)
12 m=1 12 m=1

where
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1 1 = -2 5 571
a, = h_z_F E(l_w) ki1 (fi41) a, = h—z—a ?(I—W) ki1 (1) s
ay = —Stwkiy(t) ’ a, = —Tw ki (f) (2.2.22)
6 12
n
u(@a,t;) = Cpi O(@) =g (1), i=0,...n (2.2.23)
m=0
n
u(,t;) =Y i 0, (b) = g1 (1)), i=0,...n. (2.2.24)
m=0

2.3 The sixth-order compact finite difference method for solving partial inte-

gro-differential equations
The sixth-order accurate finite difference estimate for u”(x) is used from (2.1.8)

to give

" h
Sy, = Ul TR ul) + 360(8" ul)  +O0(h*))+0(h°). (2.3.1)

To get the compact O(h6) approximation, we again apply equation (2.2.4) that is

Uit j = Ui}l ] .
fﬁb—%— k@) ') ds = fly g j=0,.0n (2.3.2)

From (2.3.2) into (2.3.1), then

oot n? '
8%u I+—+ & lul, . ——u" . — T —
St { 127 3601 } T 20 3600 T 360 Sufihs =
L >
2 h Tk (s)u” "(x;,5) ds——J. ki (s) du"(x;, 5) ds — fJrl ; (2.3.3)

From (2.2.4) in to (2.3.3)
2 2 2
2 11 h -1 —h h -
Oy, j _{;Jrlz Tz}”i+l,j+{7+12 Tz}‘w { I_F ki (s)u(x;,s)ds+

—h? AN AT A
—1+E ﬁ'”,j +E8xui+l’j—%8xui’j 360 kH—l(S)S M(X S)dS—
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h4 hz ) B4 R
3 fo—l] 1A i,j_ﬁs)zcui,]_a kz+l(s)u (X S) ds— f+1]
h4 L 2 0
fm ™ 3gg o i () 8307 5) ds. (2.3.4)

Using this estimate and considering the discrete solution of equation (2.2.4) which

satisfies the approximation, we get

360 t—h* ( ) —360 1> +h*t—180 1t H? —15h*
5 | Wity j T U, )t Uipy, j T

360 T 180 1> A?
N 180 t+14 K2 Lia ko ()u(x;,s)ds+ h? jtm ki (s) (u(x s)+u(x s))ds+
180 1 s 7 3607 [0 T It s
14 12 ” 2 ”
+ 120 ]f kig(s)u'(x;,s) ds+l:360} k,H(s)( "(Xj41,8)+u (xj_l,s))dsz

[ -180t-15A2+ 1% < s s ) —14n’|
180 12 BT 360 |V TR g |

= (o ) ~180 114 h° _p
"1 360 r} (ui’ J+1 7, 1—1)+ {T} Jivt, j+ [E} (fia, i+ S j—1)+

14147 K’ ,
+ 180 :|fz+1 j l: 360 :I (fl+1 j+l +fi+1,j—1)' (2-3-5)

The substitutions of equation (2.2.10) into equation (2.3.5) yields

360 t— At ( —360 > +h* 1180t h> —15n*
W ”i+1,j+1+“i+1,j—1)+ 180 2 72 Uiy, j +

180 t+14 h° ;
+ —180 - :IT(W ki11(0) U, j +(I=w) k; 1 (#41) Uiy, j+ Z kiq(t,) ui+1_m’jj+
m=1

B2 i
+ T Wi (0) g,y +(A=w) ki (G41) i, 1+ D, kit () i, j+1j +

m=1

m=1

h* :
+ T sz+1(0) U, J— 1—"(1 W) +1(t1+1) Ui, j— 1+Z kz+1(tm)uz+l -m, j— 1J+

T Wki+1(0)u +(1 W) kz+1(tz+l)u1+1 J +z kz+1(t )u1+1 —m ]J—i_
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2] i
b [W ki1(0) ug, T A=w) ki () Uiy, jH T z ki1 () i1, j+1j +

m=1

h2 | 14 14 l "
T [W ki1 (0) ug oy + (= w) kg (G sy o+ D kit (8) Uy, j—l] =

m=I

0%l EYGR ] I (4 101+ )+ -14n o,

180 <’ “I7 360 | P TRV g0 |
= ) ~180 114 h° _p
"1 360 r} (ui’ J+1 7, 1—1)+ {T} Jivt, j+ [E} (fra, i+ S j—1)+

14147 &
+ }fm j { :I(fm et flr-’kl,j—l)’ (2.3.6)

180 360

the approximate solution U;(x) for the time-level ¢ =i 1, defined as in equation

(2.2.12); at time-level 7, =0, equation (2.3.6) is approximated by:

360 t—h* .\ B (1= w) ki ()
360 1 h? 360

:I(Ul,ﬁ-l +U1,j—1)+

(18Or+14h2)(1 W k(1) =360 24 h*1-180th*-15h* U
180 180 12 4 b

4R t-w k@) |, R td-w k(@)
Ui . + Ul . +U] )=
180 1L, j 360 ( 1, j+1 1,J 1)

(180 -154% +h% ¢ (180 114 12wk, (0) L
180 72 180 o

CZR2 R wik(0) —14h> 1442 ok (0)
+ - 1 (uo’ j+1 +UO’ j—l )+ 1 0 j +

360t 360 180t 180

+_—h2 h* T wk, (0) RN ~180 t—14 K> P
1360t 360 b.je1 +46, 4 1801 b

4

+ 360 }(fl J+1 fljl) { i:: }flﬂj [;60}0(1”]4—1 fi"j 1) (237)

Replacing U; by the approximate solution given by equation (2.2.13) yields the fol-

lowing linear system of n—1 equations
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360 t—h*  RA1-w) k() |[ & ;
+ 4 N
{ 3601 h° 360 mzzlo Cm1 Pm j+1 mZZO Cm1 P j-1

2)q_ 3 2 4 2 1e47] n
N (180r+14h)(1 W k(1) =360 +h* t-180Th? ~15h $ oot
180 180 2 12 ml

4Rt (-wk(t) &, r(l w)k(t ”
' 180 = zc’”l Pm ¥ 1 Z Cn1 @ m/+1+zcm1 P ja | =
m=0

~ —1801—15h2+h2r_(1801+14h2)wk1(0) -
180 72 180 0.7

-2 B wk(0) N —14 5% 14 h® tw k,(0) N
360 1 360 0. j+1 50, /=171 180 ¢ 180 .

C—nr R Twk(0) |, , ~180 T—14 K>

_360‘(7 360 180t
—h 140, |- , )
+ 360 :|(‘f1 j+l ‘fl J- 1) |: 180 :|fi J |:360:|(-f1 Jj+l .fl Jj- 1) (238)

Rewrite equation (2.3.8) as:

Zcml (al (pm]+1+a1 (ij 1T (pm]+a3 (pm]+a4 (pmj+1+a4 (Pm] 1)

m=0

n " 1/
=das Uy ;+dg (“0, j+1 T U, j—1)+ ay ug, ; +ag (”0, j+1 T U, j—1)+ ag fi,; +

+aj (fl,j+1 +f1,j—1)+ ay /il j+an (fll:j+l +f1’,'j—1) (2.3.9)
where
4 42
360 t—h*  RA(1-w) k(1)
a1= 2 + )
360 T h 360
. __(1801+14h2)(1—w)k1(t1)+—36012+h4r—1801h2—15h4
2 180 180 12 /2 ’
14 R T (1-w) k(1) Wt (- w) ky(t)
as = 5 ag = s
180 360
) [-180c-1582 442« (180 T+ 1442wk (0)
> 180 t° 180 ’
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R R why(0) 148 1472wk (0)
ag = - 1 a, = - 1
671360 ¢ 360 |’ 77 180t 180

R R twk(0) 180 T—14 /2
ag = — 1 ag =

360 360 180 ©
L —nt L —14 1?
10713601 71180

_ 2

ajp = {%} (2.3.10)

The system (2.3.9), equations (2.2.17) and (2.2.18) consist of (n+1) equations in
(n + 1) unknowns so we can solve this system, then we use equation (2.2.20) to fined
U,. Next, we find the approximate solution at time-levels #,t,,... recursively by

solving the following system for i=1,2,....
n
zcmi (bl P ji1 F01 @y j1 +Dy By j T3 @y Dy Py i+ by (P;’nj—l):bS U, j +

m=0

" 14 14
+ Dby (”0,j+1 +up, j—1)+ b, Uy, ; +bg (ug, j+1 g, jfl) +by U ; +by (“i,j+1 tu; j—l) +

+by ”;:j +by (M;Cj+1 +”ijl)+b13 fi+1,j +byy (fi+1,j+1 +f;‘+1,j71)+b15 f;’il,j +

i i
+bis (i, o+ S, o) i Tzkm(tm) Upsiom, j +bis Tzkm(fm) Ui, j
m=1 m=1

i i
+by6 (ka(tm) Uislom, ju zkHl(tm) Uiy, j—lJ +
m=1

m=1

+byg T(z Kt () Uiy i z ki (t,) ulyy j—l] > (2.3.11)
m=1 m=l1

where

b :[360 —ht KA(-w) k,~+1(t,~+1)}

360 © h? 360

2

b (1801+14 h2)(1—w) ki (1) | =360 2 +ht =180t h* -154*
? 180 180 t2 h?
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b | 140 T (=) ki (1) o | BT ke 1)
T 180 ’ 4 360

i 2 2
. _(180r+14h )wk,-+1(0) b | whkia(0)
> 180 ’ 6 360 ;

1442 1wk, (0) K2 twk,,(0)
b7: - , b8: [ . =

180 360

y | 18015 K + A7 < |-
al 180 12 ’ 7| 3607 |

—14 1? ~180t—14 h*
by = ) by = )

180 t 180t

[t 14 42
b = s b = )
13 _3601} 14 { 180 }

144> _p?
bis = , e =| —— 23.12
P 180 } 16 {360} ( )

w(@a,t;) = Cpi O (@) =g (1)), i=0,...n (2.3.13)
m=0
u(,1;) =Y Cpi P (b) = g1 (t;), i=0,..n. (2.3.14)
m=0

3. Numerical Experiment

In this section, we solve the integro-differential equation (1.1)-(1.3) in

(0,1)x(0,7) with k(s,t)=st, g(t)=g,(t)=0 and f(x,t)are given so that the

Tt
sin(mx).

theoretical solution of this problem is u(x,?) =e"
We employ a compact difference scheme for the space derivative so that we get a full

discretization scheme with error estimation O(h4)+O(r) for the fourth-order and

O(h6) + O(1) for the sixth order. We shall compare the results obtained by the sug-

gested approximation scheme with the exact solution.
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Table 1. Comparison between fourth-order and sixth order at = 0.1

7=0.001 7=0.0001
' O(h°) o(h*) O(h°) o(h*)
0.0 | 0.000000E+000 0.000000E+000 | 0.000000E+000 0.000000E+000
0.1 | 1.975983E-007 6.989801E-006 | 1.717077E-008  1.988434E-007
0.2 | 3.758546E-007 1.329543E-005 | 3.266074E-008  3.782229E-007
0.3 | 5.173198E-007 1.829963E-005 | 4.495366E-008  5.205797E-007
0.4 | 6.081464E-007 2.151257E-005 | 5.284620E-008  6.119788E-007
0.5 | 6.394434E-007 2.261972E-005 | 5.556579E-008  6.434732E-007
0.6 | 6.081472E-007 2.151269E-005 | 5.284621E-008  6.119800E-007
0.7 | 5.173213E-007 1.829983E-005 | 4.495367E-008 5.205817E-007
0.8 | 3.758562E-007 1.329564E-005 | 3.266076E-008  3.782251E-007
0.9 | 1.975994E-007 6.989953E-006 | 1.717078E-008  1.988449E-007

0.000000E+000

0.000000E+000

0.000000E+000

0.000000E+000

Table 2. Comparison between fourth-order and sixth order at # = 0.07

t=0.0001 t=0.001
' O(h°) O(h*) O(h°) o(h*)
0.0 | 0.000000E+000 0.000000E+000 | 0.000000E+000  0.000000E+000
0.1 | 1.725879E-008  1.629694E-007 | 2.063013E-007  8.361585E-006
0.2 | 3.282817E-008 3.099865E-007 | 3.924085E-007  1.590470E-005
0.3 ] 4518411E-008 4.266602E-007 | 5.401043E-007  2.189098E-005
04| 5311711E-008 5.015695E-007 | 6.349309E-007  2.573443E-005
0.5 ] 5.585063E-008 5.273818E-007 | 6.676062E-007  2.705882E-005
0.6 | 5311711E-008  5.015703E-007 | 6.349315E-007  2.573450E-005
0.7 | 4518411E-008 4.266615E-007 | 5.401052E-007  2.189111E-005
0.8 | 3.282818E-008  3.099880E-007 | 3.924096E-007  1.590485E-005
0.9 | 1.725880E-008 1.629705E-007 | 2.063020E-007  8.361685E-006

0.000000E+000

0.000000E+000

0.000000E+000

0.000000E+000
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Table 3. Comparison between fourth-order and sixth order at = 0.8

1=0.01 1=0.001

) O(h°) O(h*) O(h°) O(h™)
0.0 | 0.000000E+000  0.000000E+000 | 0.000000E+000  0.000000E+000
0.1 | 3.100729E-006  4.893745E-005 | 3.017901E-007  5.272349E-006
0.2 | 5.897938E-006  9.308472E-005 | 5.740388E-007  1.002861E-005
0.3 | 8.117818E-006  1.281204E-004 | 7.900967E-007  1.380319E-005
0.4 | 9.543070E-006  1.506149E-004 | 9.288144E-007  1.622663E-005
0.5 | 1.003418E-005 1.583662E-004 | 9.766133E-007  1.706169E-005
0.6 | 9.543075E-006  1.506155E-004 | 9.288144E-007  1.622664E-005
0.7 | 8.117827E-006  1.281215E-004 | 7.900968E-007  1.380321E-005
0.8 | 5.897948E-006  9.308591E-005 | 5.740389E-007  1.002862E-005
0.9 | 3.100736E-006  4.893824E-005 | 3.017901E-007  5.272358E-006

1 | 0.000000E+000 0.000000E+000 | 0.000000E+000  0.000000E+000

Table 4. Comparison between fourth-order and sixth order at =1
1=0.1 1=0.001
X
O(h°) O(h*) O(h°) O(h™)

0.0 | 0.000000E+000 0.000000E+000 | 0.000000E+000  0.000000E+000
0.1 | 2.889190E-005 2.740526E-004 | 3.025200E-007  5.282046E-006
0.2 | 5.495569E-005 5.212829E-004 | 5.754272E-007  1.004705E-005
0.3 | 7.564005E-005  7.174916E-004 | 7.920076E-007  1.382858E-005
0.4 | 8.892026E-005 8.434718E-004 | 9.310608E-007  1.625647E-005
0.5 | 9.349635E-005  8.868898E-004 | 9.789752E-007  1.709306E-005
0.6 | 8.892036E-005  8.434929E-004 | 9.310608E-007  1.625647E-005
0.7 | 7.564022E-005  7.175263E-004 | 7.920076E-007  1.382858E-005
0.8 | 5.495586E-005 5.213187E-004 | 5.754272E-007  1.004705E-005
0.9 | 2.889202E-005 2.740755E-004 | 3.025200E-007  5.282048E-006

0.000000E+000

0.000000E+000

0.000000E+000

0.000000E+000
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4. Conclusion

A fourth and sixth-order accurate compact finite difference scheme for partial in-

tegro-difterential problems was developed. The method reduces the underlying prob-

lem to linear system of algebraic equations, which can be solved successively to ob-

tain a numerical solution at varied time-levels. Numerical experiments which shown

in the above scheme are good agreement with the exact ones. Moreover, the results in

tables (1-4) confirm that the numerical solutions can be refined when the time-step 1

is reduced.
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