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Abstract: In this paper we have considered K-convex functions which are generalized convex functions and
established the weak duality theorem, the strong duality theorem and the converse duality theorem for a pair of

symmetric dual nonlinear programming problems.
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1.Introduction

Convex functions and convex sets are important in the theory of optimization. Doeringer
[6],Jensen[9] and Nikodem[16] have discussed the properties of K-convex functions. These
generalized functions are useful in economics and inventory models as shown by Gallego et.al.
[7], Cass [3] and Hartl et.al. [8].Their properties in R" is presented in Gallego et.al.[7]. The
concept of symmetric duality is vividly studied by Rockafellar[17], Mangasarian[10], Mishra et.
al.[11], [12], Nayak[15] and Chandra et.al.[4].Bazaara and Goode [1],[2] have proved the duality
theorems for usual convex and concave functions. Here we have proved some duality theorems
in non linear programming using the K-convex functions. Mishra et. al. [12] with additional

feasibility assumption have proved the same result by considering pseudo-convex functions.
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Symmetric duality theorems in nonlinear programming are proved by Dantziget. al. [5]. Our
result is motivated by Mond[13], [14] and Wolfe [20].

We use the following notations and terminologies in this paper. Let w(X,y) be a real
valued, twice differentiable function defined on an open set in R™™ containing C, xC, where

C,and C,are closed convex cones with nonempty interiors in R" and R™ respectively.

Let  C; ={z|x'z<0foreach xeC} be the polar of C, and

x' =transpose of X.
C, is defined similarly.
V.w(%,,Y,) =the gradient vector of y with respect to x at (x,,Y,) .
V. (%, Y,) is defined similarly.

V..w(%,,Y,) denotes the Hessian matrix of second partial derivatives with respect to X at
(%o: Yo) -

V¥ (%6, ¥o) s Vo (X, Yo) and Vo w(x,,Y,) are defined similarly.

2. Preliminaries

Definition 2.1

A function f on an interval | of the real line is K-convex, where K is a non-negative real
number if and only if for xyel , X<y and 0<A<1 |

fIAX+(L-A)Y]<AT(X)+1-A)[f(y)+K].

If K=0, this becomes the usual definition of convexity. Similarly a function f is K-concave if

—f is K-convex.
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We say that y is K-convex/K-concave on C, xC, iff w(.,y) is K-convex on C, for each
given yeC, i.e. for x,x,€C,, X, =X, =>w(x,Y)>w(X,y) and y(X) is K-concave on C,
for each given xeC, ,iffor y,,y,€C, , v, 2y, =>w (X, y,) <w(XY,).

Let us consider a pair of nonlinear programs as follows:
(R,): Minimize
f(Xy) =w(xy)-yY'V,w(xy)
subject to
(x,y)eC,xC,
Vw(xy)eC;
(D,): Maximize
U, V) =y(U,V) ~U'V,p(u,v)
subject to
(u,v) eC, xC,
-V, (u,v)eC/
Let P and D be the feasible solutions of P, and D, respectively.
So P={(x,y) eC,xC,:V w(x,y)eC;}

and D={(u,v) eC, xC,: -V w(u,v) eC}.
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3. Main results
Theorem.3.1 (Weak Duality)

Let v be K-convex/K-concave on C, xC,. Then for any (X,y)eP and (u,v) e D with

Xx—ueC, and v—yeC,, then f(x,y)=9(u,v).
Proof: Let x—ueC,, then
—(x—u)'V,w(u,v) <0
= (x-u)'V,wu,v)=0 .
Since (., y) is K-convex on C, for each given yeC, and (x—u)'V,w(u,v)>0 , so we have
w(x,v) 2y (u,v) (1.1)
Since v-yeC,and (x,y)eP
therefore, (v-y)'V,w(xy)<0.
As w(x,.) is K-concave C, for each givenx e C, and
(V=y)V,p(xy)<0
We get

w(X,V) <y (X Y) 1.2)

From (1.1) and (1.2) we have
w(X,y) 2y (x,v) 2y (u,v)

ie. w(X,Y) =y (u,v) (1.3)
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Since yeC,, Vw(xy)eC,

=YV, p(xy)<0

= —y'V w(xy)20. (1.4)
Similarly u e C,

V,w(u,v)eC,

= —U'V,w(u,v)<0. (1.5)
From (1.4)

w (% Y) =YV w(xy) 2w, v)-u'V,pu,v)

= f(x,y)>g(uv)
This completes the proof.

Theorem.3.2 (Strong Duality)

If(X,y) solves P, and V 6O(X,y) is negative definite then the following statements are

true:
(i) f(x,y)=9(x.y)
(i)  (M'V,0(x,y)=(X)V,0(X,y)=0
(i) (X,y) solves D,

where 6 is a twice differentiable continuous real valued functionsatisfying K-convexity.
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Proof: The proof of (i) and (ii) require the arguments similar to Bazaraa and Goode [2]. We are

presenting it here only for the sake of completeness.

Let z=(x,y) , X=CxC, , C=C, and f(z)=6(x,y)—(y)'V,0(x,y) and

9(2) =V,0(x,y).

Hence if z,solves the problem there exists a non zero(q,,q)
such that

[0,V 0(X, ¥) = 4,Y'V ,0(X, ) +q'V ,0(X, Y)I(X — X)

-9y +9)V,,0(X, y)(y-y) =0, foreach (x,y)eC, xC, (1.6)

*

and q,20, qe(C;)

=C, (sinceC,is a closed convex cone)

andq'v 0(x,y)=0 7
We claim that g, >0. To show this let x=XinC,, then we get

(-, (¥)' +9')V,,0(X, ¥)(y—y) = 0for each yeC, (1.8)

If g,=0and y=Yy+q, we have from (1.8)

q‘vwe(x, ¥)q =0, which by negative definiteness of V. 8(X,y) implies that q=0. But
this impossible since (q,,q) =0 and therefore g, >0. Further let q=q,y, then (1.8) is

valid.

If q=q,y , then (1.8) is not valid for y=eC,. The relation (1.8) is

0

(-0,Y' +9')V,,0(X,y)(y—¥) 20
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ie.  (~G,¥' +0)V,0(X,Y) (ﬂ— 7} >0

0

y=—

0

ie.  (—qy +q)V,0(X,Y) [q—qﬂ) >0

0

whichis nottrue as vV, (X, Y) is negative definite.
Making use of this information and letting y =y in (1.6)we get
V' O(X,y)(x—X) >0foreach xeC,
Let xeC,, then X+xeC,, sothat the last inequality implies that
X'V 0(X,y) =0
ie. -V, 0O(X,y)eC,
By letting X =0 and X =X in the last two inequalities, we obtain,
X'V O(X,y)=0 (1.9)
Since g, >0, g=0q,Y,and q'V,0(X,y) =0, then
y'V,0(X,y) =0 (1.10)
This show that f(X,y)=g(X,y).

It remains to be shown that(X,y) is indeed optimal of D,.Since & is
K-convex /K-concave, by applying theorem 3.1, we observe that (X, Y) is indeed optimal

solution of D, and the rest of the results follows from (1.9) and (1.10).
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Theorem.3.3 (Converse Duality)

If (X,y)solves D, and V,_6(X,Y) is positive definite, then the following statements are true:
0 fxy)=9(xy)
(ii) y'V,0(X,y)=X'V,0(X,y) =0
(i) (X, y)solvesP,

Proof: Here z=(x,y) , X=CxC, , C=C/ and f(z)=-6(x,y)—x'V,0(x,y) and

g(z) =-V,0(x,y) . Hence if z, solves the problem there exists nonzero (q,,q)such that

(0% =0V, (X, Y)(x=X) +[-,V, (X, ¥) + (0% — ')V, (X, V)] (1.11)

(y—Y) =0 foreach (x,y)eC,xC,

and 9,20, qe (Cl) =C, (Since C, is a closed convex cone) and
q'V,0(X,7)=0. (1.12)
We claim that g, > 0. To show this let y =y in (1.11) then we get
QX' —a)V,.0(X, y)(x=X) 20 (1.13)
for each given xeC,.
If g, =0and x=X+q, we have from(1.13)
—q'V,0(X,y)q=0

i.e. q'V,0(X,¥)q <0 ; which by positive definiteness of V_6(X,y) implies that q=0. But

this is not possible since (q,q,) =0 and therefore g, > 0. Further let g =q,X, then (1.13) is valid.
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If g=0q,X then the relation (1.13)is not valid for x = 9 C,. The relation (1.13) is

do

(9,X' —q")V, O(X, ) (x—X) >0

I.e. (qoYt _qt)vxxe(y! 7) [&_ilz 0

0

e, (QX -0V, 0, 7)(M] >0

Qo

i.e. QX' -9V, 0(X,¥)(q-q,X)=0 as q,>0

i.e. —(9,X' =)V, 0(X,¥)(q—q,X) =0 ,which is not true since
V.. 0(X,¥) is positive definite.

Using the fact and putting x =X in (1.11) we get
—q,V,0(X,¥)(y—y) = 0foreach yeC,

Let yeC,, then Y+ Yy eC,, so that the last inequality implies
~Q,y'V,0(X,¥) >0

or y'V,0(X,y)<0 as q,>0

ie.  V,0(X,Y)eC,

Setting y=0 and y =Y in the last two inequalities, we obtain
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y'V,0(X,¥) =0 (1.14)
Sinceq, >0, g=q,X and q'V,0(X,y) =0 then
X'V 0(X,y)=0 (1.15)

which implies that f(X,y)=09(X,y).

It remains to be shown that (X, Y) is indeed optimal of P,. Since & is
K-convex/K-concave on C, xC, by theorem 3.1, we get that (X, ) is optimal of P, and the rest

of the results follows from (1.14) and (1.15).
4.Conclusions

In this paper we have presented weak, strong and converse duality results for K-

convex/K-concave functions in nonlinear programming with an additional feasibility condition.
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