DUALITY THEOREMS FOR K-CONVEX FUNCTIONS

B. SUNITA MISHRA ${ }^{1}$ AND JYOTIRANJAN NAYAK ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Orissa Engineering College, Bhubaneswar
${ }^{2}$ Department of Mathematics, Institute of Technical Education and Research, SOA University, Bhubaneswar, Odisha, India

Abstract

In this paper we have considered K-convex functions which are generalized convex functions and established the weak duality theorem, the strong duality theorem and the converse duality theorem for a pair of symmetric dual nonlinear programming problems.

Key words: K-convex function, weak duality, strong duality, converse duality, convex cone

AMS Classification: 90C30, 90C33

1.Introduction

Convex functions and convex sets are important in the theory of optimization. Doeringer [6],Jensen[9] and Nikodem[16] have discussed the properties of K-convex functions. These generalized functions are useful in economics and inventory models as shown by Gallego et.al. [7], Cass [3] and Hartl et.al. [8].Their properties in \Re^{n} is presented in Gallego et.al.[7]. The concept of symmetric duality is vividly studied by Rockafellar[17], Mangasarian[10], Mishra et. al.[11], [12], Nayak[15] and Chandra et.al.[4].Bazaara and Goode [1],[2] have proved the duality theorems for usual convex and concave functions. Here we have proved some duality theorems in non linear programming using the K-convex functions. Mishra et. al. [12] with additional feasibility assumption have proved the same result by considering pseudo-convex functions.

*Corresponding author

Received June9, 2013

Symmetric duality theorems in nonlinear programming are proved by Dantziget. al. [5]. Our result is motivated by Mond[13], [14] and Wolfe [20].

We use the following notations and terminologies in this paper. Let $\psi(x, y)$ be a real valued, twice differentiable function defined on an open set in R^{n+m} containing $C_{1} \times C_{2}$ where C_{1} and C_{2} are closed convex cones with nonempty interiors in R^{n} and R^{m} respectively.

Let $\quad C_{1}^{*}=\left\{z \mid x^{t} z \leq 0\right.$ for each $\left.x \in C_{1}\right\}$ be the polar of C_{1} and

$$
x^{t}=\operatorname{transpose} \text { of } x .
$$

C_{2}^{*} is defined similarly.
$\nabla_{x} \psi\left(x_{0}, y_{0}\right)=$ the gradient vector of ψ with respect to x at $\left(x_{0}, y_{0}\right)$.
$\nabla_{y} \psi\left(x_{0}, y_{0}\right)$ is defined similarly.
$\nabla_{x x} \psi\left(x_{0}, y_{0}\right)$ denotes the Hessian matrix of second partial derivatives with respect to x at $\left(x_{0}, y_{0}\right)$.
$\nabla_{x y} \psi\left(x_{0}, y_{0}\right), \nabla_{y x} \psi\left(x_{0}, y_{0}\right)$ and $\nabla_{y y} \psi\left(x_{0}, y_{0}\right)$ are defined similarly.

2. Preliminaries

Definition 2.1

A function f on an interval I of the real line is K-convex, where K is a non-negative real number if and only if for $x, y \in I, \quad x<y$ and $0 \leq \lambda \leq 1$, $f[\lambda x+(1-\lambda) y] \leq \lambda f(x)+(1-\lambda)[f(y)+K]$.

If $K=0$, this becomes the usual definition of convexity. Similarly a function f is K -concave if $-f$ is K -convex.

We say that ψ is K-convex/K-concave on $C_{1} \times C_{2}$ iff $\psi(., y)$ is K-convex on C_{1} for each given $y \in C_{2}$ i.e. for $x_{1}, x_{2} \in C_{1}, x_{1} \geq x_{2} \Rightarrow \psi\left(x_{1}, y\right) \geq \psi\left(x_{2}, y\right)$ and $\psi(x)$ is K-concave on C_{2} for each given $x \in C_{1}$, if for $y_{1}, y_{2} \in C_{2}, y_{1} \geq y_{2} \Rightarrow \psi\left(x, y_{1}\right) \leq \psi\left(x, y_{2}\right)$.

Let us consider a pair of nonlinear programs as follows:
$\left(P_{0}\right)$: Minimize

$$
f(x, y)=\psi(x, y)-y^{t} \nabla_{y} \psi(x, y)
$$

subject to

$$
\begin{aligned}
& (x, y) \in C_{1} \times C_{2} \\
& \nabla_{y} \psi(x, y) \in C_{2}^{*}
\end{aligned}
$$

$\left(D_{0}\right)$: Maximize

$$
g(u, v)=\psi(u, v)-u^{t} \nabla_{u} \psi(u, v)
$$

subject to

$$
\begin{aligned}
& (u, v) \in C_{1} \times C_{2} \\
& -\nabla_{u} \psi(u, v) \in C_{1}^{*}
\end{aligned}
$$

Let P and D be the feasible solutions of P_{0} and D_{0} respectively.

So

$$
P=\left\{(x, y) \in C_{1} \times C_{2}: \nabla_{y} \psi(x, y) \in C_{2}^{*}\right\}
$$

and

$$
D=\left\{(u, v) \in C_{1} \times C_{2}:-\nabla_{u} \psi(u, v) \in C_{1}^{*}\right\} .
$$

3. Main results

Theorem.3.1 (Weak Duality)

Let ψ be K-convex/K-concave on $C_{1} \times C_{2}$. Then for any $(x, y) \in P$ and $(u, v) \in D$ with $x-u \in C_{1}$ and $v-y \in C_{2}$, then $f(x, y) \geq g(u, v)$.

Proof: Let $x-u \in C_{1}$, then

$$
\begin{aligned}
& -(x-u)^{t} \nabla_{u} \psi(u, v) \leq 0 \\
& \Rightarrow(x-u)^{t} \nabla_{u} \psi(u, v) \geq 0 .
\end{aligned}
$$

Since $\psi(., y)$ is K-convex on C_{1} for each given $y \in C_{2}$ and $(x-u)^{t} \nabla_{u} \psi(u, v) \geq 0$, so we have

$$
\begin{equation*}
\psi(x, v) \geq \psi(u, v) \tag{1.1}
\end{equation*}
$$

Since $\quad v-y \in C_{2}$ and $(x, y) \in P$
therefore, $\quad(v-y)^{t} \nabla_{y} \psi(x, y) \leq 0$.

As $\psi(x,$.$) is K-concave C_{2}$ for each given $x \in C_{1}$ and

$$
(v-y)^{t} \nabla_{y} \psi(x, y) \leq 0
$$

We get

$$
\begin{equation*}
\psi(x, v) \leq \psi(x, y) \tag{1.2}
\end{equation*}
$$

From (1.1) and (1.2) we have

$$
\psi(x, y) \geq \psi(x, v) \geq \psi(u, v)
$$

i.e. $\quad \psi(x, y) \geq \psi(u, v)$

Since

$$
\begin{align*}
& y \in C_{2}, \nabla_{y} \psi(x, y) \in C_{2}^{*} \\
& \Rightarrow y^{t} \nabla_{y} \psi(x, y) \leq 0 \\
& \Rightarrow-y^{t} \nabla_{y} \psi(x, y) \geq 0 \tag{1.4}
\end{align*}
$$

Similarly $u \in C_{1}$

$$
\begin{align*}
& \nabla_{u} \psi(u, v) \in C_{2}^{*} \\
& \Rightarrow-u^{t} \nabla_{u} \psi(u, v) \leq 0 . \tag{1.5}
\end{align*}
$$

From (1.4)

$$
\begin{aligned}
& \psi(x, y)-y^{t} \nabla_{y} \psi(x, y) \geq \psi(u, v)-u^{t} \nabla_{u} \psi(u, v) \\
& \Rightarrow f(x, y) \geq g(u . v)
\end{aligned}
$$

This completes the proof.

Theorem.3.2 (Strong Duality)

If (\bar{x}, \bar{y}) solves P_{1} and $\nabla_{y y} \theta(\bar{x}, \bar{y})$ is negative definite then the following statements are true:
(i) $\quad f(\bar{x}, \bar{y})=g(\bar{x}, \bar{y})$
(ii) $\quad(\bar{y})^{t} \nabla_{y} \theta(\bar{x}, \bar{y})=(\bar{x})^{t} \nabla_{x} \theta(\bar{x}, \bar{y})=0$
(iii) (\bar{x}, \bar{y}) solves D_{1}
where θ is a twice differentiable continuous real valued functionsatisfying K-convexity.

Proof: The proof of (i) and (ii) require the arguments similar to Bazaraa and Goode [2]. We are presenting it here only for the sake of completeness.

$$
\begin{aligned}
& \quad \text { Let } \quad z=(x, y) \quad, \quad X=C_{1} \times C_{2} \quad, \quad C=C_{2}^{*} \quad \text { and } \quad f(z)=\theta(x, y)-(y)^{t} \nabla_{y} \theta(x, y) \text { and } \\
& g(z)=\nabla_{y} \theta(x, y) \text {. }
\end{aligned}
$$

Hence if z_{0} solves the problem there exists a non zero $\left(q_{0}, q\right)$
such that

$$
\begin{align*}
& {\left[q_{0} \nabla_{x}^{t} \theta(\bar{x}, \bar{y})-q_{0} \bar{y}^{t} \nabla_{y x} \theta(\bar{x}, \bar{y})+q^{t} \nabla_{y x} \theta(\bar{x}, \bar{y})\right](x-\bar{x})} \\
& \left(-q_{0} \bar{y}^{t}+q^{t}\right) \nabla_{y y} \theta(\bar{x}, \bar{y})(y-\bar{y}) \geq 0, \text { for each }(x, y) \in C_{1} \times C_{2} \tag{1.6}\\
& \text { and } q_{0} \geq 0, q \in\left(C_{2}^{*}\right)^{*} \\
& =C_{2} \quad\left(\text { since } C_{2}\right. \text { is a closed convex cone) } \\
& \text { and } q^{t} \nabla_{y} \theta(\bar{x}, \bar{y})=0 \tag{1.7}
\end{align*}
$$

We claim that $q_{0} \geq 0$. To show this let $x=\bar{x}$ in C_{1}, then we get

$$
\begin{equation*}
\left(-q_{0}(\bar{y})^{t}+q^{t}\right) \nabla_{y y} \theta(\bar{x}, \bar{y})(y-\bar{y}) \geq 0 \text { for each } y \in C_{2} \tag{1.8}
\end{equation*}
$$

If $q_{0}=0$ and $y=\bar{y}+q$, we have from (1.8)
$q^{t} \nabla_{y y} \theta(\bar{x}, \bar{y}) q \geq 0$, which by negative definiteness of $\nabla_{y y} \theta(\bar{x}, \bar{y})$ implies that $q=0$. But this impossible since $\left(q_{0}, q\right) \neq 0$ and therefore $q_{0} \geq 0$. Further let $q=q_{0} \bar{y}$, then (1.8) is valid.

If $q \neq q_{0} \bar{y}$, then (1.8) is not valid for $y=\frac{q}{q_{0}} \in C_{2}$. The relation (1.8) is $\left(-q_{0} \bar{y}^{t}+q^{t}\right) \nabla_{y y} \theta(\bar{x}, \bar{y})(y-\bar{y}) \geq 0$
i.e. $\quad\left(-q_{0} \bar{y}^{t}+q^{t}\right) \nabla_{y y} \theta(\bar{x}, \bar{y})\left(\frac{q}{q_{0}}-\bar{y}\right) \geq 0$

$$
\begin{aligned}
& \because y=\frac{q}{q_{0}} \\
& \text { i.e. } \quad\left(-q_{0} \bar{y}^{t}+q^{t}\right) \nabla_{y y} \theta(\bar{x}, \bar{y})\left(\frac{q-q_{0} \bar{y}}{q_{0}}\right) \geq 0
\end{aligned}
$$

which is not true as $\nabla_{y y} \theta(\bar{x}, \bar{y})$ is negative definite.

Making use of this information and letting $y=\bar{y}$ in (1.6)we get

$$
\nabla_{x}^{t} \theta(\bar{x}, \bar{y})(x-\bar{x}) \geq 0 \text { for each } \quad x \in C_{1}
$$

Let $x \in C_{1}$, then $\bar{x}+x \in C_{1}$, so that the last inequality implies that

$$
x^{t} \nabla_{x} \theta(\bar{x}, \bar{y}) \geq 0
$$

i.e. $\quad-\nabla_{x} \theta(\bar{x}, \bar{y}) \in C_{1}^{*}$

By letting $X=0$ and $X=\bar{x}$ in the last two inequalities, we obtain,

$$
\begin{equation*}
\bar{x}^{t} \nabla_{x} \theta(\bar{x}, \bar{y})=0 \tag{1.9}
\end{equation*}
$$

Since $q_{0} \geq 0, q=q_{0} \bar{y}$, and $q^{t} \nabla_{y} \theta(\bar{x}, \bar{y})=0$, then

$$
\begin{equation*}
\bar{y}^{t} \nabla_{y} \theta(\bar{x}, \bar{y})=0 \tag{1.10}
\end{equation*}
$$

This show that $f(\bar{x}, \bar{y})=g(\bar{x}, \bar{y})$.

It remains to be shown that (\bar{x}, \bar{y}) is indeed optimal of D_{1}. Since θ is K-convex /K-concave, by applying theorem 3.1, we observe that (\bar{x}, \bar{y}) is indeed optimal solution of D_{1} and the rest of the results follows from (1.9) and (1.10).

Theorem.3.3 (Converse Duality)

If (\bar{x}, \bar{y}) solves D_{1} and $\nabla_{x x} \theta(\bar{x}, \bar{y})$ is positive definite, then the following statements are true:
(i) $\quad f(\bar{x}, \bar{y})=g(\bar{x}, \bar{y})$
(ii) $\quad \bar{y}^{t} \nabla_{y} \theta(\bar{x}, \bar{y})=\bar{x}^{t} \nabla_{x} \theta(\bar{x}, \bar{y})=0$
(iii) (\bar{x}, \bar{y}) solves P_{1}

Proof: Here $z=(x, y), \quad X=C_{1} \times C_{2}, \quad C=C_{1}^{*} \quad$ and $\quad f(z)=-\theta(x, y)-x^{t} \nabla_{y} \theta(x, y)$ and $g(z)=-\nabla_{x} \theta(x, y)$. Hence if z_{0} solves the problem there exists nonzero $\left(q_{0}, q\right)$ such that

$$
\begin{equation*}
\left(q_{0} \bar{x}^{t}-q^{t}\right) \nabla_{x x} \theta(\bar{x}, \bar{y})(x-\bar{x})+\left[-q_{0} \nabla_{y}^{t} \theta(\bar{x}, \bar{y})+\left(q_{0} \bar{x}^{t}-q^{t}\right) \nabla_{x y} \theta(\bar{x}, \bar{y})\right] \tag{1.11}
\end{equation*}
$$

$(y-\bar{y}) \geq 0$ for each $(x, y) \in C_{1} \times C_{2}$
and $q_{0} \geq 0, q \in\left(C_{1}^{*}\right)^{*}=C_{1}$ (Since C_{1} is a closed convex cone) and

$$
\begin{equation*}
q^{t} \nabla_{x} \theta(\bar{x}, \bar{y})=0 . \tag{1.12}
\end{equation*}
$$

We claim that $q_{0} \geq 0$. To show this let $y=\bar{y}$ in (1.11) then we get

$$
\begin{equation*}
\left(q_{0} \bar{x}^{t}-q^{t}\right) \nabla_{x x} \theta(\bar{x}, \bar{y})(x-\bar{x}) \geq 0 \tag{1.13}
\end{equation*}
$$

for each given $x \in C_{1}$.

If $q_{0}=0$ and $x=\bar{x}+q$, we have from(1.13)

$$
-q^{t} \nabla_{x x} \theta(\bar{x}, \bar{y}) q \geq 0
$$

i.e. $\quad q^{t} \nabla_{x x} \theta(\bar{x}, \bar{y}) q \leq 0$; which by positive definiteness of $\nabla_{x x} \theta(\bar{x}, \bar{y})$ implies that $q=0$. But this is not possible since $\left(q, q_{0}\right) \neq 0$ and therefore $q_{0}>0$. Further let $q=q_{0} \bar{x}$, then (1.13) is valid.

If $q \neq q_{0} \bar{x}$ then the relation (1.13)is not valid for $x=\frac{q}{q_{0}} \in C_{1}$. The relation (1.13) is

$$
\left(q_{0} \bar{x}^{t}-q^{t}\right) \nabla_{x x} \theta(\bar{x}, \bar{y})(x-\bar{x}) \geq 0
$$

i.e. $\quad\left(q_{0} \bar{x}^{t}-q^{t}\right) \nabla_{x x} \theta(\bar{x}, \bar{y})\left(\frac{q}{q_{0}}-\bar{x}\right) \geq 0$

$$
\because x=\frac{q}{q_{0}}
$$

i.e. $\quad\left(q_{0} \bar{x}^{t}-q^{t}\right) \nabla_{x x} \theta(\bar{x}, \bar{y})\left(\frac{q-q_{0} \bar{x}}{q_{0}}\right) \geq 0$
i.e. $\quad\left(q_{0} \bar{x}^{t}-q^{t}\right) \nabla_{x x} \theta(\bar{x}, \bar{y})\left(q-q_{0} \bar{x}\right) \geq 0$ as $q_{0}>0$
i.e. $\quad-\left(q_{0} \bar{x}^{t}-q^{t}\right) \nabla_{x x} \theta(\bar{x}, \bar{y})\left(q-q_{0} \bar{x}\right) \geq 0$, which is not true since $\nabla_{x x} \theta(\bar{x}, \bar{y})$ is positive definite.

Using the fact and putting $x=\bar{x}$ in (1.11) we get

$$
-q_{0} \nabla_{y}^{t} \theta(\bar{x}, \bar{y})(y-\bar{y}) \geq 0 \text { for each } y \in C_{2}
$$

Let $y \in C_{2}$, then $\bar{y}+y \in C_{2}$, so that the last inequality implies

$$
-q_{0} y^{t} \nabla_{y} \theta(\bar{x}, \bar{y}) \geq 0
$$

or $\quad y^{t} \nabla_{y} \theta(\bar{x}, \bar{y}) \leq 0$ as $q_{0}>0$
i.e. $\quad \nabla_{y} \theta(\bar{x}, \bar{y}) \in C_{2}^{*}$

Setting $y=0$ and $y=\bar{y}$ in the last two inequalities, we obtain

$$
\begin{equation*}
\bar{y}^{t} \nabla_{y} \theta(\bar{x}, \bar{y})=0 \tag{1.14}
\end{equation*}
$$

Since $q_{0}>0, q=q_{0} \bar{x}$ and $q^{t} \nabla_{x} \theta(\bar{x}, \bar{y})=0$ then

$$
\begin{equation*}
\bar{x}^{t} \nabla_{x} \theta(\bar{x}, \bar{y})=0 \tag{1.15}
\end{equation*}
$$

which implies that $f(\bar{x}, \bar{y})=g(\bar{x}, \bar{y})$.

It remains to be shown that (\bar{x}, \bar{y}) is indeed optimal of P_{1}. Since θ is
K-convex/K-concave on $C_{1} \times C_{2}$ by theorem 3.1 , we get that (\bar{x}, \bar{y}) is optimal of P_{1} and the rest of the results follows from (1.14) and (1.15).

4.Conclusions

In this paper we have presented weak, strong and converse duality results for K-convex/K-concave functions in nonlinear programming with an additional feasibility condition.

REFERENCES

[1] Bazaraa, M.S., Sherali, H.D.andShetty, C.M., Nonlinear Programming, Theory and Algorithms, $2^{\text {nd }}$ Ed., John Wiley and Sons (2004).
[2] Bazaraa, M. S.,and J. J. Goode,On Symmetric Duality in Nonlinear Programming, Operations Research, 21 (1973). 1-9.
[3] Cass, D., Duality:A Symmetric Approach from the Economist's Vantage Point.J.Economic Theory,7(1974), 272295.
[4] Chandra, S., Craven, B.D.andMond, B., Symmetric dual fractional programming Zeitschrift fur Operations Research, 24(1984), 59-64.
[5] Dantzig, G. B., Eisenberg, E. and Cottle, R. W., Symmetric dual nonlinear programs, Pacific J. Math., 15(1965), 809-812.
[6] Doeringer, W. A note on K-convex functions. Z. Oper. Res. Ser. A, 26(1982), 49-55.
[7] Gallego, G., Sethi, S. P., K-convexity in $\mathfrak{R}^{\mathrm{n}}$, Journal of Optimization Theory and applications Springer, 127(2005), 71-88.
[8] Hartl, R.F., Sethi, S.P. and Vickson, R.G., "A Survey of the Maximum Principles for Optimal Control Problems with State Constraints," SIAM Review, 37(2)(1995), 181-218.
[9] Jensen, M. K., The class of k-convex functions, Technical Note, http://socscistaff.bham.ac.uk/jensen. (2012).
[10] Mangasarian, O. L., Pseudo-convex functions, SIAM J. of Control 3(1965), 281-290.
[11] Mishra, M.S., Nada,S. and Acharya, D.,Strong Pseudo convexity and symmetric duality in nonlinear programming, J. Aust. Math..Soc.Ser B. 27(1985),238-244.
[12] Mishra, M.S., Nada,S. and Acharya, D.,Pseudo convexity and symmetric duality in nonlinear programming, OPSEARCH, Vol.23, No.1(1986),15-18.
[13] Mond, B. and Cottle, R.W., Self-duaity in mathematical programming SIAM J. Appl. Math. 14, (3)(1996), 420-423.
[14] Mond, B. Generalized convexity in mathematical programming, Bull. Aust. Math. Soc., 27(1983), 185-292.
[15] Nayak, J.R., Some problems of non-convex programming and the propertiesof some non-convex functions, Ph. D. thesis, Utkal University(2004).
[16] Nikodem, K., K-convex and K-concave set valued functions, ZeszytyNaak. Politech. Lodz .mat.,559(1989), 1-75.
[17] Rockafellar, R. T., A Dual Approach to solving Nonlinear Programming Problems by unconstrained Optimization, Mathematical Programming, 5(1) (1973),354-373.
[18] Rockafellar, R.T., Augmented Lagrange multiplier functions and duality in nonconvex programming , SIAM J. Control, 12(1974), 268-285.
[19] Rockafellar, R.T., On a special class of convex functions, J. Optim. Theory Appl., 70(1991), 91.
[20] Wolfe, P., A duality theorem for nonlinear programming, Quart. Appl. Math., 19(1961), 239-244.

