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Abstract: A generalized Camassa-Holm model is introduced to describe the irrotational incompressible 

flow for a shallow layer of inviscid fluid moving under the influence of gravity without surface tension 

when the model has a strong nonlinear dispersion. This physical model also contains a set of nonlinear 

terms. Rich regular and singular solitons are found when a transaction between nonlinearity and 

dispersion analysis is performed. Realizations of this model can be made in terms of restrictions on its 

exponential sequence. Besides compactons, kinks, periodic compactons and multiple compactons that are 

found, pair compactons which entitled for a simulation that has two coexisting symmetrical humps are 

taken into account. In a special case when the coefficient of term involving first-order derivative on x 

satisfies k=0, there occurs blow-up phenomena, as well as usual solitary pattern solutions. In addition, 

depending on the development of ansatz forms, with some combinations of the parameters, two families 

of symmetrical and non- symmetrical structures with peak-like wave crests are obtained in exact form. 
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1. Introduction 

Our model system is based entirely on the completely integrable Hamiltonian 

Camassa-Holm model which is arising in the context of small amplitude shallow water 

waves over a flat bottom for inviscid fluid moving under the influence of gravity 

without surface tension as consistent in this limit as the KdV model, which has been 

intensively studied for a century. The model is of intrinsic interest in the study of 

solitonic structures because it is novel in that its solitary waves have a discontinuous 
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first derivative in contrast to the great smoothness of most previously known species of 

soliton forms. 

xxxxxxxxxtxt uuuuuuukuu  232  

The fluid velocity in the x-direction or equivalently the height of the water’s free 

surface is represented by the parameter u, and 
04k c is the constant critical shallow 

water wave speed which is proportional to the square root of the wave depth. The 

underlying theme of this work is the impact of nonlinear dispersion on the formation of 

sonlitonic patterns. In order to support localized structures, the enhanced spread of 

waves has to be counteracted by adequately stronger nonlinearities. The nonlinear 

dispersion presented in this work seems to provide one such mechanism. The 

degeneracy at the front generates sharp fronts and supports the formation and 

propagation of robust compact structures. The fact that compact patterns emerge in the 

parabolic case leads to the conjecture that analogous dispersive models will also 

support localized patterns. In many cases, though the underlying strongly nonlinear 

processes are quite complex and thus very hard to model, the emerging patterns are 

remarkably simple over a wide range of scales. By definition compact patterns are 

non-analytical entities on the frontlines. In dispersive processes the presence of even a 

weak singularity poses a formidable numerical challenge, which in recent literature 

devoted to the numerical aspects of the problem [1]. 

Unlike the derivations of the KdV equation and BBM equation by asymptotic 

procedures, the above Camassa-Holm model was derived by approximations in the 

Hamiltonian that produce unidirectional propagation and preserve the momentum part 

of the Lie-Poisson structure. The conserved quantities and the initial value problem of 

the Camassa-Holm model are investigated in [2]. Symmetry properties are discussed in 

[3]. Integrable perturbation is investigated in [4]. The soliton solution of the 

Camassa-Holm model is investigated with variation method in [5]. Tian et al. [6] 

discussed the traveling wave solutions and double soliton solutions for the nonlinear 

models, and introduced the definitions of concave, convex peaked soliton and smooth 

soliton solution. Chen et al. [7] proposed the viscous Camassa-Holm equation as a 

closure approximate for the Reynolds- averaged equation of the incompressible 

Navier-Stokes fluid. This approximation is tested on turbulent channel flows with 

steady mean. Dullin et al. [8] studied a class of 1+1 quadratically nonlinear water wave 

equations that combine the linear dispersion of the KdV equation with the 
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nonlinear/nonlocal dispersion of the C-H equation, yet still preserved integrability via 

the inverse scatting transform method. And [9] got the integrable equation derived by 

asymptotic expansion at one order higher approximation than KdV equation. The 

equation discussed in the work is in this class for unidirectional water waves with fluid 

velocity u(x,y) as follows, 

xxxxxxt umuumucm  20
                                                 

(1) 

where 
xxuum 2 is a momentum variable, the constants 2 and 

0/ c are squares of 

length scales, and ghc 0
is the linear wave speed for undisturbed water at rest at 

spatial infinity, where u and m are taken to vanish. Eq. (1) restricts two separately 

integrable soliton equations for water waves. When 2 →0, this equation becomes the 

KdV equation 
xxxxxt uuuucu  30

 which for 00 c the KdV equation has the famous 

smooth soliton solution )2//)((sec),( 0

2

0 uctxhutxu  , where
00 ucc  . Instead, 

taking →0 in the Eq. (1) implies the CH equation  

2 2

0 3 (2 )t x xxt x x xx xxxu c u u uu u u uu                                              

(2) 

which for 00 c has peakon soliton solution u(x,t)=
ctx

ce


. When 12  , the Eq. (2) 

becomes Eq. (1). Foias et al. [9] reviewed the properties of the nonlinear 

Navier-Stokes-Alpha (NS- ) model of incompressible fluid turbulence, or called the 

viscous Camassa-Holm equation in the literature. The NS-  model are derived by 

filtering the velocity of the fluid loop in Kelvin’s circulation theorem for the 

Navier-Stokes equation. They also found that this filtering causes the wave number 

spectrum of the translational kinetic energy for the NS-  model to roll off as 3k  for 

1k  in three dimensions. Instead of continuing along the slower Kolmogorov 

Scaling law 3
5

k , that it follows for 1k . [9] also explained how the NS- model is 

related to large eddy simulation (LES) turbulence modeling and to the stress tensor for 

second-grade fluids. 

Traveling waves are very interesting from the point of view of applications whether 

their soliton expressions are in explicit or implicit forms. These types of structures will 

not change their shapes during propagation and are thus easy to detect. The wide 

variety of solitary waves supported by the Camassa-Holm model should have 

convinced that nonlinear dispersion opens a window to a whole new class of nonlinear 
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phenomena. It was recently found that the interaction of nonlinear dispersion with 

nonlinearity convection generates exactly compact structures free of exponential tails. 

This interaction may also generate many other structures otherwise unattainable. 

The purpose of the present paper is try to study the generalized dispersive form of 

the equation posed above and discuss the possibility of finding solitonic structures, 

when the underlying system contains transactions between nonlinearity and these 

strengthened dispersions. At this stage of research, we are concerned with the 

possibility of obtaining other types of solitonlike structures for the nonlinear dispersive 

equation (3) given below by taking into consideration some restriction conditions on 

the parameter domains and the exponential sequence. 

0)()()()( 4321  xxx

l

xxx

p

xx

n

xx

m

xxtxt uuuuuuukuu                        

(3) 

We analyze this model by considering two types of parameter conditions. The analysis 

is done for specific parameter k that determines the term comprising first-order 

derivative on x. The structures involved in this system, for obvious reasons, will 

interact with each other only when their exponential sequence satisfies some dependent 

relations. Additionally, a strong nonlinear dispersive term  xxx

lu  is added to the 

generalized Camassa-Holm model with regarding transactions in the equation of 

motion. With ansatz method, periodic compactons, kinks, multiple compactons and 

solitary pattern solutions are obtained in exact forms. A typical compacton like structure 

with two symmetry humps is entitled pair compacton. It is possible to find singular 

structures by applying the simple reasoning that is common for obtaining classes of 

regular solitons. In the case of k=0, especially blow up phenomena with one or more 

wave crests resemble the shape of typical blow up are found. It is worthy of mention 

that the energy depends on the velocity of each structure. Considering different 

combinations of the ansatz expressions, two families of symmetrical and 

non-symmetrical compacton-like structures for special nonlinear dispersion 

Camassa-Holm models exist. We also take a brief account of the many dimensional 

cases.  

This paper is organized as follows: In sectionⅡ we derive four different forms of 

solutions for the generalized dispersive Camassa-Holm equation while the parameter 

satisfies 0k , particularly, we give two kinds of kink compacton solutions, and 

multi-compacton solutions are also found. Similarly, we give the solitary wave 
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solutions for Eq. (3) whiles the parameter 0k . In section Ⅲ we use the combination 

of ansatz parameters to give pair compactons and non-symmetrical compacton. In 

sectionⅣ higher-dimensional cases for the generalized model are discussed. 

2. Soliton solutions 

For the generalized Camassa-Holm equation C-H (m,n,p,l) which imposes 

independent exponential sequence, thus avoid any restrictions in the parameter values 

and the dispersion models. Such expression reduced us to fix a suitable condition on 

transactions between nonlinearity and dispersion to produce the structures we aim to 

find. Let us now present the traveling waves, 

)()(),( Dtxuutxu                                                             

(4) 

By utilizing the above relations in which soliton propagation is represented by constant 

D, we obtain the following ordinary equation, 

0)()()()()( 33423231    lpnm uuuuuuDuuDk                   

(5) 

Compacton solutions and solitary pattern solutions may be determined by the ansatz 

expressions below, 

Ansatz 1;        BAu c o s                                                    

(6) 

Ansatz 2:        BAu s i n                                                   

(7) 

Ansatz 3:        BAu c o s h                                                   

(8) 

Ansatz 4:        BAu s i n h                                                   

(9) 

 

A: Case 0k  

As a result of applications of the above ansatz forms, in order to hold solitons for 

the generalized model while choosing the constant coefficient k equals to zero, however, 

we arrive at three relations for all the values of m, n, p, l at 

infinity: pnml  11 , pnml   and a more general case lpnm  . Only 

under these situations can we investigate the soliton solutions for nonlinear system (5). 

We stress that, in these three conditions studied and based on the sine-cosine method, 
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the following analysis are respectively valid for all cases of exponential sequence, and 

special cases are also investigated. Next we proceed to a detailed description. 

Case 1: From the above analysis, we see that on substituting the first ansatz from Eq. (6) 

into Eq.(5), we get an equation, 

0coscos)2)(1(

coscos)1(
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In the case of 0)2)(1(   , as the soliton solution cannot have the parameter n 

exceeds 2, the possible system for the above nonlinear algebraic equation takes the 

form, 
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We get as ,
84)1(

)2(
,

2
11

43

33

22





 




n
Bpnml  

)1()2(

)23)(2(]84)1()[(
2

2

2143

33








 DnkD
An . It is necessary to determine 

compacton found as exact solutions for the generalized Camassa-Holm equation, which 

has infinite amplitude (See Fig.1),  
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Fig.1 The shape of a compacton for the case when 2n . Where we plot the above 

function u. The parameters are 1,1,2,2,1 4321  n  and 3k . 
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For compacton solutions, indeed, similar considerations can be applied to other 

exponential sequence conditions. When the relation pnml  is satisfied, a 

compacton solution under the constraints on the exponential sequence for the 

generalized C-H (m, n, p, l) is given by, 
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A general case is finally considered for compactons. While lpnm  , 

compacton takes a different form, 
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Case 2: Compacton type solutions may occur when redefined ansatz u. While putting 

ansatz 2 into ordinary equation (5), a symmetrical compacton with two wave crests has 

been found. Indeed, by analogy with the simulation above, we introduce the name pair 

compacton to designate this soliton that has the form of two humps [Fig. 2(a)]. A 

similar periodic pair compacton was found [See Fig. 2(b)(c)].When l-1=m-1=n=p,  
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Fig.2 (a) Typical compacton like structure with two symmetry humps near its center 

which was entitled pair-compacton. The figure corresponds to configuration 

1,1,2,2,1 4321  n and 1k . 
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Fig.2 (b) Periodic pair compacton solution in the form of four humps with finite 

amplitude which represents a more generalized vacuum field for the expression 

obtained above. 
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Fig.2(c) Structure similar to Fig.2 (b), indicating that this model can always be 

extended to multiple humps in infinite spatial-temporal regions. 

Next we focus on the case pnml   which describes in detail a different 

compacton which for the generalized Camassa-Holm equation is then 
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Utilizing the same approach, we can show below that the compacton solutions of 

Eq. (5) without any constrictions on its exponential sequence. 
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Case 3: As a result of the application of the condition (8) to Eq. (5) we obtain the 

nonlinear algebraic equation, 
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For condition pnml  11 , the solitary pattern solution of the generalized 

Camassa-Holm equation by utilizing the same approach mentioned above can be 

constructed, 
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In what follows, we make the assumption that a suitable relation pnml   is 

defined for determining another possible system. Skipping the details, which is similar 

to the procedure of obtaining compactons, solitary pattern solution with a different type 

is presented in the below, 
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Additionally we have the usual solitary pattern solution while the parameter restriction 

vanishes that is conveniently written as 
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Case 4: As a result of the application of ansatz Eq. (9), one may recover the solitary 

pattern waves with different structures in comparison with the already derived ones 

which satisfy the condition pnml  11 . 
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Let us analyze the relation pnml  . It is readily observed that for this case we have 

a solitary pattern wave according to the definition (9). 
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Below we calculate the general solitary pattern solutions of generalized Camassa-Holm 

equation that are not imposed on any constrictions. 
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Remark: (ⅰ) Different parameter restrictions accompanied by the creation of kink 

structures occur when the boundary conditions in Fig.2 are changed (See Fig.3). 
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Fig.3 Simulations represent typical kink structures with infinite tails. Exactly at the 

conditions given above can kinks appear, determining the second state of the 

generalized system. These solutions correspond to the 

value 3,3,1,13,1,1,2 4321  kDn  . 

Such structures are also obtained for the generalized Camassa-Holm system when we 

consider the constrictions of its parameters which are determined by pnml  , 
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Consequently, the special solutions under this constriction could exist for the C-H(5, 2, 

2, 5) system. 
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       (ⅱ) Recently, important progress has been made to obtain the explicit multiple 

soliton solutions of the generalized Camassa-Holm models. It is interesting to find that 

by using the following expressions can we observe the multiple solitons.  

n

n

DnkD
u

1

43

33

22

2

2

2143

33

)
84)1(

)2(
(cos

)1()2(

)23)(2(]84)1()[(




















 









2

)14(
)(

84)1(

)2(

2

)14(

43

33

2 



 







 N
Dtx

n

N , 

By evaluating the periodic regions of the usual compactons [See Fig. 4(a)], one arrives 

at the following results. Multiple compactons can be constructed while the restrictions 

on x and t imply a constant N. Unlike the case shown in Fig. 1 and 4(a), 

multi-compacton not only show infinite tails, but also presents a finite trivial field 

between its waves [See Fig. 4(b) (c)]. All the waves among a multiple compacton travel 

with the same propagation value. Thus inner interactions may not be happened. 
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Fig4. (a) A general compacton with smaller amplitude in comparison with Fig.1. This 

figure represents 3,1,1,2,2,1 4321  kn . In this case, N=0. 
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Fig4. (b) This is an example of multiple compacton that has two symmetry wave crests 
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with the parameter N=1. 
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Fig4. (c) Three waves coexist in this traveling solutions for we introduced the variable 

N=2 to define a more general multiple soliton. 

 

B: Case 0k  

In this section we present typical examples of the numerical and simulation results 

for the case when parameter 0k  is satisfied. While omit the x-derivative terms, rich 

singular solitons will be then generated. The systems displayed in the following figures 

are in some manner having essentially the same characteristics. They all contain infinite 

wave crests while the evolution region is restricted in finite amplitude. The subsequent 

analysis is similar to that above. 

 

Case 1: It is now necessary to determine the periodic wave soliton in the case 

l m n p     for the generalized Camassa-Holm equation by substituting the first 

ansatz from Eq. (6) into Eq. (5). Which can give rise to a compacton while the 

exponential parameter n<0 is satisfied. 
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Additionally from the relation pnml  , we observe another form of periodic 
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and u=0, otherwise.  

Case 2: For the ansatz of Eq. (7), it is clear that the assumption may produce a periodic 

blow-up (See Fig.5) in the form, 
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Fig.5 Curves describe periodic blow-up in the case when l m n p    . They are 

defined in finite space sector. Outside this sector, the field vanishes. For the values 

32, 1, 1, 3, 2, 2, 2n p m l D            and
2 1   . 

As we see from Fig. 5, this traveling wave contains three blow-up phenomena that 

depend on nonlinear excitations. Correspond to the solution, a soliton with the same 

character but with different shape may be found under the condition pnml  (See 
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and u=0, otherwise. 
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Fig.6 Figures similar to the above description that has four blow-up wave crests in 

terms of the parameter 

satisfies
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Case 3: From ansatz 3, solitary wave solution is derived. Specifically by making use of 

the relation n<0 for this solution, solitary pattern solution u (See Fig. 7) takes the form, 
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Fig.7 The solitary pattern soliton are strongly localized in space and they do not present 

any infinite tails. This soliton structure exists when the parameter 

concerns 2,2,1,4,2,3,1,1,2 123   Dlmpn . 

For the case pnml  , we obtained another solitary wave. The solution is 
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Case 4: We analyze the generalized Camassa-Holm equation by considering two 

constraints: k=0 and l m n p    . As ususl on putting ansatz 4 into Eq. (5), skipping 

the details, we find that blow up phenomenon (See Fig. 8) occurs.  
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However, when the exponential constant of the solution obtained above holds n<0, a 

solitary pattern solution may also be defined. 
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Fig.8 Plot showing the form of a typical blow up phenomenon with an infinite wave 

crest and a finite amplitude at fixed values 

3 22, 1, 1, 3, 2, 4, 1, 2n p m l D            and
1 2  . 

Note that the exponential sequence in Eq. (3), which determines the strength of 
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nonliearity and dispersion, is now in the different case pnml  in comparison 

with the typical blow up induced above. Thus a blow up 
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(See Fig.9). Comparing Fig. 8 with the simulation given in the following for blow up 

waves in the limited field, it is readily shown that the two branches of the latter one are 

nonsymmetrical within its finite amplitudes. 
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Fig.9 The shape of the blow up for the case when pnml  , where we plot u. The 

parameters are
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Let us next suppose that 0n . Then there is again a singular solitary pattern 

solution (See Fig. 10) given by the following 
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Fig.10 An example of a Singular solitary pattern solution and its plane graph.  

 

3.Singular solitonic structures 

As we mentioned in section Ⅱ, in the case of 0k , we have three different 

generalized Camassa-Holm equations. Solitonlike structures are available if the 

exponential sequence of the generalized Camassa-Holm model satisfy the 

relation: pnml  11 , pnml   and pnml  . For the sake of clarity, 
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we now detailed analyze the special cases C-H (2,1,1,2), C- H(1,2,2,3) , and try to find 

singular solitons by combining two different forms of the ansatz methods. 

The nonlinear equation C-H (2,1,1,2) is represented in the form, 

0)()()()( 3

2

3

1

42

1
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21  xxxxxxxtxt uuuuuuukuu                     

(10) 

Considering the transformation given as, 

U= )]
4216
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4216

(cos[
6

2)28)((
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(11) 

On substituting the combining ansatz(11) into the differential equation C-H (2,1,1,2), 

we find that when the relation a=b or a+b=1 are satisfied, expression (11) can be take 

into consideration. To find singular structures in singular structures in comparison with 

regular ones simulated before. Solitons are defined now only in a finite sector 

0)
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ba . Outside this sector, the field vanishes. 

From here it is easy to find compactonlike structures if the parameters satisfy the 

restriction 
ab

b
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 (i). Thus an unusual solitary wave, named a pair 

compacton, was found [See Fig.11(a)]. We introduce this name to designate solitons 

that coexists two symmetry curves resemble cuspons but with finite amplitude from the 

simulation plot. Multi-pair compactons are also considered [See Fig.11(b)(c)]. When 

the condition a+b=1 are satisfied, 
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Fig.11 (a) Plot showing the anti-compactonlike structures that have a pair of curves at 

the wave crest resemble cuspons, which are symmetrical in the finity vacuum. We 
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present this curve at fixed values 
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Fig.11 (b) An example of a multi-soliton that two singular structures analyzed above 

may coexist. Therefore, in this case, we introduced the name multiple pair compacton 

to define the shape of the compacton like waves. 
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Fig.11(c) In contrast to the two wave system mentioned in (b), we obtained the three 

wave system which is the general version of multiple pair compacton model. 

Next, we turn to the equation C-H (1, 2, 2, 3),  
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On substituting solution (13) into Eq. (12), one may get that if 122  ba expression 

(13) can be the soliton solutions of the C-H (1,2,2,3) system.To obtain a necessary 

condition for the existence of the compactons, we apply the constraints 
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a , then it is easy to calculate that a general condition on 

dependent parameter following from this relation 
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 (j).These solutions are strongly localized in space. For their 

amplitudes are finite, they do not present any infinite tails. We use the nonsymmetry 

compacton to designate the unusual solution that the two soliton branches impose 

different properties [See Fig. 12(a)]. When solution (18) satisfied 122  ba , one 

obtains, 
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Multi-solitons similar to that simulated in (a) can also found [See Fig.12 (b)(c)]. Both 

out soliton structures are restricted in their vacuum spaces. 
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Fig.12 (a) The shape of a non-symmetrical compacton and its plane graph produced by 

solution U, the amplitude of which is finite. The parameters are 
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Fig.12 (b) This is an example of a multi-soliton that two nonsymmetry compactons 

coexist in one structure, we can show from this plot that the curve resembles peaks in 

the bottom of compacton like waves need infinite energy to be existed above there 

finite fields. 
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Fig.12(c) Structures that resembles the form of (b), and has three compactons, each of 

which contains peaklike curves. This is because its energy value diverges.  

Remark: Note that solitons U obtained in this section are regular solitary waves before 

we provide the relations (i) and (j). When applied these relations, the very structures 

that makes us surprised are the singular wave crests. The two branches of each solitary 

wave do not show infinite regions for dependent variable . 

 

4.Many dimensions Camassa-Holm model 

Considering (2+1) temporal-spatial dimensions generalized Camassa-Holm 

equations proposed as, 
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By using the transformation tyxutyxu   ),(),,( , equation (14) can be 

accordingly transformed into the ordinary differential form, 
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Eq. (15) will be simplified into 
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In contrast to Eq.(5) considered in sectionⅡ, which gives rise to the multiple solitons, 

kinks, blow-up phenomena, compactons and regular periodic traveling waves, we’ve 

found that the relation between nonlinearity and linear dispersion dose not change. 

Since regular and special solitons exists if nonlinearity and linear dispersion 
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transactions in the C-H model. Thus, the corresponding analysis is similar to that above, 

and leading to results for the (2+1) temporal-spatial dimensional model that are 

qualitatively similar to the simulations presented above. 

(n+1) temporal-spatial dimensional cases are taking into regard for the generalized 

Camassa-Holm model. We arrive at a dispersion equation, 
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On putting the transformation txutxu
n

i

iiii   
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),(),( into equation (17), we 

obtain an ordinary differential system, 
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Again we notice that the relative coefficients in front of the -derivative terms change, 

which only accounts for the amplitude and wave velocity of solitonic structures. We can 

give detailed analysis of these features, however, it is beyond the scope of this paper. 

Note that in the (n+1) temporal-spatial dimensional cases, we can easily compute the 

value correspond to the wave structure. This value is available in Table 1 for 

comparison with the other two cases we discussed above. Even if the constant B 

verified, it is clear that this parameter may produce a weak effect in solitonic structure. 

Tab1e 1 Cases of parameter value (in the case of pnml  11 which is similar to 

the other parameter relations) 
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