Available online at http://scik.org J. Math. Comput. Sci. 3 (2013), No. 5, 1295-1305 ISSN: 1927-5307

DUALITY THEOREMS FOR K-CONVEX FUNCTIONS

B. SUNITA MISHRA¹ AND JYOTIRANJAN NAYAK^{2,*}

¹ Department of Mathematics, Orissa Engineering College, Bhubaneswar
²Department of Mathematics, Institute of Technical Education and Research, SOA University, Bhubaneswar, Odisha, India

Abstract: In this paper we have considered K-convex functions which are generalized convex functions and established the weak duality theorem, the strong duality theorem and the converse duality theorem for a pair of symmetric dual nonlinear programming problems.

Key words: K-convex function, weak duality, strong duality, converse duality, convex cone

AMS Classification: 90C30, 90C33

1.Introduction

Convex functions and convex sets are important in the theory of optimization. Doeringer [6],Jensen[9] and Nikodem[16] have discussed the properties of K-convex functions. These generalized functions are useful in economics and inventory models as shown by Gallego et.al. [7], Cass [3] and Hartl et.al. [8].Their properties in \Re^n is presented in Gallego et.al.[7]. The concept of symmetric duality is vividly studied by Rockafellar[17], Mangasarian[10], Mishra et. al.[11], [12], Nayak[15] and Chandra et.al.[4].Bazaara and Goode [1],[2] have proved the duality theorems for usual convex and concave functions. Here we have proved some duality theorems in non linear programming using the K-convex functions. Mishra et. al. [12] with additional feasibility assumption have proved the same result by considering pseudo-convex functions.

^{*}Corresponding author

Received June9, 2013

Symmetric duality theorems in nonlinear programming are proved by Dantziget. al. [5]. Our result is motivated by Mond[13], [14] and Wolfe [20].

We use the following notations and terminologies in this paper. Let $\psi(x, y)$ be a real valued, twice differentiable function defined on an open set in R^{n+m} containing $C_1 \times C_2$ where C_1 and C_2 are closed convex cones with nonempty interiors in R^n and R^m respectively.

Let $C_1^* = \{z \mid x^t z \le 0 \text{ for each } x \in C_1\}$ be the polar of C_1 and

 x^t = transpose of x.

 C_2^* is defined similarly.

 $\nabla_x \psi(x_0, y_0)$ = the gradient vector of ψ with respect to x at (x_0, y_0) .

 $\nabla_{y} \psi(x_0, y_0)$ is defined similarly.

 $\nabla_{xx} \psi(x_0, y_0)$ denotes the Hessian matrix of second partial derivatives with respect to x at (x_0, y_0) .

 $\nabla_{xy}\psi(x_0, y_0), \nabla_{yx}\psi(x_0, y_0)$ and $\nabla_{yy}\psi(x_0, y_0)$ are defined similarly.

2. Preliminaries

Definition 2.1

A function f on an interval I of the real line is K-convex, where K is a non-negative real number if and only if for $x, y \in I$, x < y and $0 \le \lambda \le 1$, $f[\lambda x + (1-\lambda)y] \le \lambda f(x) + (1-\lambda)[f(y) + K].$

If K = 0, this becomes the usual definition of convexity. Similarly a function f is K-concave if -f is K-convex.

We say that ψ is K-convex/K-concave on $C_1 \times C_2$ iff $\psi(., y)$ is K-convex on C_1 for each given $y \in C_2$ i.e. for $x_1, x_2 \in C_1$, $x_1 \ge x_2 \Rightarrow \psi(x_1, y) \ge \psi(x_2, y)$ and $\psi(x)$ is K-concave on C_2 for each given $x \in C_1$, if for $y_1, y_2 \in C_2$, $y_1 \ge y_2 \Rightarrow \psi(x, y_1) \le \psi(x, y_2)$.

Let us consider a pair of nonlinear programs as follows:

 (P_0) : Minimize

$$f(x, y) = \psi(x, y) - y^{t} \nabla_{y} \psi(x, y)$$

subject to

$$(x, y) \in C_1 \times C_2$$

$$\nabla_{y}\psi(x, y) \in C_{2}^{*}$$

 (D_0) : Maximize

$$g(u,v) = \psi(u,v) - u^t \nabla_u \psi(u,v)$$

subject to

$$(u, v) \in C_1 \times C_2$$
$$-\nabla_u \psi(u, v) \in C_1^*$$

Let *P* and *D* be the feasible solutions of P_0 and D_0 respectively.

So
$$P = \{(x, y) \in C_1 \times C_2 : \nabla_y \psi(x, y) \in C_2^*\}$$

and

 $D = \{(u, v) \in C_1 \times C_2 : -\nabla_u \psi(u, v) \in C_1^* \}.$

3. Main results

Theorem.3.1 (Weak Duality)

Let ψ be K-convex/K-concave on $C_1 \times C_2$. Then for any $(x, y) \in P$ and $(u, v) \in D$ with $x-u \in C_1$ and $v-y \in C_2$, then $f(x, y) \ge g(u, v)$.

Proof: Let $x - u \in C_1$, then

$$-(x-u)^{t}\nabla_{u}\psi(u,v) \leq 0$$
$$\Rightarrow (x-u)^{t}\nabla_{u}\psi(u,v) \geq 0$$

Since $\psi(., y)$ is K-convex on C_1 for each given $y \in C_2$ and $(x-u)^t \nabla_u \psi(u, v) \ge 0$, so we have

$$\psi(x,v) \ge \psi(u,v) \tag{1.1}$$

Since $v - y \in C_2$ and $(x, y) \in P$

therefore, $(v-y)^t \nabla_v \psi(x, y) \le 0.$

As $\psi(x,.)$ is K-concave C_2 for each given $x \in C_1$ and

$$(v-y)^t \nabla_y \psi(x,y) \leq 0$$

We get

$$\psi(x,v) \le \psi(x,y) \tag{1.2}$$

From (1.1) and (1.2) we have

$$\psi(x, y) \ge \psi(x, v) \ge \psi(u, v)$$

i.e. $\psi(x, y) \ge \psi(u, v)$ (1.3)

Since $y \in C_2$, $\nabla_y \psi(x, y) \in C_2^*$ $\Rightarrow y' \nabla_y \psi(x, y) \le 0$ $\Rightarrow -y' \nabla_y \psi(x, y) \ge 0.$ (1.4)

Similarly $u \in C_1$

$$\nabla_{u}\psi(u,v) \in C_{2}^{*}$$
$$\Rightarrow -u^{t}\nabla_{u}\psi(u,v) \leq 0.$$
(1.5)

From (1.4)

$$\psi(x, y) - y' \nabla_y \psi(x, y) \ge \psi(u, v) - u' \nabla_u \psi(u, v)$$
$$\Rightarrow f(x, y) \ge g(u.v)$$

This completes the proof.

Theorem.3.2 (Strong Duality)

If $(\overline{x}, \overline{y})$ solves P_1 and $\nabla_{yy}\theta(\overline{x}, \overline{y})$ is negative definite then the following statements are true:

(*i*) $f(\overline{x}, \overline{y}) = g(\overline{x}, \overline{y})$

(*ii*)
$$(\overline{y})^t \nabla_y \theta(\overline{x}, \overline{y}) = (\overline{x})^t \nabla_x \theta(\overline{x}, \overline{y}) = 0$$

(*iii*) $(\overline{x}, \overline{y})$ solves D_1

where θ is a twice differentiable continuous real valued functionsatisfying K-convexity.

Proof: The proof of (i) and (ii) require the arguments similar to Bazaraa and Goode [2]. We are presenting it here only for the sake of completeness.

Let
$$z = (x, y)$$
, $X = C_1 \times C_2$, $C = C_2^*$ and $f(z) = \theta(x, y) - (y)^t \nabla_y \theta(x, y)$ and
 $g(z) = \nabla_y \theta(x, y)$.

Hence if z_0 solves the problem there exists a non zero (q_0, q)

such that

$$[q_{0}\nabla_{x}^{t}\theta(\overline{x},\overline{y}) - q_{0}\overline{y}^{t}\nabla_{yx}\theta(\overline{x},\overline{y}) + q^{t}\nabla_{yx}\theta(\overline{x},\overline{y})](x - \overline{x})$$

$$(-q_{0}\overline{y}^{t} + q^{t})\nabla_{yy}\theta(\overline{x},\overline{y})(y - \overline{y}) \ge 0, \text{ for each } (x,y) \in C_{1} \times C_{2} \qquad (1.6)$$
and $q_{0} \ge 0, q \in (C_{2}^{*})^{*}$

 $=C_2$ (since C_2 is a closed convex cone)

and
$$q^t \nabla_y \theta(\overline{x}, \overline{y}) = 0$$
 (1.7)

We claim that $q_0 \ge 0$. To show this let $x = \overline{x} \text{ in } C_1$, then we get

$$(-q_0(\overline{y})^t + q^t)\nabla_{yy}\theta(\overline{x}, \overline{y})(y - \overline{y}) \ge 0 \text{ for each } y \in C_2$$
(1.8)

If $q_0 = 0$ and $y = \overline{y} + q$, we have from (1.8)

 $q^{t}\nabla_{yy}\theta(\overline{x},\overline{y})q \ge 0$, which by negative definiteness of $\nabla_{yy}\theta(\overline{x},\overline{y})$ implies that q=0. But this impossible since $(q_{0},q) \ne 0$ and therefore $q_{0} \ge 0$. Further let $q = q_{0}\overline{y}$, then (1.8) is valid.

If
$$q \neq q_0 \overline{y}$$
, then (1.8) is not valid for $y = \frac{q}{q_0} \in C_2$. The relation (1.8) is
 $(-q_0 \overline{y}^t + q^t) \nabla_{yy} \theta(\overline{x}, \overline{y}) (y - \overline{y}) \ge 0$

i.e.
$$(-q_0 \overline{y}^t + q^t) \nabla_{yy} \theta(\overline{x}, \overline{y}) \left(\frac{q}{q_0} - \overline{y}\right) \ge 0$$

$$\therefore y = \frac{q}{q_0}$$

i.e.
$$(-q_0\overline{y}^t + q^t)\nabla_{yy}\theta(\overline{x},\overline{y})\left(\frac{q-q_0\overline{y}}{q_0}\right) \ge 0$$

which is not true as $\nabla_{yy}\theta(\overline{x},\overline{y})$ is negative definite.

Making use of this information and letting $y = \overline{y}$ in (1.6)we get

$$\nabla_x^t \theta(\overline{x}, \overline{y})(x - \overline{x}) \ge 0$$
 for each $x \in C_1$

Let $x \in C_1$, then $\overline{x} + x \in C_1$, so that the last inequality implies that

$$x^t \nabla_x \theta(\overline{x}, \overline{y}) \ge 0$$

i.e.
$$-\nabla_x \theta(\overline{x}, \overline{y}) \in C_1^*$$

By letting X = 0 and $X = \overline{x}$ in the last two inequalities, we obtain,

$$\overline{x}' \nabla_x \theta(\overline{x}, \overline{y}) = 0 \tag{1.9}$$

Since $q_0 \ge 0$, $q = q_0 \overline{y}$, and $q^t \nabla_y \theta(\overline{x}, \overline{y}) = 0$, then

$$\overline{y}^{t}\nabla_{y}\theta(\overline{x},\overline{y}) = 0 \tag{1.10}$$

This show that $f(\overline{x}, \overline{y}) = g(\overline{x}, \overline{y})$.

It remains to be shown that $(\overline{x}, \overline{y})$ is indeed optimal of D_1 . Since θ is K-convex /K-concave, by applying theorem 3.1, we observe that $(\overline{x}, \overline{y})$ is indeed optimal solution of D_1 and the rest of the results follows from (1.9) and (1.10).

Theorem.3.3 (Converse Duality)

If $(\overline{x}, \overline{y})$ solves D_1 and $\nabla_{xx} \theta(\overline{x}, \overline{y})$ is positive definite, then the following statements are true:

- (*i*) $f(\overline{x}, \overline{y}) = g(\overline{x}, \overline{y})$
- (*ii*) $\overline{y}^{t} \nabla_{y} \theta(\overline{x}, \overline{y}) = \overline{x}^{t} \nabla_{x} \theta(\overline{x}, \overline{y}) = 0$
- (*iii*) $(\overline{x}, \overline{y})$ solves P_1

Proof: Here z = (x, y), $X = C_1 \times C_2$, $C = C_1^*$ and $f(z) = -\theta(x, y) - x' \nabla_y \theta(x, y)$ and $g(z) = -\nabla_x \theta(x, y)$. Hence if z_0 solves the problem there exists nonzero (q_0, q) such that

$$(q_0\overline{x}^t - q^t)\nabla_{xx}\theta(\overline{x},\overline{y})(x - \overline{x}) + [-q_0\nabla_y^t\theta(\overline{x},\overline{y}) + (q_0\overline{x}^t - q^t)\nabla_{xy}\theta(\overline{x},\overline{y})]$$
(1.11)

 $(y - \overline{y}) \ge 0$ for each $(x, y) \in C_1 \times C_2$

and $q_0 \ge 0$, $q \in (C_1^*)^* = C_1$ (Since C_1 is a closed convex cone) and

$$q^{t}\nabla_{x}\theta(\bar{x},\bar{y}) = 0.$$
(1.12)

We claim that $q_0 \ge 0$. To show this let $y = \overline{y}$ in (1.11) then we get

$$(q_0 \overline{x}^t - q^t) \nabla_{xx} \theta(\overline{x}, \overline{y})(x - \overline{x}) \ge 0$$
(1.13)

for each given $x \in C_1$.

If $q_0 = 0$ and $x = \overline{x} + q$, we have from(1.13)

$$-q^t \nabla_{yx} \theta(\overline{x}, \overline{y}) q \ge 0$$

i.e. $q^t \nabla_{xx} \theta(\overline{x}, \overline{y}) q \le 0$; which by positive definiteness of $\nabla_{xx} \theta(\overline{x}, \overline{y})$ implies that q = 0. But this is not possible since $(q, q_0) \ne 0$ and therefore $q_0 > 0$. Further let $q = q_0 \overline{x}$, then (1.13) is valid.

If $q \neq q_0 \overline{x}$ then the relation (1.13) is not valid for $x = \frac{q}{q_0} \in C_1$. The relation (1.13) is

$$(q_0\overline{x}^t - q^t)\nabla_{xx}\theta(\overline{x},\overline{y})(x - \overline{x}) \ge 0$$

i.e.
$$(q_0 \overline{x}^t - q^t) \nabla_{xx} \theta(\overline{x}, \overline{y}) \left(\frac{q}{q_0} - \overline{x}\right) \ge 0$$

$$\therefore x = \frac{q}{q_0}$$

i.e.
$$(q_0 \overline{x}^t - q^t) \nabla_{xx} \theta(\overline{x}, \overline{y}) \left(\frac{q - q_0 \overline{x}}{q_0} \right) \ge 0$$

i.e.
$$(q_0 \overline{x}^t - q^t) \nabla_{xx} \theta(\overline{x}, \overline{y}) (q - q_0 \overline{x}) \ge 0$$
 as $q_0 > 0$

i.e.
$$-(q_0\overline{x}^t - q^t)\nabla_{xx}\theta(\overline{x}, \overline{y})(q - q_0\overline{x}) \ge 0$$
, which is not true since

 $\nabla_{xx}\theta(\overline{x},\overline{y})$ is positive definite.

Using the fact and putting $x = \overline{x}$ in (1.11) we get

$$-q_0 \nabla_y^t \theta(\overline{x}, \overline{y})(y - \overline{y}) \ge 0$$
 for each $y \in C_2$

Let $y \in C_2$, then $\overline{y} + y \in C_2$, so that the last inequality implies

$$-q_0 y^t \nabla_y \theta(\overline{x}, \overline{y}) \ge 0$$

or
$$y' \nabla_y \theta(\overline{x}, \overline{y}) \le 0$$
 as $q_0 > 0$

i.e.
$$\nabla_y \theta(\overline{x}, \overline{y}) \in C_2^*$$

Setting y = 0 and $y = \overline{y}$ in the last two inequalities, we obtain

$$\overline{y}^{t}\nabla_{y}\theta(\overline{x},\overline{y}) = 0 \tag{1.14}$$

Since $q_0 > 0$, $q = q_0 \overline{x}$ and $q^t \nabla_x \theta(\overline{x}, \overline{y}) = 0$ then

$$\bar{x}^{t}\nabla_{x}\theta(\bar{x},\bar{y}) = 0 \tag{1.15}$$

which implies that $f(\overline{x}, \overline{y}) = g(\overline{x}, \overline{y})$.

It remains to be shown that (\bar{x}, \bar{y}) is indeed optimal of P_1 . Since θ is

K-convex/K-concave on $C_1 \times C_2$ by theorem 3.1, we get that $(\overline{x}, \overline{y})$ is optimal of P_1 and the rest of the results follows from (1.14) and (1.15).

4.Conclusions

In this paper we have presented weak, strong and converse duality results for K-convex/K-concave functions in nonlinear programming with an additional feasibility condition.

REFERENCES

- Bazaraa, M.S., Sherali, H.D.andShetty, C.M., Nonlinear Programming, Theory and Algorithms, 2nd Ed., John Wiley and Sons (2004).
- [2] Bazaraa, M. S.,and J. J. Goode, On Symmetric Duality in Nonlinear Programming, Operations Research, 21 (1973). 1-9.
- [3] Cass, D., Duality: A Symmetric Approach from the Economist's Vantage Point.J.Economic Theory,7(1974), 272-295.
- [4] Chandra, S., Craven, B.D.andMond, B., Symmetric dual fractional programming Zeitschrift fur Operations Research, 24(1984), 59-64.
- [5] Dantzig, G. B., Eisenberg, E. and Cottle, R. W., Symmetric dual nonlinear programs, Pacific J. Math., 15(1965), 809-812.
- [6] Doeringer, W. A note on K-convex functions. Z. Oper. Res. Ser. A, 26(1982), 49-55.
- [7] Gallego, G., Sethi, S. P., K-convexity in Rⁿ, Journal of Optimization Theory and applications Springer, 127(2005), 71-88.
- [8] Hartl, R.F., Sethi, S.P. and Vickson, R.G., "A Survey of the Maximum Principles for Optimal Control Problems with State Constraints," SIAM Review, 37(2)(1995), 181-218.
- [9] Jensen, M. K., The class of k-convex functions, Technical Note, http://socscistaff.bham.ac.uk/jensen. (2012).
- [10] Mangasarian, O. L., Pseudo-convex functions, SIAM J. of Control 3(1965), 281-290.

- [11] Mishra, M.S., Nada,S. and Acharya, D.,Strong Pseudo convexity and symmetric duality in nonlinear programming, J. Aust. Math..Soc.Ser B. 27(1985),238-244.
- [12] Mishra, M.S., Nada,S. and Acharya, D.,Pseudo convexity and symmetric duality in nonlinear programming, OPSEARCH, Vol.23, No.1(1986),15-18.
- [13] Mond, B. and Cottle, R.W., Self-duaity in mathematical programming SIAM J. Appl. Math. 14, (3)(1996), 420-423.
- [14] Mond, B. Generalized convexity in mathematical programming, Bull. Aust. Math. Soc., 27(1983), 185-292.
- [15] Nayak, J.R., Some problems of non-convex programming and the properties of some non-convex functions, Ph. D. thesis, Utkal University(2004).
- [16] Nikodem, K., K-convex and K-concave set valued functions, ZeszytyNaak. Politech. Lodz .mat.,559(1989), 1-75.
- [17] Rockafellar, R. T., A Dual Approach to solving Nonlinear Programming Problems by unconstrained Optimization, Mathematical Programming, 5(1) (1973),354-373.
- [18] Rockafellar, R.T., Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control, 12(1974), 268-285.
- [19] Rockafellar, R.T., On a special class of convex functions, J. Optim. Theory Appl., 70(1991), 91.
- [20] Wolfe, P., A duality theorem for nonlinear programming, Quart. Appl. Math., 19(1961), 239-244.