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Abstract. In this paper, we are concerned with an initial value problem and a parameterize problem

of impulsive differential equation. The existence of solutions are proved. The continuations of the two

problems and their solutions will be studied.
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1. Introduction

The impulsive differential equations describe evolution processes which at certain mo-

ments change their state rapidly. In the mathematical simulation of such processes it is

convenient to assume that this change takes place momentarily and the process changes its

state by jump. Processes of such character are observed in numerous fields of science and

technology: theoretical physics, mechanics, population dynamics [1], physics, Chemistry

[2], engineering [3], ecology, biological systems, biotechnology, industrial robotics, phar-

macokinetics, optimal control, impulse technique, chemical technology and so on. The
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wide possibility of applications determines the growing interest in impulsive differential

equations. On the basis of numerous results obtained there appeared the first monographs

related to this new subject: Samoilenko and Perestyuk (1987), Lakshmikantham, Bainov

and Simeonov (1989), Bainov and Simeonov (1989), (1993). According to the way in

which the moments of the change by jumps are determined, the impulsive differential

equations are classified as follows(see[2],[4],[5]and [6]):

I. Equations with fixed moments of impulse effect (the moments of jump are previously

fixed).

II. Equations with unfixed moments of impulse effect (the moments of jump occur when

certain space-time relations are satisfied).

In this work, we consider the initial value problem

x
′
(t) = f(t, x(t)), t ∈ (0, T ],(1.1)

x(0) = xo(1.2)

and the parameterized problem of impulsive differential equation

x
′
(t) = f(t, x(t)), t ∈ (0, T ] and t 6= τ,(1.3)

x(τ−) = αx(τ+), α ∈ (0, 1),(1.4)

x(0) = xo.(1.5)

Where f : [0, T ]×R→ R is a given function, xo ∈ R , x(τ+) = limh→o+ x(τ + h) and

x(τ−) = limh→o− x(τ + h) represent the right and left limits of x(t) at t = τ.

Our aim here is to study the continuation of the problem (1.3)-(1.5) and its solution to

the problem (1.1)-(1.2) and its solution, as α→ 1.
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2. Preliminaries

Throughout this paper, we need some basic definitions and properties of impulsive

differential equation which are used throughout this paper. By C[0, T ] we denote the

Banach space of all continuous functions defined on [0, T ] with the norm

‖x‖C = sup{|x(t)| : t ∈ [0, T ]},

set PC([0, T ], R) = { x : [0, T ]→ R is continuous everywhere except for t = τ at which

x(τ−) and x(τ+) exist and x(τ−) = x(τ) } with the norm

‖x‖PC([0,T ],R) = sup{|x(t)| : t ∈ [0, T ]}.

Definition 2.1. ([2,7]) x(t) is said to be the solution of problem (1.3)-(1.5) if it satisfies

the following conditions:

(1) limt→o+ x(t) = xo = x(0+),

(2) for (0,+∞) , t 6= τ , x(t) is differentiable and x
′
(t) = f(t, x(t)) ,

(3) x(t) is left continuous in (0,+∞) and if t = τ , then x(τ−) = αx(τ+), α 6= 1 .

Definition 2.2. if f(t, x(t)) is differentiable function, then the solution of IVP (1.1)-(1.2)

is

x(t) = xo +

∫ t

0

f(s, x(s))ds.(2.1)

3. Main results

3.1. Impulsive differential equation.

Definition 3.1. By a solution of problem (1.3)-(1.5), we mean a function x ∈ PC([0, T ], R)

that satisfies the problem (1.3)-(1.5).

Theorem 3.1. Let f : [0, T ]×R→ R, is continuous function and satisfies the lipschitz

condition

|f(t, x(t))− f(t, x̄(t))| ≤ K|x− x̄|, ∀(t, x), (t, x̄) ∈ [0, T ]×R,
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with lipschitz constant K > 0 . If

KT < 1,(3.1)

then the problem (1.3)-(1.5) has a unique solution.

Proof. Integrating equation (1.3) and using (1.4),(1.5) we obtain

xα(t) =


xo +

∫ t
o
f(s, x(s))ds if t ∈ (o, τ ],

x(τ+) +
∫ t
τ
f(s, x(s))ds if t ∈ (τ, T ],

(3.2)

since, from Eq.(1.4) we obtain

x(τ+) =
1

α
x(τ−),

x(τ+) =
xo
α

+
1

α

∫ τ

0

.f(s, x(s))ds(3.3)

Applying the Banach contraction fixed point theorem, we deduce that there exist a unique

solution xα ∈ PC([0, T ], R) of integral equation (3.2).This solution satisfies the problem

(1.3)-(1.5).

3.2. Continuation theorem.

Theorem 3.2. If α→ 1, then the problems (1.3)-(1.5) and (1.1)-(1.2) are coincide with

the same solution.

Proof. Letting α → 1 in (1.4), then the problem (1.3)-(1.5) coincide with the problem

(1.1)-(1.2). Let x(t) , xα(t) are given by (2.1) and (3.2) respectively, then

lim
α→1

xα(t) = x(t), t ∈ (0, T ].(3.4)

And the two problems (1.1)-(1.2),(1.3) and (1.5) have the same solution. �
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4. Examples

In this section, we consider some first order impulsive differential equations and the

following examples will be helpful to illustrate the main results of this paper.

Example 4.1. Consider the following impulsive differential equation

x
′
(t) + 1 = 0; t 6= 1

2
, t ∈ (0,

3

2
],

x(
1

2

−
) = α x(

1

2

+

); t =
1

2
,

x(0) = 0.

Fig.1. show the continuation of solutions of Ex.(4.1).

Example 4.2. Consider the following impulsive differential equation

x
′
(t) = x+ cos(2πt); t 6= 1, t ∈ (0, 2],

x(1−) = α x(1+); t = 1,

x(0) = 0.
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Fig.2. show the continuation of solutions of Ex.(4.2).
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