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Abstract. In this paper, we introduce the notions of generalized triangle algebras in a generalized

residuated lattices. Moreover, we investigate their properties.
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1. Introduction

Héjek [8] introduced a complete residuated lattice which is an algebraic structure for
many valued logic. When we consider the conjunction to be non-commutative, generalized
residuated lattice was introduced by Georgescu and Popescue [6,7]. Non-commutativity
induces two implications. By using these concepts, information systems and decision rules
are investigated [2,9,12]. Deschrijver, et.al. [3-5,10,11] introduced triangle algebras and
interval-valued residuated lattices.

In this paper, we introduce the notions of generalized triangle algebras in a generalized

residuated lattices. Moreover, we investigate their properties.
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Definition 1.1.[6,7] A structure (L, V, A, ®,—, =, L, T) is called a generalized residuated
lattice if it satisfies the following conditions:
(GR1) (L,V,A, T, 1) is abounded where T is the universal upper bound and L denotes
the universal lower bound;
(GR2) (L,®, T) is a monoid;
(GR3) it satisfies a residuation , i.e.

aOb<ciffa<b—=ciffb<a=c

We call that a generalized residuated lattice has the law of double negation if a =

(a*)? = (a")* where a® =a — L and a* =a = L.

Remark 1.2.[6,7,12] (1) A generalized residuated lattice is a residuated lattice (—==>)
iff © is commutative.

(2) A left-continuous t-norm ([0,1], <, ®) defined by a — b = \/{c | a®¢c < b} is a
residuated lattice

(3) A pseudo MV-algebra is a generalized residuated lattice with the law of double

negation.

Lemma 1.3.[4,5] Let (L, A\,V,®,—,=-, L, T) be a generalized residuated lattice with the
law of double negation.
For each z,v, 2z, x;,y; € L, we have the following properties.
Y Hy<z, (z0y) <(r®z2),r—>y<zr—zand z >z <y — x for »€ {—,=}.

2Q)zo0oy<zAy.

3) x = (Nicr ) = Nier(z = i) and (Viep 23) = y = Njep (2 = y) for =€ {=,=}.
H(xo0y) —wz=0c—>(y—2z) and (z0y) =>z=y= (= 2).
6)r—= (y=z2)=y=>(@—2andzr= (y = 2) =y — (z = 2).

Nzo(r—y)<yand (r=y) Oz <y.
) (r=y)oy=2<z=zand (y = 2)0(x—y) <z — =z
Nr—y=Tile<yiffr=y=T.

(1

(2)

(3) @

(4)

5) (zoy)=z—=y"and (zOy)* =y = z*.
(6) «

(7)

(8)

(9)

(

10)r—>y=y"=2and v = y = y* — z*.
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(11) /\ieI‘ Ty = (ViEF r;)* and vier x; = (/\ieF ;)"
(12) /\ieI‘ x? = (VieF xi)o and \/ieF :13? = (/\ieF xi)o-

Definition 1.4.A structure (A, A,V,®,=, —, v, i, L,e;, T) for i € {1,2} is called a
generalized triangle algebra if it satisfies the following conditions:

(R) (A,A,V,®,=,—, L, T) is a generalized residuated lattice.

vz =y) <wv(z) = v(x) and r(r — y) < rr(r) = ().
(n(z) & 1Y) © () & my) < (v < y) and (ua(r) < p2(y)) © ((r) <
1(y)) < (z < y).

(T7) ri(z) = ni(y) < vi(n(e) = n(y)) and va(z) = va(y) < va(ra(z) = v2(y)).
Remark 1.5.(1) If ® is commutative (or ==—), 11 = 1, 3 = pz and e; = ey in
Definition 1.4, then (A, A,V,®, =, v, 1, L, e, T) is a triangle algebra in [10].

(2) In Definition 1.4, v;(T) = T and p;(L) = L because v;(T) = v;(pi(e;)) = pi(e;) =T
and p;(L) = pi(vi(e;)) = vi(e;) = L.

2. The properties of generalized triangle algebras

Theorem 2.1. Let (A, A,V,®,=,—, L, T) be a generalized residuated lattice and v;
be unary operator on A satisfying v;(T) = T for ¢ € {1,2}. Then v; satisfies (T5) iff
vi(zx ANy) <v(z) and vi(z) © v5(y) < vi(z ©y) for i € {1,2} and x,y € A.
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Proof. (=) Since T=2x Ay — 2 =2 Ay =z, then
T=vl)=v((zAy)=2) <Ay =) if ri(zAy) <(x)

T=wnl)=wn{(zAy) = z) <wn@Ay) = r@)iff iz Ay) <w(x).

Moreover, y < x, then v;(y) < v;(x) fori € {1,2}. Sincey <z = zOyandx <y — Oy,
then

ny) <wnz=z0y) <) =nrEoy) iffn(z) only) < oy)

v(x) Sy = 2 0y) S mlx) = r(roy)iff 1n(z) ©ra(y) < (o y).

(<) Since v;(z ANy) < v;(x) for each ¢ € {1,2}, then v; is an increasing function. Since

O (r=y)<yand (x - y) ®z <y, then

n(z) Onlr =y) <n(zo(z=y) <nly)
iff vy(z=vy) <wi(x) = w(y),
vz = y) O va(z) < va(z = y) ©x) < a(y)

iff vo(x — y) < a(z) = 1a(y).

Remark 2.2.Let (A, A, V,®,=, =, v, i, L,e;, T) for i € {1,2} be a generalized resid-
uated lattice. Since v; satisfies (T3) and (T4), by Remark 1.5 (2), v; satisfies (T5) iff
vi(z) O vi(y) < vz ©y) fori € {1,2} and z,y € A.
Theorem 2.3. Let (A, A,V,®,=, —, v, i, L,e, T) for i € {1,2} be a generalized resid-
uated lattice with e € A such that e = €°. For each i € {1,2}, Define

Ei(A)={z € A|vi(z) =z}, vi(A) ={v(z) |z € A},

vi(Ei(A)) = {wi(z) [ vi(z) = vi(vi(2))}, Fi(A) ={z € A| pi(x) = =},

pi(A) = {pi(x) [ € A}, pi(Fi(A)) = {pa@) | pae) = pa(pa(@))}-

(1) Ei(A) = vi(A) = v(Ei(A)) = Fi(A) = wi(A) = pi(Fi(A)).
1(A) is closed under A, V,® and =.
A) is closed under A,V,® and —.

4) E;(A) is a complete bounded lattice with top elements T and bottom element L.
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(5) vi(z) = V{y € Ei(A) | y < 2} and wi(z) = A{y € Ei(A) | = < y}, for each
ie{1,2).

(6) vi(z) © viy) < vi(z ©y) and pi(z) © pi(y) = pa(z © y) for all z,y € A.

(7) 2z <y iff ri(2) <wi(y) and pi(z) < pa(y) it va(z) < va(y) and po(x) < po(y).

Proof. (1) Let # € Ej(A). Then vs(x) — = € vi(A). So, Ei(A) C vs(A). Let
viz) € vi(A). Since vi(x) = (i), n(z) € w(E(A)). Thus, v(A) C vi(Ei(A)).
Trivially, v;(Ei(A)) C Ei(A).

Let 2 € Ei(A). Since v;(z) = z, by (T4),

pi(x) = pa(vi(x)) = vi(r) = © € Ei(A).

Let y € Fi(A). Since p;(y) =y, by (84), vi(y) = vi(pi(y)) = pi(y) = y. y € E;(A). Hence
Ei(A) = Fi(A). Similarly, Fi(A) = p:(A) = pi(Fi(A)).

(2) and (3). For z,y € E;(A), vilx Ny) = vi(x) ANvi(y) = o Ay and v(z Vy) =
v;(z)

n(y)) <wn(z) = 1(y) =z =y, then x = y € E1(A). Similarly, v — y € Ey(A). Since

Vv (y) = zVy. Then zAy, zVy € E;(A). Since z = y = v1(z) = 11(y) < ni(n(x) =

rOy=vx) Ov(y) <vi(z©y) <x®y from Theorem 2.1, then z © y € E;(A).

(4) For x; € Ei(A), since V,pvi(7;) < vilVjer i) < Vier ¥ = Vjervi(w;), then
iV jer 33) = Vierds € Fi(A). Since Ay < ilAyer 25) < Ager ti(55) = Ajer 25
then w;(\;er 7j) = Njer 75 € Ei(A).

(5) Since v;(z) < z < pi(z) and vi(x), ui(r) € E;(A), then vi(x) < \{y € E;(A) |
y < a} and p(z) > Ny € Ei(A) | * < y}. For y € Ei(A) and y < 2, we have
y = vi(y) < vi(z) < x. Hence vi(z) > V{y € Ei(A) [ y < z}. For y € Ei(A) and
© <y, we have y = ju(y) > mlx) > v Hence u(z) < My € E(A) | = < y}. So.
w(w) = V{y € F(A) | y < o} and ju(x) = Ay € Ex(A) | 2 < g}, for each i € {1,2}.

(6) Since v;(z)Ov;(y) < 2Oy and v;(x)Ori(y) € Ei(A) from (4), vi(2)Ovi(y) < vi(zOy).
Since ;(x) © pi(y) =2 Oy and pi(x) © pi(y) € E;(A) from (4), pi(z) © piy) = pi(z © y)
for all x,y € A.

(7) If x <y, then v;(z) < v;(y) and p;(z) < pi(y) for i € {1,2}.
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Let vi(z) < vi(y) and pi(z) < pi(y) for ¢ € {1,2}. Then vi(z Ay) = v(z) and
pi(xAy) = pi(x) By(T6), TOT = (n(zAy) < n(2))©(n(zAy) < m(r) < (zAy < )
implies Ay = x. Thus x <y Moreover, T © T = (ua(x A y) <> p2(x)) © (ra(z Ay) <
() < (x Ay <> x) implies z Ay = z. Thus z < y.
Theorem 2.4. Let (A, A, V,®,=, —, v, 1, L, e;, T) be a generalized triangle algebra for
i€ {1,2}. Then

(1) vi(x) Ve; =z Veand pi(x) Ne; =z Ne;.

(2) z = (vi(z) V&) A pi(z) = (i) Aes) V().
(3) vi(z ®e;) = vile; @) = L.

4) vi(z ©y) = vi((z Ve) © (y Ve)).

() vi(z ©y) = vi(z) O vi(y).

Proof. (1) Since v;(vi(z) V e;) = vi(vi(x)) V vi(e;) = vi(x) V vi(e;) = vi(z V e;) and

pi(vi(@) V€;) = pi(vi(@)) V pi(e;) = T = pi(x) V pile;) = pi(z V e;), we have

T =TOT=wm@)Ve) vz Ve)) o (u(v(x)Ver) < u(xVer))
< (n(x) Ve & (xVer))

T =TOT=(nr(r)Ve) e mnxVe)) o (u(ra(x) Vey) & u(xVey))
< ((z) Ves < (zVes))

Hence v;(z) Ve, =z Ve
Since v;(pi(z) A e;) = vi(i(x)) Avie;) = vi(z) ANvi(e;) = vi(x Ae;) and (i () A

— | =
ei) = pi(pi(z)) A pi(e;) = pi(x) A pi(e;) = pi(z Ae;), by a similar way in the above proof,

wi(x) Ne;=x Ne;

(2) vi((vi(z) V&) A pi(@)) = vi((@ V ei) A i) = (vi(z) Vviles)) A vi(pi(z)) = vi(x) A
pi(z) = vi(x)

pi((vi(@) Ve) A i) = pa((@V ed) Api(x)) = (@) V pi(es)) A pa(pa(x)) = T Api(x) =
i ()

(3) Since = ® ¢; < e, then v(x ® ¢;) < vi(e;) = L and vi(e; © x) < v;(e;) = L. Thus,

vi(r®e) =vi(e;0x) = L.
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(4) Since v;(z ©® €;) = v;(e; © x) = L, we have

vilr©y)  =rEoy)Viuroe) =v((z0y) V(roe))

I

X

8
© © 0O

(
(
vi(z© (yVe)) =vi(zo(yVe)) Ve o (yVe))
=v((z0 Y Ve) V(o (yVve)) =vil(lzVe)O(yVe)).

(5) Since v;(z) Ve; =x Ve and v(y) Ve, =y Ve,

vi(z©y) =vi((zVe) o (yVe)) =vi((vilz) Ve) O ((z) Ve))
= vi(vi(z) O vi(y)) < wilz) © vi(y).

By Remark 2.2, since v;(x) © v4;(y) < vi(x ©@ y), we have v;(x) © v4;(y) = vi(z © y).

Theorem 2.5. Let (A, A,V,®,=,—, 14, i, L,e, T) be a generalized triangle algebra for
i € {1,2}. Then the following statements are equivalent:

(1) pi(z ©y) = pi(z) © pi(y) for all z,y € A.

(2) pi(r ©y) = pix © 2) if piy) = pa2).

Proof. (1)=(2). If pi(y) = pi(z), then
pi(z ©y) = pi(x) © pi(y) = pi(z) © pi(2) = iz © 2).

(2)=(1). Since u(1i(y)) = pu(y), we have jui(z ®y) = palw © puy)). Since pus(pus()) =
(), pale © paly)) = pi(ps() © pu(y)). Thus

1i(2) © pi(y) < pi(pa(z) © pi(y)) = pi(z © y).

Since pi(x ©y) < pi(x) © pi(y), then p;(z ©y) = pi(z) © wi(y).
Theorem 2.6. Let (A, A,V,®, =, —, v, i;, L, e;, T) be a generalized triangle algebra for
i € {1,2}. Then
(1) pi(x) = vi(y) <z —y <yi(x) = wi(y) for € {=,—} and i € {1,2}.
2 <v

1(z) = ny) < mr =y) <) = wmy) and po(z) = 1a(y) < po(r — y) <

(2) p
vo()
(3)
(4)

— Ha(y)-
m(ni(z) ©y) =r(z) © pu(y) and pa(z © 1a(y)) = po(z) © 1a(y).
For each z € F1(A), 2@ e; <y iff 2 < puy(y).
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(5) For each z € E3(A), e2 © 2z <y iff 2 < po(y).

(6) v1i(vi(2) = y) = vi(z) = ni(y) and w(re(z) = y) = 1a(z) = 1v2(y).

(7) i (vi(z) = y) = vi(z) = i (y) and pa(va(z) = y) = va(z) = 12(y).

®) (xNhep)=(yNe)=(xANe)) =y=(zAer) = u(y).

(9) (xANex) = (yNeg) =(xANeg) =y = (zAex) = pa(y).

(10) vi((z Aer) = y) = pi(z) = pa(y) and vo((z A ea) = y) = pa(x) = pa(y).

(11) m((z Aer) = y) = (x) = paler = y) and po((z Aez) = y) = pa(x) — palez =

(12) pi(er = y) = pler © e1) = pu(y) and po(e2 = y) = po(e2 © e2) = pa(y)

(13) vi(z = y) = (n(z) = 1Y) A ((z) = w(y)) and va(z = y) = (n(z) =
va(y)) A (po(z) = pa(y)).

(14) iz = y) = (u(z) = (wler) = wm(y)) A (ni(z) = m(y)) and pa(z = y) =
= (p2(e2) = p2(y))) A (va(z) = pa2(y))-

1(z) = 1(y) < vi(z = y) and pa(z) — 1a(y) < oz — ).

(15)
(16) (i(z) = n(y) © (m(z) = wm(y) <z =y and (1n(z) = 1(y) © (Ha2(z) —
(y)) <

Proof. (1) Since v;(z) < z and y < p;(z), we have p;(z) — vi(y) < x —y < yi(z) —
vi(y) for —€ {=,—1}.

(2) Since v;(x), pi(x), vi(y), wi(y) € Ei(A), we have vi(z) = i (y), m(z) = iy
and va(z) = p2(y), pa(z) — v2(y) € Ex. Thus wi(z) = vi(y) = m(m(z) = nly)) <
e = y) < ) = my) = n@) = ply). Moreover, py(z) — 1a(y) =
pa(p2(z) = v2(y)) < pa(r = y) < pa(ve(z) = p2(y)) = va(z) = pa(y).

(3) By Theorem 2.3 (6), p1(vi(z) ©y) < pu(ni(z)) © pa(y) = ni(x) © pu(y).

Since y < v1(x) = vi(z) ©®y, by (2), we have

i (y) < vivi(e) = ) Oy) <) = ma(e) ©y).

Thus, v1(z) © pa(y) < pa(n(z) ©y). Hence 11(x) © i (y) = pa(ni(z) ©y).
By Theorem 2.3 (6), p2(z © 12(y)) < pa(z) © pa(re(y)) = pa(z) © v2(y)-
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Since z < w(y) = = © (y), by (2), we have ps(z) < po(a(z) — = © 1a(y))

va(va(x)) = pe(z © 1a(y)). Thus pa(z) © 1a(y) < palz © v2(y)).
(4) For each z € E1(A), if z®e; <y, by (3), then py(z ®e1) = p(2) © pi(er) = 2 <

IN

p1(y). If 2 < py(y), then p(z@er) = 2 < i (y) and v1(2®e1) = L < 1v4(y). By Theorem
23(7), z@ e <.
(
(

5) It is similarly proved as (4).
6) Since v1(z) = 11(y) < vi(z) = y, then

vi(r) = v1(y) = vi(ni(z) = vi(y)) <nn(z) =y).

On the other hand, since v4(v1(x) = y) < v1(x) = y, then vi(z) © 1 (11(z) = y) < y.
By Theorem 2.4 (5),

n(z) ©n(ri(r) = y) = () © (n(r) =y)) < nly).

Thus, 11 (11 (x) = y) < vi(z) = vi(y). Hence vy (11 (x) = y) = vi(z) = v1(y).

Since vo(x) — 1a(y) < vo(z) — y, then

vo(1) = 1a(y) = va(1a(r) — 12(y)) < va(va(z) = y).

On the other hand, since va(ra(z) — y) < a(z) — y, then va(1a(z) — y) O 1a(z) <y
implies

va(ra() = ) © 1a(x) = va(1a(va(z) = y) O va(x)) < va(y).
Thus, va(1a(x) = y) < va(z) = 1a(y). Hence va(1a(x) — y) = va(x) — 12(y).

(7) We only show that z < py(vi(z) = y) iff 2 < vy(x) = w(y) for z € E1(A). By
(4), 2 < () = w(y) for z € Ey(A) iff vi(z) © 2 < ui(y) if i(z) ©2z0e < yiff
z20e <v(x)=yiff 2 < () =vy).

We only show that z < ps(a(z) — y) iff 2 < w(x) — wo(y) for z € Ey(A). By
(5), 2 < va(x) — po(y) for z € Ey(A) iff 2 © na(z) < pa(y) iff ea © 2 © 1p(x) < y iff
es ® 2z < wy(x) = yiff 2 < po(va(x) — y).

(8) It is similarly proved as the following (9).

(9) We have (x Aey) =y = (x Aey) — pa(y). Since

va((z A ea) = pa(y)) © (T Ae2)) S va(z Aes) <ia(e2) =L < 1a(y)
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pa((z Aea) = pa(y)) © (v Aez)) < palpa(y)) = pa(y),

by Theorem 2.3 (7), ((x A e2) — ua(y)) © (x Aex) < y. Thus, (z Ae) — po(y) <
(x A ex) = y. Hence (z A ey) — pa(y) = (x A ea) — y. Moreover, put y A ey instead of v,
(@Aez) = pa(yNex) = (wAea) = pa(y) Apa(ez) = (xAex) — paly) = (xAe2) = (yAe).

(10) Since vy ((x Ner) = y) = v1((z Aer) = pi(y)), we only show that vi((z Ae) =

w1(y)) = pi(x) = pi(y). Since z A ey <z < py(z), we have

() = py) = n(m(e) = mly)) < vl Aer) = my)).

Since (z Aer) © vi((z Aer) = m(y)) < (zAe) O ((@Aer) = p(y)) < paly), then
(@) O ((zAer) = p(y) < p(zAe)Ovi((xner) = pu(y)) = m((@Ae)Ovi((zner) =

() < pa(pa(y) = pa(y). Thus, vi((z Aer) = pa(y)) < m(x) = p(y). Other case is

similarly proved.

(11) We will show that z < py((x Aey) = y) iff z < py(z) = pi(e; — y) for z € E1(A).

< m(xNe)=y) iff z0e;<(xAey)=y

iff (xAhe))Oz0e <y iff (xAe))Oz<e =y

iff p((xne)©z)<mles —y), L=wn((zAhe)®z) <l —y)
iff pn(z) ©z<pler —y) iff 2 <) = mle —y).

We will show that z < ps((x Aeg) — y) iff 2 < po(z) = pa(ea = y) for z € Ey(A).

z2<pe((zNey) = y) iff ea@2z<(xNeg) =y

iff ea02z0(xANe) <y iff zO(xAex) <ex=y

iff pe(z @ (xAe)) <pslea=vy), L=wm(z0(xAe)) <inley =)
iff 20 pa(z) < polea=y) iff 2 < pa(x) = paler = ).

(12) We will show that z < pi(e; = y) iff 2 < py(e; ® er) = pi(y) for z € E1(A).

z< (e ®er) = u(y) it (e ®er) © 2z < p(y)
iff pi(er ®er @ 2) <pui(y), L=wvi(e1®er ®2) <wvi(y)
if e10e®z<y ifft e1Oz<e =y

iff 2 < pi(e; = y)

Other case is similarly proved.
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(13) Since z = (pu1(x) Aer) Vui(z) = (x Aey) Vi (z) from Theorem 2.4 (1,2), we have
r=y=(zNe))Viri(z)=y=((zrANe) = y) A (n(z) =y).
By (6) and (10), we have

vz =y) =nll(zAe)=y)A@wr)=y))
=n(((zANer) = y) Avi(ni(z) = y)
= (m(z) = () A (n(z) = nl(y))
Other case is similarly proved.

(14) Since x = y = ((x Ner) = y) A (ni(z) = y), by (7) and (11),

p(r=y) =m(((zAer) =y) A (n(x) =y))
= (((z ANer) = y) A (i) = y)
= (i (z) = mler = y)) A (ni(x) = n(y))
Other case is similarly proved.

(15) Since vy (z) < py(x), we have
p(x) = vi(y) <n(@) = ny), m@)=ny) <mp@) = pmy).

pa(z) = nly) < (n(z) = @) Amr) = wy))
=n(z =y).
(16) By Lemma 1.3(2), we have
(n(z) = 1Y) © ((r) = m(y))
< (n(z) = ny) An(r) = my) =n@ =y <z =y

Other case is similarly proved.

Theorem 2.7. Let (A, A,V,®,=, —, v, 1, L, e;, T) be a generalized triangle algebra for
i €{1,2}. Then ¢! <e; and e < ey. If 2*9 = 2%* =z for all x € A, then € = e, e} = e,

and e; ©® ¢; = L for i € {1,2}.

Proof. Since v1(€?) < e} and vy(e}) < €}, then

er < et < (n(e}))”, ea < ey’ < (va(e3))”.
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Since v1(€?) € E1(A) and vy(e}) € Fy(A), by Theorem 2.3 (2,3),
(1(eD)" € Er(A), (1(e3))” € Ex(A).

So,

T =p(e) < m((n(e)))") = (n(eh))".

T = pa(en) < pa((12(e3))”) = (a(e3))"”.
Then v(e?) = L = y(eh). Since e Vel =e; Vi(el) =e; and ey Veh = e V in(el) = eo
from Theorem 2.4(1), e < e; and e} < e.

Let 2*0 = 2% = z for all x € A be given. Since p;(€?) > € and ps(eh) > eb, then
er = e > (u(e)))", ex=e5’ > (uale3))”.
Since p1(€?) € E1(A) and psy(eh) € Ey(A), by Theorem 2.3 (2,3),

(2 (eD))” € Er(A), (n2(e3))” € Ea(A).

So,

L =w(er) = vi((pa(e))”) = (pua(eh))".

L = a(e2) < val(p2(e3))”) = (n2(e3))’.
Then p1(e9) = T = pa(e3). Since e; Aed = e Api(el) = ey and ex Ael = e A pa(el) = eq
from Theorem 2.4(1), ¥ > e; and €} > ey. Thus € = e; and e} = e3. Moreover, since

e1<e;— Landeys <ey= 1,e;0e =1 forie{1,2}.
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