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Abstract. In risk analysis with prior information, one often needs to evaluate multi-dimensional integrals in order

to obtain various characteristics of posterior density functions. Monte Carlo Markov Chain method has been widely

used. However, the MCMC method could be computationally intensive. The traditional method for numerical

integration requires a full grid evaluation which is computationally intensive when the dimensions are not low.

We introduce a novel approach to approximate Bayesian computation by numerical integrations on sparse grids.

The number of required grid points for numerical integrations by using sparse grids does not rise exponentially

with the dimensions. The proposed method is computationally efficient compared with the traditional numerical

integration approach. The posterior density including the normalizing factor can be computed numerically. The

posterior mean, median and confidence intervals can then be approximated directly. Both simulated and real

data sets are used to evaluate the performance of the proposed method. Numerical experiments suggest that the

proposed method could provide fast and efficient approximations with relatively high level of accuracy.
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1. Introduction

In risk analysis, Bayesian inference plays an important role since it integrates prior infor-

mation or expert opinion with actual measurements or observation. In Bayesian data analysis,
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one often needs to evaluate multi-dimensional integrals in order to obtain various characteristics

of posterior or marginal densities such as mean, median and confidence intervals. This requires

finding the normalizing factor which ensures that the posterior density is indeed a probability

density. The normalizing factor is defined by integrating a function that is proportional to the

joint posterior density. If the problem under consideration does not assume a conjugate struc-

ture for the likelihood and prior distributions, the multi-dimensional integrals often do not have

close forms.

Monte Carlo simulation (also called Markov chain Monte Carlo, or MCMC) is a general

method based drawing values randomly from approximate distributions. The random numbers

are then used to approximate the target posterior distribution. There are many excellent reviews

of the MCMC method, such as Gelman et. al (2004). The MCMC method is very powerful

and has many applications. However, Gelman et. al (2004) state that the Gibbs sampler and

Metropolis algorithms have inherent inefficiency due to their random walk behaviors. Although

reparametrerization and jumping rules can improve the situation, the problem remains for com-

plicated models in high dimensional distributions such as Bayesian models for environmental

space-time processes described in Le and Zidek (2006). Multimodal posterior distribution could

also pose serious problems for MCMC techniques. It is quite easy for the MCMC simulations

to stay in one single mode for a long period of time. Excellent review and detailed discussions

can be found in Gelman et. al (2004).

For problems with only a few parameters, numerical integration using adaptive quadratures

for numerical integration work well in low dimensions. Detailed descriptions of various quad-

rature rules can be found in Kennedy and Gentle (1980) and Ralston and Rabinowitz (1978).

In general, numerical integration in multiple dimensions poses a serious numerical challenge in

the past. This is due to the well known fact that it is inefficient to directly extend the univariate

quadrature to multiple dimensions by applying univariate quadrature rule to each dimension.

Such an extension will cause computational cost to rise exponentially in multiple dimensions.

This is also known as the curse of dimensionality, a term coined in Bellman (1961).
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Recently, numerical integration in high dimensions has attracted research interests in nu-

merical mathematics. The approach of numerical integration on sparse grids for high dimen-

sions has emerged as an effective and efficient method in numerical analysis in recent years.

The original idea of sparse grid can be traced back to Smolyak (1963). The high-dimensional

basis is derived from one-dimensional multi-scale basis by a tenor product construction. The

sparse grid method based on Smolyak’s rules is exact for polynomial function. It can also be

used to approximate functions that are not polynomial. The sparse grid method aims to be

exact in the class of complete polynomial instead of tensor products of univariate polynomial.

Therefore, the required grid points for numerical integration does not rise exponentially with

the dimensionality. Bungartz and Griebel (2004) give an excellent review of the sparse grid

method.

Using the sparse grids integration, we directly compute the normalizing factor of the pos-

terior density. Hence, posterior density functions are approximated numerically. Consequently,

the posterior mean and median are obtained numerically as well. By solving appropriate nonlin-

ear integration equations iteratively, the Bayesian posterior confidence intervals are constructed

as well. Unlike approximations proposed in the literature based on normal approximation or

Laplace’s method, the proposed approach of numerical integration on sparse grids does not re-

quire the posterior density to be approximately normal or to satisfy some regularity conditions.

We demonstrate our method by using simulation studies on the single parameter model. We

also evaluate the performance of our proposed method with hierarchical models on two well-

studied data sets. The first one is the tumor incidence data set from Tarone (1982). We apply

hierarchical model of binomial distributions with Beta prior. The hyperprior is assumed to be

non-informative. It only takes about 0.55 seconds to derive an accurate approximation of the

marginal distributions of the hyperparameters. The second one is the coagulation time data set

from Box, Hunter and Hunter (1978). Normal sampling model with uniform priors are used to

analyze this data set. We also provide computing time for approximating the marginal posterior

density functions. It takes only 3.31 seconds to derive the marginal confidence intervals for all

seven parameters.
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In Section 3, we introduce the problem of approximating the posterior density function

numerically. We then discusses the sparse grid method in detail and presents some theoreti-

cal results. Section 3 demonstrates the proposed method through simulation studies and data

analyses. Discussions are provided in Section 4.

2. Approximate Bayesian Inference by Numerical Integration

In Bayesian analysis, the observed data y = (y1, y2, · · · , yn), given a vector of unknown

parameters θ, follow a probability distribution f(y|θ) with a prior distribution π(θ|η), where

η is a vector of hyperparameters sampled from a hyperprior density h(η). One key element

in Bayesian computation is to evaluate various integrals associated with the posterior densities

such as the normalizing factor.

For hierarchical models, we assume that θ1, θ2, . . . , θm are i.i.d. random variables from

a prior distribution πη where the hyeperparameter η follows a hyperprior distribution h(η).

Therefore the joint posterior distribution p(θ|y) is given by

(1) p(θ,η|y) ∝ f(y|θ) π(θ|η) h(η).

The normalizing factor is then defined as

(2) C(y) =

∫
f(y|θ) π(θ|η) h(η) dη.

0.1. Numerical Integration on Sparse Grid Algorithm. In the following introduction of the

sparse grid algorithm, we let g(u) = f(y|u)π(u|η) and C(y,η) =
∫
g(u)du. For simplicity,

we assume that the hyperparameters take fixed values although the numerical integration can

certainly handle integration involving hyperprior distributions. We will first describe the nu-

merical method to approximate the normalizing factor C(y,η) when u is a scalar, which will

be utilized by the high dimensional method in the following context.
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0.1.1. Univariate quadrature. A quadrature approximation of an integral requires only a finite

number of function evaluations, and uses the weighted sum as the approximation:

(3)
∫
g(u)du ≈

K∑
i=1

wig(ui).

Davis and Rabinowitz (1975) and Neumaier (2001) have detailed treatments of Gauss quad-

rature and other quadrature rules as well, such as Clenshaw-Curtis rule, Newton-Cotes rules

(midpoint, rectangle, trapezoidal), and Gauss quadratures for special purposes ( Chebyshev,

Laguerre, Hermite, Jacobi, Kronrod, Patterson).

More generally, we define an operator Qj:

(4) Qj[g] =
∑
u∈Uj

w(u)g(u),

where Uj specifies the set of evaluation points; and w : Uj → R provides the corresponding

weights. Note that for different quadrature rules the cardinality of Uj are different; however

they all achieve improving polynomial exactness with increasing j.

0.1.2. Multivariate quadrature. For a multivariate function g, the multivariate quadrature rules

seek the optimal UK and WK to achieve highest possible polynomial exactness with K function

evaluations. We first define the order of differentiability of a multivariate polynomial to be its

total order. Let a d-variate polynomial

g(u1, · · · , ud) =
L∑
l=1

clu
el1
1 · · ·u

eld
d ,

then its total order is the maximal el1 + · · ·+ eld for all l = 1, · · · , L.

We define the multivariate quadrature rule through the tensor product and allow different

polynomial exactness among different dimensions:

(5) (Qj1 ⊗ · · · ⊗Qjd)[g] =
∑
u1∈Uj1

· · ·
∑

ud∈Ujd

wj1(x1) · · ·wjd(xd)g(x1, · · · , xd),

where Uj1 , · · · , Ujd and weights wj1 , · · · , wjd are exactly the same as in the univariate quadra-

ture rules. The approach is also widely known as the full grid method. However it suffers from

the curse of dimensionality. To see this, let’s fix j1 = j2 = · · · = j, and suppose there are K
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points in Uj , then the number of points used in the tensor product is exactly Kd. For a given

accuracy, the exponential growth of the number of function evaluations is a serious challenge

for a high dimensional problem.

In contrast to the full grid approach, the sparse grid approach to be introduced in the nex-

t section does not experience an exponential growth of the number of function evaluations.

Although the sparse grid approach also uses the tensor product of the underlying univariate

quadrature rules, it only selects evaluation points of the highest marginal benefit. We note that,

for a certain type of particular problem, one might be able to directly solve the high dimensional

problem without resorting to the tensor approach, see Stroud (1971) and Cools (2003). Howev-

er such a solution usually does not extend to arbitrary dimensions. The tensor product approach

of the sparse grid is general and easy to implement as shown in the next section.

0.1.3. Sparse Grid Algorithm. The sparse grid idea dates back to Smolyak (1960), which can

utilize any univariate quadrature rules {Qj : j ∈ N} to approximate a d-dimensional problem.

Let ‖j‖1 = j1 + · · ·+ jd, then the set of evaluation points in the sparse grid method is simply

(6) U(q, d) =
⋃

‖j‖1≤q+d−1

(Uj1 ⊗ · · · ⊗ Ujd), ∀q ∈ N.

The cardinality of U(q, d) increases monotonically with q, which measures our computation

effort. We illustrate the difference between the sparse grid and the full grid using a bivariate

example. Let d = 2, q = 2, then the requirement ‖j‖1 ≤ 3 allows the following multi-index

j = [j1, j2]: [1, 1], [1, 2], [2, 1]. For Gauss-Kronrod-Patterson univariate quadrature rule, U1 =

{0.5}, U2 = {0.1127, 0.5, 0.8873}, let a = 0.1127, b = 0.5, c = 0.8873, then U1 ⊗ U1 =

{(b, b)}; U1 ⊗ U2 = {(b, a), (b, b), (b, c)}; U2 ⊗ U1 = {(a, b), (b, b), (c, b)}; and the sparse grid

U(2, 2) = {(a, a), (b, a), (b, c), (a, b), (c, b)}. In contrast, the full grid approach will include

four additional points {(a, a), (c, c), (a, c), (c, a)}, which almost doubles the number of function

evaluations. The Fig 1 shows the sparse grid for d = 2, q = 5 and d = 3, q = 5 using Gauss-

Kronrod-Patterson univariate rule.

Let Q0 = 0, and define the operator

∆j = Qj −Qj−1, j ∈ N,(7)
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(a) d = 2 (b) d = 3

FIGURE 1. Sparse grid on unit square and unit cube for q = 5 with underlying
Gauss-Kronrod-Patterson univariate quadrature. There are 129 gird points in the
unit square and 351 grid points in the unit cube.

then the Symolk’s definition of sparse grid is

(8) A(q, d) =
∑

‖j‖1≤q+d−1

∆j1 ⊗ · · · ⊗∆jd , q ∈ N.

Wasilkowski and Wozniakowski (1995) showed a combination technique to calculate the (8) in

terms of the original univariate quadrature:

(9) A(q, d) =
∑

q≤‖j‖1≤q+d−1

(−1)q+d−1−‖j‖1 ·
(

d− 1

‖j‖1 − q

)
· (U j1 ⊗ · · · ⊗ U jd).

We illustrate the equivalence between (8) and (9) through a two dimensional example. In this

case,

A(q, 2) =
∑

‖j‖1≤q+1

∆j1 ⊗∆j2

= ∆1 ⊗ (∆1 ⊕ · · · ⊕∆q−1 ⊕∆q)+

∆2 ⊗ (∆1 ⊕ · · · ⊕∆q−1)+

...

∆q ⊗∆1

= ∆1 ⊗ Uq + ∆2 ⊗ Uq−1 + · · ·+ ∆q ⊗ U1

=
∑

‖j‖1=q+1

Uj1 ⊗ Uj2 −
∑
‖j‖1=q

Uj1 ⊗ Uj2 ,(10)
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which is equivalent to (9).

The implementation of (9) is best described by its explicit formula:

A(q, d) =

q+d−1∑
‖j‖1=q

(−1)q+d−1−‖‖1
(

d− 1

‖j‖1 − 1

)
∑
u1∈Uj1

. . .
∑

ud∈Ujd

wj1(u1) . . . wjd(ud)g(u1, . . . , ud),

(11)

where wjk(uk) is the weighting function of the univariate quadrature rule. It is ready to see that

the sparse grid approximation is in fact a weighted sum of the function values at the points in

U(q, d). However a naive expansion of the formula (11) will incur redundant function evalua-

tions at certain nested quadrature points. A more efficient way is to use the following procedure:

(i)generate U(q, d); (ii) evaluate g on U(q, d), (iii) use equation (11); (iii) compute the combined

weight w̃ for each point in U(q, d); (iv) finally compute

A(q, d) =
∑

u∈U(q,d)

w̃(u)g(u).(12)

Bungartz and Griebel (2004) provide a comprehensive survey of the sparse grid method with

discussions.

Given a non-normalized posterior density function, the algorithm to approximate Bayesian

inference is then quite straightforward:

1. Determine a desirable level of sparse grid.

2. Obtain the normalizing factor using sparse grid integration.

3. Use the computed normalizing factor compute the posterior mean.

4. Use a root-finding algorithm to obtain the median, lower and upper bounds of posterior

confidence interval by solving nonlinear integral equations.

We remark that there is no known theoretical results to select the level of sparse grid. This

is a value specified by the user. High level of sparse grids will deliver better accuracy with

increasing computational costs. A common practice, which is also followed in our numerical

experiments, is to increase the level of sparse grid sequentially, and then find an acceptable

trade-off between the computation time and required accuracy.
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3. Numerical Experiments

In this section, we demonstrate our proposed method on both single parameter models and

hierarchical models with real world data sets.

Many statistical applications involve multiple parameters or data sets that are considered to

be related. We now consider a well studied data set concerning tumor rates in historical control

groups and current group of rats from Tarone (1982). Suppose that one is concerned about the

probability of tumor in a population of certain female rats assigned to a control group. The

data show that 4 out of 14 rats in this control group developed a certain kind of tumor called

endometrial stromal polyps. Suppose that 70 historical data sets are available. For the purpose

of demonstration, we assume exchangeability in order to apply the hierarchical model described

in Section 2. Detailed discussions and analysis of this data set can be found in Gelman et al.

(2004).

0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/19 0/19 0/19
0/19 0/18 0/18 0/17 1/20 1/20 1/20 1/20 1/20 1/20
1/18 1/18 2/25 2/24 2/23 2/20 2/20 2/20 2/20 2/20
2/20 1/10 5/49 2/19 5/46 3/27 2/17 7/49 7/47 3/20
3/20 2/13 9/48 10/50 4/20 4/20 4/20 4/20 4/20 4/20
4/20 10/48, 4/19 4/19 4/19 5/22 11/46 12/49 5/20 5/20
6/23 5/19 6/22 6/20 6/20 6/20 16/52 15/47 15/46 9/24
Current experiment: 4/14.

TABLE 1. Rat Tumor incidence in historical control groups and current groups
of rats, from Tarone (1982). The table displays the values of yj/nj (number of
rats with tumors) / (total number of rats).

Sparse Grid Level Q=5 Q=6 Q=7 Q=8
(145 points) (321 points) (705 points) (1537 points)

Est. Max. Abs. Error. 2.4× 10−2 1.1× 10−2 4.2× 10−4 4.9× 10−6

Est. Max. Rel. Error 26% 3.5% 0.1% 0%
Run Time 0.26 sec. 0.55 sec. 1.18 sec. 2.52 sec.

TABLE 2. Comparison of accuracy by using different levels of sparse grids. The com-
putation times were recorded using MATLAB on Leveno T400S laptop.
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FIGURE 2. Contour plots of true Posterior density (left) and estimated Posterior den-
sity (right)
of (α/(α + β), 1/

√
α+ β) using 145 sparse grid points. To avoid computational over-

flow, we subtract the maximum value from the log density from each point on the grid
and exponentiate.

FIGURE 3. Marginal Densities for (α, β), α and β respectively.

Consider the Binomial sampling model withBeta prior and h(α, β) as the hyperprior distri-

bution. The posterior density is given by equation (5), we restate the result here for convenience:

(13) p(α, β|y) ∝ h(α, β)
m∏
j=1

Γ(α + β)

Γ(α) Γ(β)

Γ(α + yj) Γ(β + nj − yj)
Γ(α + β + nj)

.

Following the discussions in Gelman et al. (2004), we employ a noninformative uniform

prior on ( α
α+β

, (α + β)−1/2) which implies that

(14) p(α, β) ∝ (α + β)−5/2.

Based solely on the sample mean and standard deviation of the 70 historical data sets without

any prior distribution, a crude estimate for (α, β) is (1.4, 8.6). Therefore, we choose the domain
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FIGURE 4. Plot of marginal posterior confidence intervals for θj , j = 1, 2, · · · , 71.
The solid line corresponds the posterior mean. The broken line corresponds to the ob-
served rate y(i)/n(i).

of our prior distribution to be [1, 5] × [5, 20] in order to cover a reasonable range for these two

parameters.

We compute the true posterior density function of (α, β) and approximated posterior density

by using 145 grid points. The contours plots are presented in Figure 3. The results of using

different number of grid points to estimate the posterior density are also provided in Table

5. It can be seen that the level 6 sparse grid with 321 points already achieves high level of

accuracy for approximating the posterior density. The estimated relative error is close to 3.5%.

We emphasize that this is achieved in 0.55 second by a computer program in MATLAB on a

Lenevo T400s laptop.

By using our method, we obtain the posterior mean for (α, β) (2.11, 13.02). By using the

posterior mean, we can then compute the point estimate for α/(α+ β) which equals to 0.1395.

The mean of all 71 experiments is 0.1381. This is not surprising since we have chosen a non-

informative uniform prior for α/(α+β) to represents our ignorance about the mean of the prior

distribution. We can also obtain the confidence intervals for α, β. We also compute the marginal

distributions for α and β respectively as shown in Figure 4.

The 95% posterior confidence interval of α is [1.21, 4.82] with posterior median of 2.06.

The 95% posterior confidence interval of β is [7.06, 16.11] with posterior median of 12.45. The

computational time is 8.24 seconds to find the confidence intervals for both α and β by using
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level 6 (321 points) sparse grid. The confidence interval for the last experiment is of particular

interest since it is the current experiment. The non-Bayesian estimate is 4/14 = 0.2857. We

obtain that the confidence interval is [0.09, 0.41] with posterior median of 0.2191 and posterior

mean of 0.2221. The posterior means of θi are pulled towards 0.1395. Figure 5 shows the

approximated posterior confidence interval of θi and posterior means.

In order to find the confidence intervals for all the θi, i = 1, 2, · · · , 71, one needs to solve

the nonlinear equations described in Section 2. For this step, an efficient search algorithm is

essential. We tried two search algorithms in MATLAB with their default settings. Our expe-

riences indicate that a search algorithm not using derivatives provide better numerical results.

The search algorithm using derivatives might be able to deliver same or better results if the

appropriate setting is chosen. We also notice that the starting points for any search algorithm

could be very important. The starting points for the bisection search algorithm are set to be

either 0, 1 or 0.5. Since our focus is not on the search algorithms, we do not investigate this

issue further. The computational time including using the derivative-free search algorithm is

135 seconds using level 5 sparse grid.

We also demonstrate our method on hierarchical model with 7 dimensions. This data set has

been considered as an example in the statistical literature. Table 3 shows the data set. Consider J

independent experiments with parameter θj for each experiment with nj independent normally

distributed observations:

(15) yij|θj ∼ N(θj, σ
2), i = 1, 2, · · ·nj; j = 1, · · · , J.

We assume that the parameter θj are drawn from a normal distribution with hyperparameters

(µ, τ):

(16) p(θ1, · · · , θJ | µ, τ 2) =
J∏
j=1

N(θj|µ, σ2).

We use noninformative uniform priors for all the hyperparameters.

The total run time for the using sparse grid method is recorded as 3.31 seconds on a Lenevo

T400S laptop computer using a MATLAB program. The sparse grid method only uses 113



APPROXIMATE RISK ANALYSIS USING NUMERICAL INTEGRATION ON SPARSE GRIDS 941

Diet Measurements
A 63, 60, 63, 59
B 63, 67, 71, 64, 65, 66
C 68, 66, 71, 67, 68, 68,
D 56, 62, ,60, 61, 63, 64, 63, 59

TABLE 3. Cogulation time in seconds for blood drawn from 24 animals ran-
domly allocated to four different diets. Originally from Box, Hunter, and Hunter
(1978).

points for integrations on 7 dimensions which is much less than the required grid points for the

full grid approach.

Parameter 2.5% Median 97.5%
θ1 57.70 64.50 71.29
θ2 60.62 66.00 71.37
θ3 64.82 68.00 71.17
θ4 56.02 61.00 65.97
µ 59.56 64.00 68.43
σ 1.33 3.64 5.95
τ 1.48 6.68 11.88

TABLE 4. Summary of posterior quantiles at 25% and 97.5% and median using
sparse grid integration.

Spars Grid Full Grid
Points Points(q=5) Points (q=7) Points (q=10)
113 78, 000 820, 000 1, 000, 000

TABLE 5. Comparison of Grid Points for Full Grid and Spars Grid.

We assume non-informative uniform hyperprior distribution to represent our ignorance on

all the hyperparameters. The range of integration is chosen by using the frequent’s 95% confi-

dence intervals or proportional to the point estimates. The 95% posterior confidence interval for

all seven parameters are listed in Table 4. The shrinkage effect is most significant for the first

experiment which has the smallest sample size among the four groups. The medians of other

groups do not seem to be affected. We also compare the total number sparse grid points used

with possible full grid points in Table 5. The computational efficiency of using the sparse grid

method is quite clear.

We now consider a classical example for Bayesian model selection in Carlin and Chib

(1995). They study a model selection example in which there are two competing explanatory



942 S. CHEN, X. WANG

variables to explain a single response variable. For 42 specimens of radiata pine, the maximum

compressive strength parallel to the grain as yi were observed together with its density xi and

density adjusted for resin content zi.

It is desired to compare the following two models:

M = 1 : yi = α + βxi + εi, εi
i.i.d.∼ N(0, σ2), i = 1, 2, · · · , n,(17)

M = 2 : yi = γ + δxi + εi, εi
i.i.d.∼ N(0, τ 2), i = 1, 2, · · · , n.(18)

where M = 1, or2, specifies the model choice. Thus, we have θ1 = (α, β, σ) and θ2 = (γ, δ, τ).

It then follows that

(19) P (y|M = j) =

∫
f(y|θj,M = j) p(θj|M = j)dθj.

We adopt the same setting as that in Carlin and Chib (1995). Namely, we placeN(3000, 185)t,

diag(106, 104)) priors on (α, β)t and (γ, δ)t, and inverse gamma priors on σ2 and τ 2, both mean

and variance equal to 3002. To be consistent, the model prior probabilities are also set to be

π1 = 0.9995 and π2 = 0.0005.

Carlin and Chib (1995) reported that the Bayes factor is 4420 with posterior probabilities

(0.3114, 0.6686) for the two competing models. Our estimated Bayes factor is 4309 and pos-

terior probabilities (0.3169, 0.6831) while using the domain of integration to be [0, 9000] ×

[−215, 485] × [1, 2 ∗ 90000] which roughly correspond to two or three standard deviations

around the prior mean. Therefore, we are able to find a very reasonable approximation by using

the proposed numerical approach.

The run time is 0.4836 second on a 64-bit desktop compute with Intel i7CPU with 6GB

memory. It can provide fast and efficient approximation when other priors are employed.

Although the proposed method could provide fast and relatively accurate approximation,

significant numerical challenges still remain. Since the conditional likelihood by definition

could be very small based on the data, it could be numerically zero for very large data set or

some non-informative prior. To alleviate this problem, we multiply the conditional likelihood

by 106 or any other constant that will bring the integrand to a reasonable numerical level. We

also observe that the result is dependent on the domain of integration. For example, a domain of
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[0, 9000]× [−215, 585]× [1, 2 ∗ 90000] produces an estimate Bayes factor of 5020. Carlin

and Chib (1995) reported an average of 4420 with the 95% interval of (4353, 4487). This is

clearly not comparable with their estimates. We believe that this dependence on the domain of

integration might be related to the aforementioned numerical challenge.

3. Concluding Remarks

The Monte Carlo Markov Chain methods have proven to be very powerful and effective.

However, they could be computationally intensive especially for high dimensions. We propose

to apply the sparse grid method for numerical integration to conduct approximate Bayesian

inference especially for exploratory purposes. The main advantage of using sparse grid inte-

gration is that it does not require exponentially increasing computational cost as the traditional

full grid method does. Furthermore, it requires far fewer points than the Monte Carlo methods.

Results from our numerical experiments suggest that this method is very fast for our selected

case studies and could be promising for providing efficient approximations for Bayesian mod-

els in high dimensions. Work is in progress to investigate an effective and adaptive strategy to

stabilize the numerical integration and choose the domain of integration judiciously.
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