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Abstract. In this paper we establish the existence and uniqueness solution of the dual equilibrium

problem on closed convex set. We give a link between the solutions set of equilibrium problem and its

dual. The same link have also been established between invex equilibrium problem and its dual. For

invex equilibrium problem, we have shown that the nonempty and boundedness of the solution sets imply

the coercivity conditions of the bi-function. We have shown, how an equilibrium problem can be cast to

a corresponding variational inequality problem for some special class of bi-functions.
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1. Introduction

LetX be a real Banach space andK be a nonempty closed convex subset of X. Consider

the function f : K×K → R with f(x, x) = 0, for all x ∈ K. Then the equilibrium problem

(in short, EP) is to find x ∈ K, such that

f(x, y) ≥ 0, for all y ∈ K.(1)
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Equilibrium problem is relatively new. This kind of inequalities was first considered and

introduced by Ky Fan [6]. But (EP) appeared with this name in the seminal paper of Blum

and Oettli in 1994 [2]. After which, many researchers made many contributions in (EP)

[4, 8, 10]. (EP) plays an important role in nonlinear analysis, optimization, game theo-

ry. The (EP) includes many mathematical problems as a particular cases for example,

mathematical programming problems, complementary problems, variational inequality

problems, Nash equilibrium problems in noncooperative games, minimax inequality prob-

lems and fixed point problems. The (EP) relates the above problems in a very convenient

way. It is well known that the (EP) is closely related to the dual equilibrium problem (in

short, DEP), which states that find u ∈ K, such that

f(y, u) ≤ 0, for all y ∈ K.(2)

This type of dual can be obtained by interchanging the arguments of the bifunction and

change the sign on the left hand side of the inequality. It is obvious that such a dual

satisfies the fundamental duality property “the dual of the dual is primal”.

In literature, when we deal with (EP) along with the existence of its solution, the most

common assumptions are the convexity of the domain and the generalized convexity and

monotonicity together with some weak continuity assumptions of the function. To the

best of our knowledge Karamardian and Schaible [7] introduced the concept of general-

ized monotonicity maps. After that Yang et al. [12] studied generalized invexity and

generalized invariant monotonicity. Konnov and Schaible proposed various types of duals

and primal-dual relationships which were established under certain generalized convexi-

ty and generalized monotonicity assumptions. Bianchi and Pini [4] studied equilibrium

problems and its dual in a topological space. They also defined the concept of prop-

er quasi-monotonicity for the bi-functions and proved that proper quasi-monotonicity is

sharp in order to solve the dual equilibrium problem. Bianchi and Pini [2] established

an equivalence between the non-empty and boundedness of the solution set and coer-

civity conditions under the setting of both pseudo-monotonicity and quasi-monotonicity.

In pseudo-monotone case, they compared their coercivity conditions with existing condi-

tions that appeared in the literature. The invex equilibrium problem was first studied by
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Noor [10] in the setting of invexity and proved that invex equilibrium problem includes

variational-like inequality problem, equilibrium problem and variational inequality prob-

lem as special cases. Hence collectively, the invex equilibrium problem covers a vast range

of applications.

We study the existence and uniqueness solution of the dual equilibrium problem for the

function of type f(x, y) = g(x, y)+h(x, y) on closed convex set. We consider some weaker

continuity conditions for the functions g and h. Here g is monotone, whereas h is not

necessarily monotone, but has to satisfy upper semicontinuity (in short, u.s.c.) condition

in the first argument. For invex equilibrium problem, we show that the nonempty and

boundedness of the solution sets imply a coercivity condition of the bi-function. We

establish a relation between (EP) and (VIP) for bounded sesquilinear functional on a

Hilbert space.

2. Definitions and examples

Definition 1. Let X be a vector space and K ⊆ X be a closed convex set. A function

f : K ×K → R is said to be monotone if f(x, y) + f(y, x) ≤ 0, for all x, y ∈ K.

Definition 2. A function f : K ×K → R is said to be pseudomonotone if f(x, y) ≥ 0⇒

f(y, x) ≤ 0, for all x, y ∈ K.

Definition 3. A function f(., y) : K×K → R is said to be hemicontinuous, if for all x ∈

K and t ∈ [0, 1], the mapping t → f(ty + (1 − t)x, y) is continuous for all y ∈ K (i.e.

continuous on any line segment in K).

Definition 4. Let K,C are two sets with C ⊂ K. Then coreKC = {x ∈ C : C ∩ (x, y) 6=

Φ, for all y ∈ K \ C}, where (x, y) denotes the line between the points x and y.

Definition 5. Let Y be an arbitrary set in a topological vector space X and F : Y → X

is a set valued mapping. If for every y ∈ Y , F (y) is closed in X, then F is said to be

KKM-map if convex hull of any finite set {y1, y2, ......, yn} of Y is contained in
n⋃

i=1

F (yi).
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Lemma 1. (Fan-KKM lemma) Let Y be an arbitrary set in a topological vector space X

and F : Y → X is KKM-map. If F (y0) is compact for some y0 ∈ Y . Then
⋂
y∈Y

F (y) 6= φ.

We describe next three particular cases of (EP) which were discussed in [1].

Example 1. Optimization problem : Let φ : K → R. It is requested to find x ∈

K such that φ(x) ≤ φ(y), for all y ∈ K. Set f(x, y) = φ(y) − φ(x). Then by (EP) we

have to find out x ∈ K such that f(x, y) ≥ 0, for all y ∈ K. Therefore the optimization

problem coincides with equilibrium problem. Also the function f is monotone in this case.

Example 2. Variational inequality problem (VIP): If we define f(x, y) = 〈Tx, y − x〉

where T : K → X∗ be a given mapping, where X∗ denotes the space of all continuous

linear maps on X. Then (EP) collapses into the classical (VIP) which states that, find

x ∈ X such that x ∈ K, with 〈Tx, y − x〉 ≥ 0, for all y ∈ K.

Example 3. Fixed point problem (FPP): Let X be a Hilbert space and K is a nonempty

closed convex subset of X. Let T : K → K be a given mapping. (FPP) states that find

x ∈ K such that x = Tx. Set f(x, y) = 〈x− Tx, y − x〉. Then x solves (EP) if and only

if x is a solution of (FPP).

3. Main results

We study the existence and uniqueness solution of the dual equilibrium problem on

closed convex set. Let f : K ×K → R, such that f(x, y) = g(x, y) + h(x, y), where

(i) g(x, x) = 0 and h(x, x) = 0, ∀x ∈ K.

(ii) g(., x) and h(., x) are concave ∀x ∈ K.

(iii) g(x, .) and h(x, .) are u.s.c ∀x ∈ K.

(iv) −g is monotone and g(., x) is l.s.c ∀x ∈ K.

(v) There exists a compact, convex subset C of K such that for every x ∈ C \ coreKC,

∃ a ∈ coreKC, such that f(a, x) ≥ 0.

Lemma 2. Let us assume that f : K × K → R satisfies the conditions (i)-(v). Then

∃ x ∈ C such that g(x, y) ≥ h(y, x), for all y ∈ C.
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Proof : Consider the sets S(y) = {x ∈ C : g(x, y) ≥ h(y, x), y ∈ C}, which are closed

sets as g is l.s.c. in first argument and h is u.s.c. in second argument.

It is enough to show that
⋂
y∈C

S(y) 6= φ.

Let {yi} be a finite subset of C where i ∈ I ⊂ N and let ξ ∈ conv {yi : i ∈ I}, where

conv {yi : i ∈ I} stands for convex hull of {yi : i ∈ I}.

Then ξ =
∑
i∈I

µiyi with µi ≥ 0 and
∑
i∈I

µi = 1. Let us assume that g(ξ, yi) < h(yi, ξ), for all i ∈

I. Since not all µi = 0 together, we have

∑
i∈I

µig(ξ, yi) <
∑
i∈I

µih(yi, ξ).(3)

Now,
∑
i∈I

µig(ξ, yi) ≥
∑
i∈I

∑
j∈I

µiµjg(yj, yi)

=
1

2

∑
i,j

µiµj{g(yi, yj) + g(yj, yi)} ≥ 0.

Again, 0 = h(ξ, ξ) ≥
∑
i∈I

µih(yi, ξ). Therefore we have
∑
i∈I

µih(yi, ξ) ≤ 0 ≤
∑
i∈I

µig(ξ, yi),

which is a contradiction to equation (3). Hence g(ξ, yi) ≥ h(yi, ξ), for some i ∈ I.

Thus ξ ∈ S(yi) for some i ∈ I. So

conv {yi : i ∈ I} ⊆ ∪{S(yi) : i ∈ I}.

Since this holds for any subset I ⊂ N and S(y) are compact subsets of C. It follows from

KKM-lemma that
⋂
y∈C

S(y) 6= φ. 2

Lemma 3. Let f : K ×K → R be a function that satisfies the conditions (i)-(v). Then

∃ x ∈ C such that g(y, x) + h(y, x) ≤ 0, for all y ∈ C.
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Proof : Let y ∈ C be arbitrary and let xt = ty + (1 − t)x, 0 < t ≤ 1. Then xt ∈ C

and hence from Lemma 2, we have g(x, xt) ≥ h(xt, x). Now

0 = g(xt, xt) ≥ tg(y, xt) + (1− t)g(x, xt)

≥ tg(y, xt) + (1− t)h(xt, x)

≥ tg(y, xt) + (1− t){th(y, x) + (1− t)h(x, x)}

= tg(y, xt) + t(1− t)h(y, x).

Dividing by t we have, g(y, xt) + (1 − t)h(y, x) ≤ 0. Letting t → 0 and using the

hemicontinuity of g we have, g(y, x) + h(y, x) ≤ 0, for all y ∈ C. 2

Lemma 4. Suppose ψ : K → R is concave, z ∈ coreKC, such that ψ(z) ≥ 0, and

ψ(y) ≤ 0, for all y ∈ C, then ψ(y) ≤ 0, for all y ∈ K.

Proof : Let us assume that ψ(y) > 0 for some y ∈ K\C. Let zt = tz+(1−t)y, 0 < t < 1.

Then ψ(zt) ≥ tψ(z) + (1 − t)ψ(y) > 0. Therefore ψ(zt) > 0 for all zt ∈ (z, y). Since

C ∩ (z, y) 6= φ, therefore there exists zt ∈ C with ψ(zt) > 0. Which is a contradiction as

ψ(y) ≤ 0, for all y ∈ C. Hence ψ(y) ≤ 0, for all y ∈ K. 2

Theorem 1. Let us assume that f : K ×K → R satisfies the conditions (i)-(v). Then

there exists x ∈ C, such that g(y, x) + h(y, x) ≤ 0, for all y ∈ K.

Proof: By Lemma 3, ∃ x ∈ C such that g(y, x) + h(y, x) ≤ 0, for all y ∈ C. Set

ψ(.) = g(., x) +h(., x). Then ψ(.) is concave and ψ(y) ≤ 0, for all y ∈ C. If x ∈ coreKC,

then in Lemma 4 choose z = x and if x ∈ C \ coreKC then set z = a in assumption

(iv). In both of the cases ψ(z) ≥ 0 and z ∈ coreKC. Hence from Lemma (4), ψ(y) ≤

0, for all y ∈ K. 2

Corollary 1. If K is compact then the coercivity assumption (iv) is satisfied vacuously

with C = K, since then C \ coreKC = φ.

We denote by Sk, S
D
k , Sk,loc and SD

k,loc the solutions set of (EP), (DEP), local solution

of the (EP) and local solution of (DEP), respectively. Where Sk,loc define by

Sk,loc = {x ∈ K : ∃ r > 0, f(x, y) ≥ 0,∀y ∈ K, ‖y − x‖ < r}.
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Theorem 2. Let K be a closed and convex set and let f : K × K → R be a function

satisfying the following conditions:

(i) f(x, x) = 0, for all x ∈ K;

(ii) −f(y, .) is upper sign continuous, for all y ∈ K;

(iii) for x, y, z ∈ K, if f(y, x) = 0 and f(z, x) > 0, then f((1 − t)y + tz, x) > 0, for all

t ∈ (0, 1);

(iv) f(.,x) is quasiconcave, for all x ∈ K.

Then Sk,loc ⊆ SD
k .

Proof: Let x ∈ SK,loc. Then there exists r > 0 such that f(x, y) ≥ 0, ∀y ∈ K, ‖x−y‖ <

r. Take any z ∈ K and choose z = (1− t)x+ tz, ∀t ∈ (0, 1) such that ‖z − x‖ < r.

Let zt = (1 − t)x + tz, t ∈ (0, 1). Now (i) and (iv) implies that 0 = f(zt, zt) ≥

min{f(z, zt), f(x, zt)}. If possible, let f(x, zt′) < f(z, zt′) for some t′ ∈ (0, 1). Then,

0 ≤ f(x, zt′) ≤ 0⇒ f(x, zt′) = 0, so f(z, zt′) > 0.

Therefore from (iii), f((1− t′)x+ t′z, zt′) > 0⇒ f(zt′ , zt′) > 0, a contradiction to (i).

So we have f(x, zt) ≥ f(z, zt), ∀t ∈ (0, 1) and f(z, zt) ≤ 0,∀t ∈ (0, 1). Therefore from (ii),

f(z, x) ≤ 0. Next to show that f(z, x) ≤ 0, assume by contradictory that f(z, x) > 0.

Since f(x, x) = 0, assumption (iii) implies f((1− t)x+ tz, x) > 0⇒ f(z, x) > 0, which is

a contradiction. Therefore f(z, x) ≤ 0, ∀z ∈ K. So x ∈ SD
K . 2

Denote Kr the subset of K defined as Kr = {x ∈ K : ‖x‖ ≤ r}.

Theorem 3. Assume that f : K × K → R satisfies condition (iii) of Theorem (2). If

x ∈ SD
kr

and if ∃ z ∈ K with ‖z‖ < r, such that f(z, x) ≥ 0. Then x ∈ SD
k .

Proof: From the assumption f(z, x) = 0. If possible let there exists y ∈ K\Kr

such that f(y, x) > 0. Therefore f((1 − t)z + ty, x) > 0 ⇒ f(zt, x) > 0 where zt =

(1−t)z+ty,∀t ∈ (0, 1). Since ‖z‖ < r, if t→ 0, zt ∈ Kr and we have f(zt, x) > 0, which is

a contradiction as x ∈ SD
kr
. That is our assumption is wrong. Hence f(y, x) ≤ 0, ∀y ∈ K. 2
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• The Invex Equilibrium Problems:

Let X be a Banach space and K be a nonempty closed subset of X. Let f : K → X and

η : K ×K → X.

Definition 6. [11] Let x ∈ K. Then the set K is said to be invex at x with respect to

η, if for every x, y ∈ K, t ∈ [0, 1], we have x+ tη(y, x) ∈ K. K is said to be an invex set

with respect to η, if K is invex at each x ∈ K.

Definition 7. Let f : K → R. f is prequasiinvex on K if f(y) ≤ f(x)⇒ f(y+tη(x, y)) ≤

f(x).

From now onwards let us assume that K is a nonempty closed invex subset in X

with respect to η, unless otherwise specified. For a given bi-function f : K × K →

R with f(x, x) = 0, for all x ∈ K, the invex equilibrium problem (in short, IEP) states

that to find x ∈ K, such that

f(x, y) ≥ 0, for all y ∈ K.(4)

The dual invex equilibrium problem (in short, DIEP), which states that to find x ∈ K,

such that

f(y, x) ≤ 0, for all y ∈ K.(5)

Lemma 5. [10] Let the function f : K × K → R be pseudomonotone and hemicontin-

uous. If the function f(x, .) is preinvex in the second argument, then the problem (4) is

equivalent to problem (5).

We denote IK and IDk are the solution sets of (IEP) and (DIEP), respectively. Let

IK,loc and IDk,loc are the local solution sets of (IEP) and (DIEP), respectively. Obviously,

IDk ⊆ IDk,loc.

Definition 8. The function f(., y) is said to be η-upper sign continuity if f(x+tη(y, x), y) ≥

0⇒ f(x, y) ≥ 0, ∀x ∈ K and t ∈ (0, 1).

The following lemma provides a link between Ik,loc and IDk . We make use here η-upper

sign continuity of the function −f(y, .).
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Lemma 6. Let f : K ×K → R be a function satisfying the following conditions:

(i) f(x, x) = 0, ∀x ∈ K;

(ii) −f(y, .) is η-upper sign continuous;

(iii) for x, y, z ∈ K, if f(y, x) = 0 and f(z, x) > 0, then f(y+tη(z, y), x) > 0, ∀t ∈ (0, 1);

(iv) −f(., x) is quasiinvex, ∀x ∈ K.

(v) if for r > 0, ‖η(x, y)‖ < r implies ‖η(y + tη(x, y), y)‖ < r.

Then, IK,loc ⊆ IDK .

Proof: Let x ∈ IK,loc. Then there exists r > 0, such that f(x, y) ≥ 0, ∀y ∈ K, ‖x−y‖ <

r. Take any z ∈ K and choose z = x+ tη(z, x), ∀t ∈ (0, 1) such that ‖z − x‖ < r.

Let zt = x + tη(z, x), t ∈ (0, 1). Now assumptions (i) and (iv) imply that 0 = f(zt, zt) ≥

min{f(z, zt), f(x, zt)}. If possible, let f(x, zt′) < f(z, zt′) for some t′ ∈ (0, 1). Then from

assumption (v), 0 ≤ f(x, zt′) ≤ 0⇒ f(x, zt′) = 0, so f(z, zt′) > 0.

Therefore from (iii), f(x + t′η(z, x), zt′) > 0 ⇒ f(zt′ , zt′) > 0, a contradiction to (i). So

we have f(x, zt) ≥ f(z, zt), ∀t ∈ (0, 1) and f(z, zt) ≤ 0,∀t ∈ (0, 1). Therefore from (ii),

f(z, x) ≤ 0. Next to show that f(z, x) ≤ 0, assume by contradictory that f(z, x) > 0.

Since f(x, x) = 0, assumption (iii) implies f(x + tη(z, x), x) > 0 ⇒ f(z, x) > 0, which is

a contradiction. Therefore f(z, x) ≤ 0, ∀z ∈ K. So x ∈ IDK . 2

Lemma 7. Let K be a closed invex subset of X and f : K × K → R be such that

f(u, x) = 0, and f(z, x) > 0 imply f(u + tη(z, u), x) > 0,∀t ∈ (0, 1). If x ∈ IDKr
and

∃ w ∈ K with ‖w‖ < r such that f(w, x) = 0, then x ∈ IDK .

Proof: From the given assumption f(w, x) = 0. If possible suppose there exists

y ∈ K\Kr such that f(y, x) > 0. Therefore f(w + tη(y, w), x) > 0 ⇒ f(wt, x) > 0

where wt = w + tη(y, w),∀t ∈ (0, 1). Since ‖w‖ < r, if t → 0, wt ∈ Kr and we have

f(wt, x) > 0, which is a contradiction as x ∈ IDK . That is our assumption is wrong. Hence

f(y, x) ≤ 0, ∀y ∈ K. 2

Let us introduce the following coercivity property:

(C): There exists r > 0, such that ∀x ∈ K\Kr, ∃ y ∈ Kr, such that f(y, x) > 0.
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Theorem 4. Let f : K ×K → R be such that

(i) f(x, x) = 0, ∀x ∈ K;

(ii) for x, y, z ∈ K, if f(y, x) = 0 and f(z, x) > 0, then f(y+tη(z, y), x) > 0, ∀t ∈ (0, 1);

(iii) f(x, .) is prequasiinvex, ∀x ∈ K.

If the set IDk is nonempty and bounded, then condition (C) holds.

Proof: Assume that condition (C) does not hold, that is for every r > 0, there exist

xr ∈ K\Kr such that f(y, xr) ≤ 0,∀y ∈ Kr. Let z ∈ IDK , so f(y, z) ≤ 0,∀y ∈ K. Choose

zr = xr + tη(z, xr), a point such that r − 1 < ‖zr‖ < r. Now from (iii),

f(y, zr) ≤ max{f(y, xr), f(y, z)} ≤ 0. So f(y, zr) ≤ 0,∀y ∈ Kr. Therefore, zr ∈ IDKr
and

‖zr‖ < r. Hence by Lemma 7, we have zr ∈ IDK . Taking zr big enough, that means IDK

is unbounded. Which contradicts the boundedness of IDK . So our assumption is wrong,

which proves the theorem. 2

In the next theorem, the generalized monotonicity properties of f allows us to replace the

prequasiinvexity of f . The pseudo-monotone case has been studied extensively, in both

variational inequality and equilibrium problems setting. Our first result generalizes the

Theorem 3.1 in [2].

Theorem 5. Let f : K ×K → R be a function such that

(i) −f is pseudomonotone;

(ii) f(y, .) is η-upper sign continuous for all y ∈ K;

(iii) for x, y, z ∈ K, if f(y, x) = 0 and f(z, x) > 0 implies f((y + tη(z, y), x) > 0, ∀t ∈

(0, 1);

(iv) −f(., x) is prequasiinvex for all x ∈ K.

If the set IDK is nonempty and bounded, then the coercivity condition (C) holds.

Proof: As IDK is bounded, we have IDK ⊆ IKr0−1 for some r0 > 0. Suppose that con-

dition (C) does not hold. Then for every r > r0, there exist xr ∈ K\Kr such that

f(y, xr) ≤ 0, ∀y ∈ Kr. Since −f is pseudomonotone, f(xr, y) ≥ 0, ∀y ∈ Kr. Now, let

z ∈ IDK and choose zr = xr + tη(z, xr) such that r − 1 < ‖zr‖ < r.
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Since −f is pseudomonotone f(y, z) ≤ 0⇒ f(z, y) ≥ 0,∀y ∈ K. Since −f is prequasiin-

vex, f(zr, y) ≥ min{f(xr, y), f(z, y)} ≥ 0, ∀y ∈ Kr. So, zr ∈ IKr ⇒ zr ∈ IDK (by Lemma

7). Now, we can take zr big enough. Which contradicts the boundedness of IDK . 2

2. Relation between (EP) and (VIP)

In this section we will discuss how to cast an (EP) into a (VIP). We have considered the

equilibrium bi-function f which is bounded sesquilinear functional over Hilbert space H.

Let f : K ×K → R be a bounded sesquilinear functional, where K be a closed subspace

of the Hilbert space H. Then by Riesz representation theorem f(x, y) = 〈Sx, y〉, where

S : K → K is a bounded linear operator. Since f(x, x) = 0, for all x ∈ K, then we have

f(x, y) = 〈Sx, y〉 = 〈Sx, y〉 − 〈Sx, x〉 = 〈Sx, y − x〉.(6)

So if the solution of the (VIP) associated with the operator S exists, then the solution of

(EP) also exists. Another class of functional, namely closed linear functional also belongs

to the above category. Which can be shown from the following theorem by replacing

Banach space Y with the real line R.

Theorem 6. [9] Let X1, X2, Y be Banach spaces and T : D(T ) ⊆ X1 ×X2 → Y a closed

linear operator, where D is closed in X1 ×X2, then the operator T is bounded.

When dealing with (EP) and existence of their solutions, the most common assump-

tions are the convexity of domain and the generalized convexity and monotonicity of the

function. We construct the following example to show that the monotonicity condition

of the defining bi-functions is not enough for the existence solutions of the equilibrium

problem. We have the following counterexample to support our work.

Example 4. Let f be the standard inner product in R2. Here S will be the identity

operator I. Obviously, I is a monotone operator. But f is not monotone, as if we take

x = (1, 2) and y = (3, 4) then f(x, y) + f(y, x) = 〈x, y〉+ 〈y, x〉 = 11 + 11 = 22 ≥ 0.

Theorem 7. Let f be a sesquilinear and x1, x2 are two solutions of (EP) for the function

f , then αx1 + βx2 (α ≥ 0, β ≥ 0) is also a solution of the same (EP).
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Proof: The result will follow since f is linear in first argument. 2
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