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Abstract. In this paper, we give some characterizations of the analytic QK,ω space in terms of double integrals.

The obtained results are proved using Berezin transform in the unit disk. Our results extend and generalize some

results in [18, 39].
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1. Introduction

Let ∆ := {z∈C : |z|< 1} be the open unit disc of the complex plane C. The Green’s function

in the unit disk ∆ with singularity at a ∈ ∆ is given by g(z,a) = log 1
|ϕa(z)| , where ϕa(z) = a−z

1−āz .

For 0 < r < 1, let ∆(a,r) = {z ∈ ∆ : |ϕa(z)|< r} be the pseudo-hyperbolic disk with the center

a ∈ ∆ and radius r. For a given reasonable function ω : (0,1]→ (0,∞) and for 0 < α < ∞. An

analytic function f on D is said to belong to the α−weighted Bloch space Bα
ω (see [35, 36]) if

‖ f‖Bα
ω
= sup

z∈D

(1−|z|)α

ω(1−|z|)
| f ′(z)|< ∞.
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Also, for a given reasonable function ω : (0,1]→ (0,∞) and for 0<α <∞. An analytic function

f on D is said to belong to the little weighted Bloch space Bα
ω,0 (see [35, 36]) if

‖ f‖Bα
ω,0

= lim
|z|→1−

(1−|z|)α

ω(1−|z|)
| f ′(z)|= 0.

Throughout this paper and for some techniques we consider the case of ω 6≡ 0.

Through this paper, we assume that K : [0,∞)→ [0,∞) is a right continuous and nondecreasing

function. For 0 < p < ∞ and −2 < q < ∞, we say that a function f analytic in ∆ belongs to the

space QK,ω(p,q) (see [35, 36]) if

‖ f‖p
K,ω,p,q = sup

a∈∆

∫
∆

∣∣ f ′(z)∣∣p(1−|z|2)q K(1−|ϕa(z)|2)
ω(1−|z|)

dA(z)< ∞,

where dA(z) is the Euclidean area element on ∆. It is clear that QK,ω(p,q) is a Banach space

with the norm ‖ f‖ = | f (0)|+ ‖ f‖K,ω,p,q where p ≥ 1. If q + 2 = p, QK,ω(p,q) is Möbius

invariant, i.e., ‖ f ◦ϕa‖ = ‖ f‖K,ω,p,q for all a ∈ ∆. Now we consider some special cases. If

p = 2, and q = 0 and ω ≡ 1, we obtain that QK(p,q) = QK (cf. [26, 38]). If K(t) = ts and

ω ≡ 1, then QK,1(p,q) = F(p,q,s) (cf. [40]) that F(p,q,s) is contained in the weighted q+2
p -

Bloch space. The space QK,ω,0(p,q) consists of analytic function f in ∆ with the property that

(see [35, 36])

lim
|a|→1−

∫
∆

| f ′(z)|p(1−|z|2)q K(1−|ϕa(z)|2)
ω(1−|z|)

dA(z) = 0.

It can be checked that QK,ω,0(p,q) is a closed subspace in QK,ω(p,q).

In this paper, for simplicity, we consider the class QK,ω , which is defined as follows:

‖ f‖2
K,ω = ‖ f‖2

K,ω,2,0 = sup
a∈∆

∫
∆

∣∣ f ′(z)∣∣2 K(1−|ϕa(z)|2)
ω(1−|z|)

dA(z)< ∞,

The following identity is easily verified:

1−|ϕa(z)|2 =
(1−|a|2)(1−|z|2)

|1− āz|2
= (1−|z|2)|ϕ ′a(z)|.

For a ∈ ∆, the substitution z = ϕa(w) results in the Jacobian change in measure given by

dA(w) = |ϕa(z)|2dA(z). For a Lebesgue integrable or a non-negative Lebesgue measurable

function h on ∆ we thus have the following change-of-variable formula:∫
∆(0,r)

h(ϕa(w))dA(w) =
∫

∆(a,r)
h(z)

(
1−|ϕa(z)|2

1−|z|2

)2

dA(z) .
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Note that ϕa(ϕa(z)) = z and thus ϕ−1
a (z) = ϕa(z). For a,z ∈ ∆ and 0 < r < 1, the pseudo-

hyperbolic disk ∆(a,r) is defined by ∆(a,r) = {z ∈ ∆ : |ϕa(z)| < r}. We will also need to use

the so-called Berezin transform. More specifically, for any function f ∈ L1(∆,dA), we define a

function B f by

B f (z) =
∫

∆

(1−|z|2)2

|1− zw|4
f (w)dA(w), z ∈ ∆.

We call B f the Berezin transform of f . By a change of variables, we can also write

B f (z) =
∫

∆

f ◦ϕz(w)dA(w), z ∈ ∆

see [22, 24, 33, 27] and [41] for basic properties of the Berezin transform.

The following estimate is the key to the main results of this paper.

Lemma 1.1. [41] For any R > 0, there esists a positive constant C (depending on R) such that

| f (z)|2 ≤ C
|∆(z,R)|

∫
∞

∆(z,R)
| f (w)|2dA(w),(1)

for all z ∈ ∆ and analytic function f in ∆.

If K is only defined on (0,1], then we extend it to (0,∞) by setting K(t) = K(1) for t > 0. We

can then define an auxiliary function as

ϕK,ω(s) = sup
0<t≤t

ω(t)K(st)
ω(st)K(t)

, 0 < s < ∞.

Now we prove the following result.

Lemma 1.2. Let K be any nonnegative and Lebesgue measurable function on (0,∞) and f (z) =
K(1−|z|2)
ω(1−|z|2) with ω(1−|z|2)∼ ω(1−|z|). If∫

∞

0

ϕK,ω(x)
(1+ x)3 dx < ∞,(2)

then there exists a positive constant C such that B f (z)≤C f (z) for all z ∈ ∆.

Proof. From the definition of Berezin transform, we have

B f (z) =
∫

∆

K(1−|ϕz(w)|2)
ω(1−|ϕz(w)|2)

dA(w).

Since,

1−|ϕz(w)|2 =
(1−|z|2)(1−|w|2)

|1− w̄z|2
,
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we find
K(1−|ϕz(w)|2)
ω(1−|ϕz(w)|2)

≤ K(1−|z|2)
ω(1−|z|2)

ϕK,ω

(
1−|w|2

|1− w̄z|2

)
.

It follows that

B f (z) ≤ f (z)
∫

∆

ϕK,ω

(
1−|w̄z|2

|1− w̄z|2

)
dA(w)

≤ f (z)
|z|2

∫
|w|<|z|

ϕK,ω

(
1−|w|2

|1− w̄z|2

)
dA(w)

≤ f (z)
|z|2

∫
|w|<|z|

ϕK,ω

(
1−|w|2

|1−w|2

)
dA(w) =

2 f (z)
|z|2

∫
∞

0
ϕK,ω

(
r

(1+ r)3

)
dr.

This completes the proof.

2. A double integral characterization in QK,ω space

In this section, we characterize the space QK,ω in terms of a double integral that does not

involve the use of derivatives. We begin with the following estimate.

Theorem 2.1 Let 0 < p < ∞. For a given reasonable function ω : (0,1]→ (0,∞), there exists a

constant C > 0 (independent of K and ω) such that∫
∆

∣∣ f ′(z)∣∣2 K(1−|z|2)
ω(1−|z|)

dA(z)≤CI( f )

for all analytic functions f in ∆, where

I( f ) =
∫

∆

∫
∆

∣∣ f (z)− f (w)
∣∣2∣∣1− zw̄|4

K(1−|z|2)
ω(1−|z|)

dA(w).

Proof. We write the double integral I( f ) as an iterated integral

I( f ) =
∫

∆

K(1−|z|2)
(1−|z|2)2ω(1−|z|)

dA(z)
∫

∆

(
1−|z|2

)2∣∣1− zw̄|4
∣∣ f (z)− f (w)

∣∣2dA(w).

Making a change of variables in the inner integral, we obtain

I( f ) =
∫

∆

K(1−|z|2)
(1−|z|2)2ω(1−|z|)

dA(z)
∫

∆

∣∣ f (ϕz(w))− f (z)
∣∣2dA(w).(3)

It is well known that∫
∆

|g(w)−g(0)|2dA(w)∼
∫

∆

|g′(w)|2(1−|w|2)2dA(w),(4)
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for analytic functions g in ∆. Applying (4) to the inner integral in (3) with the function g(w) =

f (ϕz(w)), we deduce that

I( f )∼
∫

∆

K(1−|z|2)
(1−|z|2)2ω(1−|z|)

dA(z)
∫

∆

∣∣( f ◦ϕz)
′(w)

∣∣2(1−|w|2)2dA(w).

Therefore, by the chain rule and a change of variables, we get

I( f ) ∼
∫

∆

K(1−|z|2)
ω(1−|z|)

dA(z)
∫

∆

∣∣ f ′(w)∣∣2 (1−|w|2)2

|1− zw̄|4
dA(w).(5)

Fix any positive radius R. Then there exists a constant C > 0 such that

I( f )≥C
∫

∆

K(1−|z|2)
ω(1−|z|)

dA(z)
∫

∆(z,R)

∣∣ f ′(w)∣∣2 (1−|w|2)2

|1− zw̄|4
dA(w).

It is well known that (see e.g [37, 41])

(1−|w|2)
|1− zw̄|2

∼ 1
(1−|z|2)

∼ 1√
|∆(z,R)|

.

for w ∈ ∆(z,R). It is follows that there exists a positive constant C such that

I( f )≥C
∫

∆

K(1−|z|2)
ω(1−|z|)

dA(z)
1

|∆(z,R)|

∫
∆(z,R)

∣∣ f ′(w)∣∣2dA(w).

Then using lemma 1.1, we obtain

I( f )≥C
∫

∆

∣∣ f ′(z)∣∣2(1−|z|2)p−2 K(1−|z|2)
ω(1−|z|)

dA(z).

The proof of the theorem is therefore established.

Theorem 2.2 Let 0 < p < ∞. If the function K satisfies condition (1), for a given reasonable

function ω : (0,1]→ (0,∞), there exists a constant C > 0 such that∫
∆

∣∣ f ′(z)∣∣2 K(1−|z|2)
ω(1−|z|)

dA(z)≥CI( f )

for all analytic functions f in ∆, where I( f ) is as given in Theorem 2.1.

Proof. By Fubini’s theorem, we can rewrite (5) as

I( f )∼
∫

∆

∣∣ f ′(w)∣∣2dA(w)
∫

∆

(
1−|w|2

)2

|1− zw̄|4
K(1−|z|2)
ω(1−|z|)

dA(z).

∼
∫

∆

∣∣ f ′(w)∣∣p(1−|w|2)p−2dA(w)
∫

∆

(
1−|w|2

)2

|1− zw̄|4
K(1−|z|2)
ω(1−|z|)

dA(z).(6)
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The inner integral above is nothing but the Berezin transform of the function K(1−|z|2)
ω(1−|z|) at the

point w. The desired estimate now follows from Lemma 1.2

We can now prove the main result of this section

Theorem 2.3 Suppose K satisfies condition (1) and satisfies all conditions of Theorems 2.1 and

2.2, then an analytic function f in ∆ belongs to QK,ω if and only if

sup
a∈∆

∫
∆

∫
∆

∣∣ f (z)− f (w)
∣∣2

|1− zw̄|4
K(1−|ϕa(z)|2)
ω(1−|ϕa(z)|)

dA(z)dA(w)< ∞.(7)

Proof. We know that f ∈ QK,ω if and only if

sup
a∈∆

∫
∆

f ′(z)
∣∣2 K(1−|ϕa(z)|2)

ω(1−|ϕa(z)|)
dA(z)< ∞.

By a change of variables, we have f ∈ QK,ω if and only if

sup
a∈∆

∫
∆

∣∣( f ◦ϕa)
′(z)
∣∣2 K(1−|z|2)

ω(1−|z|)
dA(z).

Replacing f by f ◦ϕa in Theorems 2.1 and 2.2, we conclude that f ∈ QK,ω if and only if

sup
a∈∆

∫
∆

∫
∆

∣∣ f ◦ϕa(z)− f ◦ϕa(w)
∣∣2

|1− zw̄|4
K(1−|z|2)
ω(1−|z|)

dA(z)dA(w)< ∞.

Changing variables and simplifying the result, we find that the double integral above is the same

as

sup
a∈∆

∫
∆

∫
∆

∣∣ f (z)− f (w)
∣∣2

|1− zw̄|4
K(1−|ϕa(z)|2)
ω(1−|ϕa(z)|)

dA(z)dA(w).

Therefore, f ∈ QK,ω if and only if the condition (7) holds.

Remark 2.2. It is still an open problem to study the results of this paper in generalized Hardy

spaces of analytic functions, for information on classes of generalized Hardy spaces we refer to

[7, 34, 28].

Remark 2.1. It is still an open problem to extend the results of this paper to the classes QK(p,q)

and QK,ω(p,q) of hyperbolic functions. For recent studies on spaces of hyperbolic functions,

we refer to [6, 11, 34] and others. For some studies on analytic or meromorphic QK,ω(p,q) and

QK(p,q) classes, we refer to [9, 10, 14, 15, 16, 18, 19, 20, 35, 36].
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Remark 2.2. It is still an open problem to extend the results of this paper to Clifford analysis

setting. For information on function spaces in Clifford analysis, we refer to [1, 2, 3, 4, 5, 8, 12,

21, 23, 25, 32, 29, 30, 31] and others.
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appear in Journal of computational analysis and applications.

[19] A. El-Sayed Ahmed and A. Kamal, Riemann-Stieltjes operators on some weighted function spaces, Interna-

tional Mathematical Virtual Institute, Vol 3(2013), 81-96.

[20] A. El-Sayed Ahmed and A. Kamal, Carleson measure characterization on analytic QK(p,q) spaces, Interna-

tional Mathematical Virtual Institute, Vol 3(2013), 1-21.

[21] A. El-Sayed Ahmed and S. Omran, Weighted classes of quaternion-valued functions, Banach J. Math. Anal.

6 (2012) 180-191.

[22] Y. Ameur, N. Makarov and H. Hedenmalm, Berezin transform in polynomial Bergman spaces, Commun.

Pure Appl. Math. 63 (2010) 1533-1584.
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[24] O. Blasco and S. Pérez-Esteva, Schatten-Herz operators, Berezin transform and mixed norm spaces, Integral

Equations Oper. Theory 71 (2011) 65-90.
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