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Abstract. We study the temperature profile for a semi-infinite thin layer due to a Gaussian heat source. We

follow the time-dependent temperature profile at the center of the top surface of the layer, deriving the asymptotic

behavior and both the short time and long time behaviors. We also show that one can estimate thermal properites

from various time measurements of the temperature at the center of the top surface. Finally, we investigate the

statistical uncertainty in estimating parameter values from temperature measurements.
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1. Introduction

Laser heating is an important technology in materials processing [14]. Since 1970s there are

many studies on the temperature profiles induced by laser radiation. A few examples include

the spatial distribution of the temperature rise due to a stationary Gaussain laser beam in a solid

[9, 10, 11], time-dependent solution for a scanning Gaussin beam [7, 15], laser-melted front [4],
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continuous wave (cw) laser annealing of heterogeneous multilayer structure [6], temperature

profiles due to a moving ellptical cw laser beam [12], the solution of the transient heat equation

with mixed boundary conditions [1], the Green’s function solution for a two-layer structure

with scanning circular beams [5], solution for moving semi-infinite medium under the effect

of a moving laser heat source [2], time-dependent heat conduction in a thin metal film [17],

solution of the temperature distribution in a finite solid caused by a moving heat source [3],

analysis of short-pulse laser heating of metals [13], temperature rise induced by a rotating or

dithering laser beam in various solid structures [16, 18, 19, 20].

Despite all these advances in the studies of laser heating, it is still desirable to obtain analyti-

cal results even for simple cases. In this paper we consider the temperature profile of an infinite

thin layer produced by a heat source in the form of a stationary Gaussian beam and reveal how to

estimate thermal properties from the temperature measurements. We first give the mathematical

formulation and then obtain analytical solution, paying special attention to the time-dependent

temperature at the center of the heat source at the top surface. We further discuss the asymptotic

behaviors of the temperature at the center of the top surface for several cases. In addition, we

show how to derive thermal properties from the measurements of the temperature profile at the

center of the top surface, including short time data, long time data or a full range of time data.

We then evaluate the statistical error in the parameter estimations. Finally, we summarize our

results.

2. Mathematical formulation and analytical solution

Consider a thin layer, which is infinite in both the x- and y- dimensions, with a thickness ε in

the z-dimension. We establish the coordinate system such that the top surface of the layer is at

z = 0 and the bottom surface is at z =−ε .

We assume that in the z- direction, the heat source is concentrated at a level immediately

below the top surface (z = 0), as illustrated in Figure 1.

In the x-y plane, the heat source has a Gaussian distribution centered at the origin with s-

tandard deviation σ (we shall call σ the radius of heat source). Thus, the heat source has the
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heat source

FIGURE 1. A heat source is concentrated at a level immediately below the top

surface of a thin layer where z = 0.

distribution defined by

(1) ϕ(x,y,z) = ϕtotal · f (x,σ2) f (y,σ2)δ (z−0−)

where δ is the Dirac Delta function and

(2) f (x,σ2) =
1√

2πσ 2
exp
(
−x2

2σ2

)
is the probability density function of a Gaussian distribution and ϕtotal is the total heat flux of

the heat source (total heat input per unit time) given by

(3) ϕtotal =
∫

ϕ(x,y,z)dxdydz.

Let us consider the situation where the thin layer is insulated at both the top surface and the

bottom surface. Let u(x,y,z, t) denote the temperature at position (x,y,z) at time t. Then u is

governed by the heat equation with boundary and initial conditions:

∂u
∂ t

=
κ

ρcp

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
+

1
ρcp

ϕ(x,y,z)(4)

∂u
∂ z

∣∣∣∣
z=0

= 0,
∂u
∂ z

∣∣∣∣
z=−ε

= 0

u|t=0 = u0,
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where

• κ is the thermal conductivity,

• ρ is the density, and

• cp is the specific heat.

The boundary conditions of zero heat flux at z= 0 and at z=−ε can be enforced by extending

function u in the z- direction. We first extend u to z ∈ [−ε ,ε ] by mirror reflection with respect

to z = 0.

u(z) = u(−z) for z ∈ [0,ε].

Then we extend u to z ∈ (−∞,∞) by periodical extension with period = 2ε:

u(z+2ε) = u(z).

After the extension, u satisfies the initial value problem (IVP):

∂u
∂ t

=
κ

ρcp

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
+

2ϕtotal

ρcp
f (x,σ2) f (y,σ2)

+∞

∑
j=−∞

δ (z−2 jε)(5)

u|t=0 = u0.

To solve the IVP (5), we first carry out non-dimensionalization. For mathematical conve-

nience, we shall denote the physical variable before non-dimensionalization by xphy and denote

the variable after non-dimensionalization simply as x without a subscript. We nondimensional-

ize the physical variables as follows.

x = xphy
1
σ
, y = yphy

1
σ
, z = zphy

1
σ
,

t = tphy
κ

ρcpσ2 ,

u = (uphy −u0)
κ σ

2ϕtotal
.(6)

After non-dimensionalization, the initial value problem (5) becomes

∂u
∂ t

=

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
+ f (x,1) f (y,1)

+∞

∑
j=−∞

δ (z−2 j
ε
σ
)(7)

u|t=0 = 0.
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The fundamental solution of the one-dimensional heat equation (also called the heat kernel)

can be expressed in terms of the Gaussian density as [8]

(8)
1√
4πt

exp
(
−x2

4t

)
= f (x,2t).

The solution of (7) is then given by

u(x,y,z, t) =
∫ t

0

∫
(x′,y′,z′)

f (x− x′,2(t − t ′)) f (y− y′,2(t − t ′)) f (z− z′,2(t − t ′))

× f (x′,1) f (y′,1)
+∞

∑
j=−∞

δ (z′−2 j
ε
σ
)dx′dy′dz′dt ′.(9)

Recall the fact that the convolution of two Gaussian densities is still a Gaussian density:

∫
f (x− x′,σ2

1 ) f (x′,σ2
2 )dx′ = f (x,σ2

1 +σ2
2 ).

Using this fact and making a change of variables τ = t − t ′, we can rewrite the solution as

(10) u(x,y,z, t) =
∫ t

0
f (x,2τ +1) f (y,2τ +1)

+∞

∑
j=−∞

f
(

z−2 j
ε
σ
,2τ
)

dτ.

From an experimental point of view, we are interested in the temperature profile at the ori-

gin (x,y,z) = (0,0,0), which is exactly the center of the heat source at the top surface. The

temperature at the origin has the expression:

(11) u(0,0,0, t) =
∫ t

0

1
2π(2τ +1)

1√
4πτ

h
(

σ2τ
ε2

)
dτ,

where function h(η) is defined as

(12) h(η)≡
+∞

∑
j=−∞

exp(− j2/η).

We apply another change of variables s =
√

τ to obtain the analytical form of the temperature

at the center of the top surface:

(13) u(0,0,0, t) =
1

2π
3
2

∫ √
t

0

1
(2s2 +1)

h
(

σ2s2

ε2

)
ds.

Now we study the properties of function h(η) defined in (12).
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For small η , h(η) is very close to 1 since

h(η) = 1+2exp(−1/η)+2exp(−4/η)+ · · ·

= 1+T.S.T. (Transcendentally Small Term)

For large η , let ∆x = 1/
√η , we have

h(η) =
+∞

∑
j=−∞

exp(− j2/η)

=
√

η
+∞

∑
j=−∞

exp(−( j∆x)2)∆x

≈
√

η
∫ +∞

−∞
exp(−x2)dx

=
√

η
√

π.

Actually, for large η , we have

h(η) =
√

η
√

π +T.S.T. (Transcendentally Small Term)

The plot of h(η), together with 1 and
√ηπ , is shown in Figure 2. Figure 2 confirms the

above asymptotic results. Namely, for small values of η , h(η) can be closely approximated by

the constant function 1; for large values of η , h(η) can be well approximated by
√ηπ .

3. Asymptotic solutions at the center of the top surface

Having obtained the analytical form of the time-dependent temperature at the center of the

top surface, namely, u(0,0,0, t), we now turn our attention to its asymptotic behaviors.
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FIGURE 2. The plot of functions h(η), 1 and
√ηπ .

For small t (when tσ2/ε2 << 1), the temperature at the origin can be written as

u(0,0,0, t) =
1

2π
3
2

∫ √
t

0

1
(2s2 +1)

h
(

σ2s2

ε2

)
ds

=
1

2π
3
2

∫ √
t

0

1
(2s2 +1)

ds+T.S.T

=
1

2π
3
2

1√
2

arctan(
√

2t)+T.S.T

=
1

2π
3
2

√
t
(

1− 2
3

t +O(t2)

)
.
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For large t (when tσ2/ε2 >> 1), the temperature at the origin is given by

u(0,0,0, t) =
1

2π
3
2

∫ √
t

0

1
(2s2 +1)

h
(

σ2s2

ε2

)
ds

=
1

2π
3
2

∫ √
t

0

1
(2s2 +1)

(√
π

σ
ε

s+h
(

σ2s2

ε2

)
−
√

π
σ
ε

s
)

ds

=
σ

2πε

∫ √
t

0

s
2s2 +1

ds+
1

2π
3
2

∫ ∞

0

1
2s2 +1

(
h
(

σ2s2

ε2

)
−
√

π
σ
ε

s
)

ds+T.S.T

=
σ

8πε
log(2t +1)+

1

2π
3
2

q
(σ

ε

)
+T.S.T(14)

where function q(θ) is defined as

(15) q(ξ )≡
∫ ∞

0

1
2s2 +1

(
h(ξ 2s2)−

√
π ξ s

)
ds.

Expanding the term log(2t +1) on the righ-hand side of (14), we arrive at

(16) u(0,0,0, t) =
σ

8πε
log(t)+

(
1

2π
3
2

q
(σ

ε

)
+

σ
8πε

log(2)
)
+O(t−1).

Note that q(σ/ε) is a constant, independent of t.

We now go back to the physical variables tphy and uphy. Recalling (6), we then find that

(17) uphy(0,0,0, tphy) = u0 +
2ϕtotal

κ σ
u
(

0,0,0,
κ

ρcpσ2 tphy

)
.

For small values of tphy, we obtain

uphy(0,0,0, tphy) = u0 +
2ϕtotal

κ σ
1

2π
3
2

√
t
(

1− 2
3

t +O(t2)

)

= u0 +
ϕtotal

π
3
2 κ

1
2 (ρcp)

1
2 σ2

√
tphy

(
1− 2

3
κ

(ρcp)σ2 tphy +O(t2
phy)

)
.(18)
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For large values of tphy, it follows that

uphy(0,0,0, tphy) = u0 +
2ϕtotal

κ σ
σ

8πε
log(t)

+
2ϕtotal

κ σ

(
1

2π
3
2

q
(σ

ε

)
+

σ
8πε

log(2)
)
+O(t−1)

= u0 +
ϕtotal

4πκ ε
log(tphy)

+
ϕtotal

4πκ ε

(
log
(

2κ
(ρcp)σ2

)
+

4√
π

ε
σ

q
(σ

ε

))
+O(t−1

phy).(19)

In the following we discuss how to estimate thermal properties from the measurements of

the time-dependent temperature at the center of the top surface and then give both short and

long time behaviors of the temperature increase at the center of the top surface of a thin layer.

Statistical errors associated with parameter estimations will be evaluated as well.

3.1 Estimation of thermal properties from short or long time measurements
of temperature at the center of the top surface

We consider the situation where ϕtotal (the total heat flux of the heat source), σ (the Gaussian

radius of the heat source) and ε (the thickness of the plate) are known, and uphy(0,0,0, tphy) is

measured as a function of tphy. We want to estimate two thermal parameters: ρcp (specific heat

capacity per volume) and κ (the thermal conductivity).

The first step is to fit the measured values of (uphy(0,0,0, tphy)−u0)/
√

tphy vs tphy to a linear

function of tphy for small tphy.

uphy(0,0,0, tphy)−u0√
tphy

= b0 −b1 · tphy.

The coefficients b0 and b1 are determined from measured data for small tphy using the linear

least squares fitting method. From the analysis above, we know that b0 and b1 are related to the
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unknown parameters as

b0 =
ϕtotal

π
3
2 κ

1
2 (ρcp)

1
2 σ2

b1 =
2
3

ϕtotal

π
3
2 κ

1
2 (ρcp)

1
2 σ2

· κ
(ρcp)σ2

Next in a similar manner we fit the measured values of (uphy(0,0,0, tphy)− u0) vs log(tphy)

to a linear function of log(tphy) for large tphy by the relationship

uphy(0,0,0, tphy)−u0 = c0 + c1 · log(tphy).

The coefficients c0 and c1 are determined from the measured data for large tphy in a linear least

squares fitting where we treat log(tphy) as an independent variable. Coefficients c0 and c1 are

related to the unknown parameters by

c0 =
ϕtotal

4πκ ε

c1 =
ϕtotal

4πκ ε

(
log
(

2κ
(ρcp)σ2

)
+

4√
π

ε
σ

q
(σ

ε

))
.

In turn, the unknown parameters (ρcp,κ) can be estimated from either (b0,b1) or (c0,c1).

Suppose coefficients (b0,b1) have been calculated from measured temperature at short times.

Parameters (ρcp,κ) are expressed in terms of (b0,b1) as

κ =

√
3
2
· ϕtotal

π
3
2 σ

·b
−3
2

0 b
1
2
1(20)

ρcp =

√
2
3
· ϕtotal

π
3
2 σ3

· (b0b1)
−1
2 .(21)

Similarly, based on the temperature data at long times, we can calculate coefficients (c0,c1).

Parameters (ρcp,κ) can be written in terms of (c0,c1) as

κ =
ϕtotal

4πε
· 1

c0
(22)

ρcp =
ϕtotal

2πεσ2 ·
1
c0

exp
[

4√
π

ε
σ

q
(σ

ε

)
− c1

c0

]
.(23)
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It is clear that if we have temperature data either at short times or at long times, we can estimate

the thermal parameters ρcp and κ from either (20)-(21) or (22)-(23), repectively.

3.2 Number of unknown parameters that can be estimated from short and
long time measurements of temperature at the center of the top surface

One may wonder that if we have temperature data at both short times and long times, would it

be possible to estimate more than 2 unknown parameters from the 4 coefficients (b0,b1,c0,c1)?

Below we show that it is not possible to determine the parameters if all three of (ρcp,κ ,ϕtotal)

are unknown.

Specifically, we demonstrate that there are two different sets of (ρcp,κ,ϕtotal) that produce

the same value of (b0,b1,c0,c1). Suppose we multiply (ρcp,κ,ϕtotal) by a factor λ

(ρcp)new = λ (ρcp)

κnew = λκ

(ϕtotal)new = λϕtotal.

It is straightforward to verify that

(b0)new = b0,

(b1)new = b1,

(c0)new = c0,

(c1)new = c1.

It becomes apparent that one can estimate only two unknown parameters from the short time or

long time temperature profile at the center of the top surface.

3.3 Short time behavior of the temperature increase at the center of the top
surface
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We study the temperature increase (over the initial temperature u0) at the origin for short

time. For small values of tphy, the leading term of the temperature increase takes the form

uphy(0,0,0, tphy)−u0 =
ϕtotal

π
3
2 κ

1
2 (ρcp)

1
2 σ2

√
tphy

(
1− 2

3
κ

(ρcp)σ2 tphy +O(t2
phy)

)
.

Thus, the short time temperature increase at the origin satisfies the following properties:

• It is proportional to the total heat flux of the heat source.

• The leading term is proportional to the square root of time.

• The leading term is inversely proportional to the square root of the thermal conductivity.

• The leading term is inversely proportional to the square root of the specific heat capacity

per volume.

• The leading term is inversely proportional to the square of the Gaussian radius of the

heat source.

• It is independent of the thickness of the layer.

3.4 Long time behavior of the temperature increase at the center of the top
surface

Now we assume a thin layer and study the temperature increase (over the initial temperature

u0) at the origin for long time. By “thin layer” we mean ε << σ . That is, the thickness of

the layer is much smaller than the Gaussian radius of the heat source. We first examine the

asymptotic behavior of function q(ξ ) for large ξ . In the definition of q(ξ ) given in (15), we

apply a change of variables w = ξ s to rewrite q(ξ ) as

(24) q(ξ ) =
1
ξ

∫ ∞

0

1

2w2

ξ 2 +1

(
h(w2)−

√
π w
)

dw.

When w is large, (h(w2)−
√

π w) = T.S.T. Thus, in the integral above, the contribution from the

region of large w is negligible. It follows that for large ξ , in the region of dominant contribution,
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w2

ξ 2 is small and we can expand in terms of w2

ξ 2 .

q(ξ ) =
1
ξ

∫ ∞

0

(
1−2

w2

ξ 2

)
(h(w2)−

√
π w)dw+ · · ·

≡ q1

ξ
+

q3

ξ 3 + · · · ,(25)

where coefficients q1 and q3 are given by

q1 =
∫ ∞

0
(h(w2)−

√
π w)dw,(26)

q3 = −
∫ ∞

0
2w2(h(w2)−

√
π w)dw.(27)

In Figure 3 we plot the function q(ξ ) and its approximation q1
ξ + q3

ξ 3 . As shown in Figure 3,

the two curves are getting closer to each other when ξ becomes bigger.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

ξ

q(ξ)

 

 

q(ξ)
(q1/ξ + q3/ξ3)

FIGURE 3. The plot of q(ξ ) and its approximation.
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Substituting the expansion of q(ξ ) into (14), we obtain that for a thin layer and for large

values of t the temperature increase at the origin is described by

uphy(0,0,0, tphy)−u0

=
ϕtotal

4πκε

(
log(tphy)+ log

(
2κ

(ρcp)σ2

)
+

4q1√
π

ε2

σ2 +
4q3√

π
ε4

σ4 + · · ·
)
.(28)

For a thin layer, the long time temperature increase at the origin possesses all of the following:

• It is proportional to the total heat flux of the heat source;

• The leading term increases logarithmically with the time;

• The leading term is inversely proportional to the thermal conductivity;

• It is inversely proportional to the thickness of the layer;

• The leading term is independent of the specific heat capacity per volume (ρcp) and is

independent of the Gaussian radius of the heat source (σ ); more specifically, at long

time tphy, the leading term of the temperature increase is of the order O(log(tphy)) while

the effect of ρcp and σ on the temperature increase is of the order O(1).

3.5 Fitting analytical solution to measured temperature profile over a full
range of time

We consider the problem of fitting the analytical solution to the measured temperature over

the full range of time. That is, instead of fitting to measured temperature for either short time

or for long time, we illustrate how to use all measured temperature data points in fitting. As

we will see below, by using the temperature data over the full range of time, we can determine

three coefficients.

By combining equations (13) and (17), we write the physical temperature as

uphy(0,0,0, tphy)−u0 =
2ϕtotal

κ σ
u
(

0,0,0,
κ

ρcpσ2 tphy

)

≡ α1 g(
√

α2tphy; α3),(29)
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where coefficients α1, α2 and α3 are given by

α1 =
2ϕtotal

κ σ

α2 =
κ

ρcpσ2

α3 =
σ
ε

(30)

and function g(·) is defined as

g(w;α3) =
1

2π
3
2

∫ w

0

1
(2s2 +1)

h
(
α2

3 s2)ds.

From measured data points of uphy(0,0,0, tphy)− u0 at various values of tphy, we can estimate

coefficients α1, α2 and α3 by minimizing the distance between the right hand side (the fitting

function) and the left hand side (the data). The theoretical expressions of α1, α2 and α3 contain

5 parameters:

ϕtotal, κ, (ρcp), σ , ε.

Once we know the values of α1, α2, and α3, we can express κ , (ρcp) and ε in terms of ϕtotal

and σ .

κ =
2ϕtotal

α1 σ

(ρcp) =
2ϕtotal

α1α2σ3

ε =
σ
α3

Therefore, the temperature data over a full range of time allows us to estimate three parameters.

3.6 Statistical errors in parameter estimations

Lastly, we turn to the problem of estimating coefficients (α1,α2,α3) from the measured data

of uphy(0,0,0, tphy) at various values of tphy. We consider the case of noisy data where each

measured value of uphy(0,0,0, tphy) is

u(measured)
phy (0,0,0, tphy) = uphy(0,0,0, tphy)+0.01 ·N(0,1).
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Here N(0,1) denotes a random variable of normal (Gaussian) distribution with mean = 0 and

variance = 1. The measurement noise in data will lead to statistical error in the estimated

coefficients (α1,α2,α3). We study how the statistical error varies with the distribution of time

instances at which temperatures are measured. The result will serve as a guide in selecting time

instances for measuring temperatures in real experiments.

In our study of statistical errors, the true values of the 3 coefficients are

α1 = 3, α2 = 1.5, α3 = 2.5.

The coefficients (α1,α2,α3) are related to uphy(0,0,0, tphy) via function g(w;α3), as given in

equation (29). We first examine the behavior of function g(w;α3). Shown in Figure 4 are plots

of g(w;α3) (A) as a function of w2, which is proportional to tphy; (B) as a function of w, which

is proportional to t
1
2
phy; and (C) as a function of

√
w, which is proportional to t

1
4
phy. It appears

that the best way to robustly capture all features of function g(w;α3) from noisy data is to use a

uniform grid in t
1
4
phy.

In our numerical simulations, we use true values of (α1,α2,α3) to calculate uphy(0,0,0, tphy)

at various values of tphy, and then add Gaussian noise to generate a numerical data set of mea-

sured temperatures. Each numerical data set contains measured temperatures at 1000 time

instances. We compare statistical errors for 3 distributions of the time instances.

• Distribution 1: time instances uniformly distributed in tphy between 0 and t f inal

• Distribution 2: time instances uniformly distributed in t
1
2
phy between 0 and t f inal

• Distribution 3: time instances uniformly distributed in t
1
4
phy between 0 and t f inal

We measure the statistical error in (α1,α2,α3) as follows.

Errstats = E


√√√√(α(est)

1 −α1

α1

)2

+

(
α(est)

2 −α2

α2

)2

+

(
α(est)

3 −α3

α3

)2
 ,

where α(est)
j is the estimated value of α j from a data set and the average E {·} is calculated over

5000 independent data sets. In Figure 5, the statistical error is plotted as a function of t f inal ,

respectively for each of the 3 distributions of the time instances. When the time instances are

uniformly distributed in tphy, the statistical error is the largest and it is sensitive to the value of
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FIGURE 4. Plots of g(w;α3) (A) as a function of w2, which is proportional to

tphy; (B) as a function of w, which is proportional to t
1
2
phy; and (C) as a function

of
√

w, which is proportional to t
1
4
phy.

t f inal . When the time instances are uniformly distributed in t
1
4
phy, the statistical error is the lowest

and it is also least sensitive to the value of t f inal .

Figure 6 shows the statistical error vs t f inal for a large range of t f inal . It is clear that when

time instances are uniformly distributed in t
1
4
phy, the parameter estimation is the most robust: it

has the lowest statistical error and is least sensitive to the value of t f inal .

4. Conclusions

We have considered the temperature distribution for a semi-infinite thin layer induced by a

Gaussian heat source. In particular, we have studied the asymptotic behavior of the temperature
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FIGURE 5. Statistical error as a function of t f inal for each of the 3 distributions

of the time instances.
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FIGURE 6. Statistical error, for each of the 3 distributions of the time instances,

as a function of t f inal for a large range of t f inal .

at the center of the top surface of the layer. We have shown that one can estimate thermal

properites from various time measurements of the temperature at the center of the top surface.

We have computed the statistical errors assciated with the parameter estimations and found that

the parameter estimation is the most robust if time instances for collecting temperature data are
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uniformly distributed in t0.25. As a future work, we would like to validate our predictions with

experimental data.
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