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Abstract. In this article, we develop some important results relating to the concepts of generalized

triple derivation and Jordan generalized triple derivation of gamma rings. Through every generalized

triple derivation of a gamma ring M is obviously a Jordan genaralized triple derivation of M, but the

converse statement is in general not true. Here we prove that every Jordan generalized triple derivation

of a 2-torsion free prime gamma ring is a generalized derivation.
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1. Introduction

Let M and Γ be additive abelian groups. M is said to be a Γ-ring if there exists a

mapping M × Γ×M →M (sending (x, α, y) into xαy) such that

(a)(x+ y)αz = xαz + yαz,

x(α + β)y = xαy + xβy,

xα(y + z) = xαy + xαz,

(b)(xαy)βz = xα(yβz),

for all x, y, z ∈M and α, β ∈ Γ.
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A subset A of a Γ-ring M is a left(right) ideal of M if A is an additive subgroup of M

and MΓA = {mαa : m ∈M,α ∈ Γ and a ∈ A}, (AΓM) is contained in A. An ideal P of

a Γ-ring M is prime if P 6= M and for any ideals A and B of M,AΓB ⊆ P, then A ⊆ P

orB ⊆ P. M is prime if aΓMΓb = 0 with a, b ∈ M, then a = 0 or b = 0. M is 2-torsion

free if 2m = 0, for m ∈M implies m = 0.

N. Nobusawa [5] was first introduced the notion of a gamma ring. The gamma ring

due to N. Nobusawa is now denoted by ΓN -ring. Next Barnes [1] generalized it and gave

the above defination. Now a day we mean the gamma ring which is given by Barnes. It

is clear that every ring is a gamma ring.

M. Bresar [3] worked on Jordan triple derivations of semiprime rings and he proved that

R is a two torsion free semiprime ring, then every Jordan derivation is a derivation.

Wu Jing and Shijie [6] defined generalized Jordan triple derivation. They showed that

every generalized Jordan triple derivation is a generalized derivation.

M. Sapanci and A. Nakajima [4] worked on Jordan derivation on completely prime gamma

rings. They proved that every Jordan derivation on a two torsion free completely prime

gamma rings is a derivation.

In this paper, we define generalized triple derivation and Jordan generalized triple deriva-

tion of a gamma ring. We give an example of a generalized triple derivation and an

example of a Jordan generalized triple derivation for gamma rings. We also prove that

every Jordan generalized triple derivation is a generalized derivation if it is a two torsion

free prime Γ-ring.
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2. Jordan generalized triple derivation.

Let R be an associative ring. An additive mapping d : R → R is called a Triple

derivation if

d(abc)=d(a)bc+ad(b)c+abd(c).

and a Jordan Triple derivation if

d(aba)=d(a)ba+ad(b)a+abd(a).

Let M be Γ-ring. An additive mapping f : M →M is called a generalized Triple derivation

if

f(aαbβc) = f(a)αbβc+ aαd(b)βc+ aαbβd(c). For all a, b, c ∈M and α, β ∈ Γ

and a Jordan generalized Triple derivation if

f(aαbβa) = f(a)αbβa+ aαd(b)βa+ aαbβd(a). For all a, b, c ∈M and α, β ∈ Γ

It is clear that every generalized triple derivation is a Jordan generalized triple derivation

but the converse is not ingeneral true.

Now we give the following examples:

2.1 Example

Let R be an associative ring with unity element 1. LetM = M1,2(R) and Γ =


 n.1

0

 , n ∈ Z

 .

Then M is a Γ-ring. Let f : R → R be a generalized triple derivation with associated

derivation d : R→ R. Now define

F((x,y))=(f(x),f(y)) and D((x,y))=(d(x),d(y)). Then F is a generalized triple derivation

associated to the derivation d.

To show it consider a = (x1, y1), b = (x2, y2), c = (x3, y3) α =

 n1.1

0

, β =

 n2.1

0

,

then aαbβc = (x1n1x2n2x3, x1n1x2n2y3)

And finally we get F (aαbβc) = F (a)αbβc + aαD(b)βc + aαbβD(c). F is a generalized

triple derivation associated to the derivation D.

2.2 Example

Let M be a Γ-ring defined as in example 2.1. Let N = {(x, x) : x ∈M}.

Then N is a Γ-ring containd in M. Let d be a triple derivation given in example 2.1. Define
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D : N → N is a Jordan triple derivation. Define

F((x,x))=(f(x),f(x)).

Then F is a Jordan generalized triple derivation.

To show it consider a = (x, x), b = (y, y) and α =

 n1.1

0

, β =

 n2.1

0

 then

aαbβa = (xn1yn2x, xn1yn2x), F (aαbβa) = F (a)αbβa+ aαD(b)βa+ aαbβD(a). So F is a

Jordan generalized triple derivation associated to the derivation D.

Note that it is not a generalized Jordan triple derivation.

Lemma 2.1. Let M be a Γ ring and d be a Jordan triple derivation of a Γ ring M . Then

for all a, b, c ∈M , we have

d(aαbβc+ cαbβa) = d(a)αbβc+ d(c)αbβa+ aαd(b)βc+ cαd(b)βa+ cαbβd(a) + aαbβd(c).

proof: Computing d((a+ c)αbβ(a+ c)) and cancelling the like terms from both sides,

we prove the lemma.

Lemma 2.2. Let M be a Γ ring and d be a Jordan generalized triple derivation on a Γ

ring M . Then for all a, b, c ∈M , we have

f(aαbβc+ cαbβa) = f(a)αbβc+ f(c)αbβa+ aαd(b)βc+ cαd(b)βa+ cαbβd(a) + aαbβd(c).

proof: Computing f((a+ c)αbβ(a+ c)) and cancelling the like terms from both sides,

we prove the lemma.

Definition 1. Let M be a Γ-ring. Then for all a, b, c ∈M and α, β ∈ Γ we define

[a, b, c]α,β = aαbβc− cαbβa.

Lemma 2.3. If M is a Γ-ring, then for all a, b, c ∈M and α, β ∈ Γ

(1) [a, b, c]α,β + [c, b, a]α,β = 0

(2) [a+ c, b, d]α,β = [a, b, d]α,β + [c, b, d]α,β

(3) [a, b, c+ d]α,β = [a, b, c]α,β + [a, b, d]α,β

(4)[a, b+ d, c]α,β = [a, b, c]α,β + [a, d, c]α,β

(5) [a, b, c]α+β,γ = [a, b, c]α,γ + [a, b, c]β,γ

(6) [a, b, c]α,β+γ = [a, b, c]α,β + [a, b, c]α,γ
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proof: Obvious

Definition 2. Let d be a Jordan triple derivation of a Γ-ring M. Then for all a, b, c ∈M

and α, β ∈ Γ we define

Gα,β(a, b, c) = d(aαbβc)− d(a)αbβc− aαd(b)βc− aαbβd(c).

Lemma 2.4. Let d be a Jordan triple derivation of a Γ-ring M. Then for all a, b, c ∈ M

and α, β ∈ Γ we have

(1) Gα,β(a, b, c) +Gα,β(c, b, a) = 0

(2) Gα,β(a+ c, b, e) = Gα,β(a, b, e) +Gα,β(c, b, e)

(3) Gα,β(a, b, c+ e) = Gα,β(a, b, c) +Gα,β(a, b, e)

(4) Gα,β(a, b+ c, e) = Gα,β(a, b, e) +Gα,β(a, c, e)

(5) Gα+γ,β(a, b, c) = Gα,β(a, b, c) +Gγ,β(a, b, c)

(6) Gα,β+γ(a, b, c) = Gα,β(a, b, c) +Gα,γ(a, b, c).

proof: Obvious

Lemma 2.5. If M is a Γ-ring , then

Gα,β(a, b, c)γxδ[a, b, c]α,β + [a, b, c]α,βγxδGα,β(a, b, c) = 0

for all x ∈M and γ, δ ∈ Γ.

proof: First , we compute d(aα(bβcγxδcαb)βa+cα(bβaγxδaαb)βc) by using the definition

of Jordan triple derivation we get d(a)αbβcγxδcαbβa+aαd(b)βcγxδcαbβa+aαbβd(c)γxδcαbβa+

aαbβcγd(x)δcαbβa+aαbβcγxδd(c)αbβa+aαbβcγxδcαd(b)βa+aαbβcγxδcαbβd(a)+d(c)αbβaγxδaαbβc+

cαd(b)βaγxδaαbβc+cαbβd(a)γxδaαbβc+cαbβaγd(x)δaαbβc+cαbβaγxδd(a)αbβc+cαbβaγxδaαd(b)βc+

cαbβaγxδaαbβd(c). On the other hand, we d((aαbβc)γxδ(cαbβa) + (cαbβa)γxδ(aαbβc))

and using lemma 2.1, then we get d(aαbβc)γxδcαbβa+d(cαbβa)γxδaαbβc+aαbβcγd(x)δcαbβa+

cαbβaγd(x)δaαbβc+ aαbβcγxδd(cαbβa) + cαbβaγxδd(aαbβc) Since these two are equal,

cancelling the like terms from both sides of this equality and then rearranging them, we

get

Gα,β(a, b, c)γxδ[a, b, c]α,β + [a, b, c]α,βγxδGα,β(a, b, c) = 0
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Lemma 2.6. Let M be a 2-torsion free semi prime Γ-ring and suppose that a, b ∈ M . If

aΓmΓb+ bΓmΓa = 0 for all m ∈M , then aΓmΓb = bΓmΓa = 0

proof: Let m and m′ be two arbitrary elements of M. Then by hypothesis, we have

(aΓmΓb)Γm′Γ(aΓmΓb) = −(bΓmΓa)Γm′Γ(aΓmΓb) = −(bΓ(mΓa)Γm′)Γa)ΓmΓb) = (aΓ(mΓaΓm′)Γb)ΓmΓb =

aΓmΓ(aΓm′Γb)ΓmΓb) = −aΓmΓ(bΓm′Γa)ΓmΓb) = −(aΓmΓb)Γm′Γ(aΓmΓb). This im-

plies , 2(aΓmΓb)Γm′Γ(aΓmΓb) = 0. Since M is a 2-torsion free, (aΓmΓb)Γm′Γ(aΓmΓb) =

0

By the semiprimeness of M, aΓmΓb = 0 for all m ∈M . Hence we get ,aΓmΓb = aΓmΓb =

0 for all m ∈M .

Lemma 2.7. Let M is a 2-torsion free prime Γ-ring. Then for all a, b, x ∈ M and

α, β, γ, δ ∈ Γ, then Gα,β(a, b, c)γxδ[a, b, c]α,β = [a, b, c]α,βγxδGα,β(a, b, c) = 0.

proof: The lemma is semiler to the proof of [7] corollary 3.11

Definition 3. Let f be a Jordan generalized teiple derivation of a Γ-ring M . Then for

all a, b, c ∈M and α, β ∈ Γ we define

Fα,β(a, b, c) = f(aαbβc)− f(a)αbγc− aαd(b)βc− aαbβd(c).

Lemma 2.8. Let f be a Jordan generalized teiple derivation of a Γ-ring M . Then for all

a, b, c ∈M and α, β ∈ Γ

(1) Fα,β(a, b, c) + Fα,β(c, b, a) = 0

(2) Fα,β(a+ c, b, e) = Fα,β(a, b, e) + Fα,β(c, b, e)

(3) Fα,β(a, b, c+ e) = Fα,β(a, b, c) + Fα,β(a, b, e)

(4)Fα,β(a, b+ c, e) = Fα,β(a, b, e) + Fα,β(a, c, e)

(5) Fα+β,γ(a, b, c) = Fα,γ(a, b, c) + Fβ,γ(a, b, c)

(6) Fα,β+γ(a, b, c) = Fα,β(a, b, c) + Fα,γ(a, b, c)

proof: Obvious
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Lemma 2.9. If M is a Prime Γ-ring , then

Fα,β(a, b, c)γxδ[a, b, c]α,β + [a, b, c]α,βγxδGα,β(a, b, c) = 0

for all x ∈M and γ, δ ∈ Γ.

proof: First , we compute f(aα(bβcγxδcαb)βa+ cα(bβaγxδaαb)βc) by using the defini-

tion of Jordan generalized triple derivation we get f(a)αbβcγxδcαbβa+aαd(b)βcγxδcαbβa+

aαbβd(c)γxδcαbβa+aαbβcγd(x)δcαbβa+aαbβcγxδd(c)αbβa+aαbβcγxδcαd(b)βa+aαbβcγxδcαbβd(a)+

f(c)αbβaγxδaαbβc+cαd(b)βaγxδaαbβc+cαbβd(a)γxδaαbβc+cαbβaγd(x)δaαbβc+cαbβaγxδd(a)αbβc+

cαbβaγxδaαd(b)βc+ cαbβaγxδaαbβd(c).

On the other hand, we compute f((aαbβc)γxδ(cαbβa)+f(cαbβa)γxδ(aαbβc)+(aαbβc)γd(x)δ(aαbβc)+

(cαbβa)γd(x)δ(aαbβc)+(aαbβc)γxδd(cαbβa)+(cαbβa)γxδd(aαbβc) we get d(aαbβc)γxδcαbβa+

d(cαbβa)γxδaαbβc+aαbβcγd(x)δcαbβa+cαbβaγd(x)δaαbβc+aαbβcγxδd(cαbβa)+cαbβaγxδd(aαbβc)

Since these two are equal, cancelling the like terms from both sides of this equality and

then rearranging them, we get

Fα,β(a, b, c)γxδ[a, b, c]α,β + [a, b, c]α,βγxδGα,β(a, b, c) = 0.

Lemma 2.10. If M is a Prime Γ-ring , then

Fα,β(a, b, c)γxδ[a, b, c]α,β = 0

for all x ∈M and γ, δ ∈ Γ.

proof: From lemma 2.9 we get Fα,β(a, b, c)γxδ[a, b, c]α,β + [a, b, c]α,βγxδGα,β(a, b, c) = 0

and using lemma 2.5 we get

Fα,β(a, b, c)γxδ[a, b, c]α,β = 0.

Lemma 2.11. If M is a semi Prime Γ-ring , then

[a, b, c]α,βγxδFα,β(a, b, c) = 0

for all x ∈M and γ, δ ∈ Γ.

proof: Since [a, b, c]α,βγxδFα,β(a, b, c)γxδ[a, b, c]α,βγxδFα,β(a, b, c)=0, then by semiprime-

ness of Γ ring M we get [a, b, c]α,βγxδFα,β(a, b, c) = 0

Lemma 2.12. Let M is a 2-torsion free semi prime Γ-ring. Then for all a, b, c, u, v, w, x ∈

M and α, β, γ, δ ∈ Γ, then Fα,β(a, b, c)γxδ[u, v, w]α,β = 0.
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Proof: Replacing a by a+u in the lemma 2.10 we get Fα,β(a, b, c)γxδ[u, b, c]α,β+Fα,β(u, b, c)γxδ[a, b, c]α,β =

0. Now Fα,β(a, b, c)γxδ[u, b, c]α,βγxδFα,β(a, b, c)γxδ[u, b, c]α,β=

−Fα,β(a, b, c)γxδ[u, b, c]α,βγxδFα,β(a, b, c)γxδ[u, b, c]α,β = 0 by using lemma 2.6. Since M is

a 2-torsion free semiprime Γ-ring , then Fα,β(a, b, c)γxδ[u, b, c]α,β = 0. Similarly, replacing

b by b+v and c by c+w we get Fα,β(a, b, c)γxδ[u, v, w]α,β = 0

Lemma 2.13. Let M is a 2-torsion free prime Γ-ring. Then for all a, b, c, x ∈ M and

α, β, γ, δ ∈ Γ. Then Fα,β(a, b, c) = 0 or [u, v, w]α,β = 0

proof:From lemma 2.12 we get Fα,β(a, b, c)γxδ[u, v, w]α,β = 0.

Since M is a prime Γ-ring, then either Fα,β(a, b, c) = 0 or [u, v, w]α,β = 0

Theorem 2.1. Let M is prime Γ-ring, then every generalized Jordan triple derivation is

a generalized triple derivation.

proof: By lemma 2.13, we have Fα,β(a, b, c) = 0 or [u, v, w]α,β = 0.

case 1: Suppose [u, v, w]α,β = 0, then uαvβw = wαvβu .Therefore, we have from lemma

2.2, f(uαvβw) = f(u)αvβw+uαd(v)βw+uαvβd(w) i.e Jordan generalized triple deriva-

tion is a generalized triple derivation.

case 2: Suppose Fα,β(a, b, c) = 0 then f(aαbβc) = f(a)αbβc+aαd(b)βc+aαbβd(c). Hence

Jordan generalized triple derivation is a generalized triple derivation.

Theorem 2.2. Any Jordan triple derivation of a 2-torsion free prime Γ-ring is a deriva-

tion.

proof: Consider w = f(aα(bγxδa)αb)

= f(a)αbγxδaαb+ aαd(bγxδa)αb+ aαbγxδaαd(b)

= f(a)αbγxδaαb+ aαd(b)γxδaαb+ aαbγd(x)δaαb+ aαbγxδd(a)αb+ aαbγxδaαd(b)

Again,W = f((aαb)γxδ(aαb)) = f(aαb)γxδaαb+ aαbγd(x)δaαb+ aαbγxδd(aαb)

Comparing the two exprations so obtained for W we obtain (f(aαb)−f(a)αb−aαd(b))γxδaαb+

aαbγxδ(d(aαb)− d(a)αb− aαd(b)) = 0

Since d is a derivation , so (f(aαb) − f(a)αb − aαd(b))γxδaαb = 0, Again by primeness

of M, f(aαb)− f(a)αb− aαd(b) = 0, i.e. f is generalized derivation.
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