Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 6, 1382-1388
ISSN: 1927-5307

SOLITON SOLUTIONS OF DEGASPERIS-PROCESI EQUATION AND A
MODIFIED KDV EQUATION BY THE SINE-COSINE METHOD

ISSAM ABU-IRWAQ

Department of Mathematics and Statistics,
Jordan University of Science and Technology, IRBID 22110, Jordan

Copyright (©) 2013 Issam Abu-Irwaq. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we construct solitary wave solutions for a hydrodynamical model called the Degasperis-

Procesi equation. The soliton solutions of a modified KdV type is also investigated.
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1. Introduction

In this paper, we study the solutions of the Degasperis-Procesi (DP) equation derived in [21]
and given by,

g 4 3K Uy — Uy + Attty = 3ttty + Uity (1)
where subscripts denote partial derivatives and k is a positive parameter. The integrability of the
DP equation was proved by constructing a Lax pair, deriving an infinite sequence of conserva-
tion laws and the existence of a bi-Hamiltonian structure [2, 3]. In [23], the authors construct-

ed loop soliton solutions and mixed soliton—loop soliton solutions by applying the modified
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T—function method.

Also, we study the solutions of a modified KdV type derived in [5] and reads
Ulhyr — Uylhyy — S5 1ty + Bttty — Sttty — 1601, = 0. (2)

Wazwaz in [6] obtained a variety of solitary wave solutions that include kinks, solitons, peakon-
s, cuspons, periodic and other solutions of Equation (2) by means of modified Hirota’s method.
Exact solutions to nonlinear partial differential equations play an important role in nonlinear sci-
ence, especially in nonlinear physical science since they can provide much physical information
and more insight into the physical aspects of the problem and thus lead to further applications.
In the literature, many significant methods have been proposed for obtaining Exact solutions
of nonlinear partial differential equations such as the extended tanh-function method [18, 7],
the Exp-function method [13], Hirota’s method [12], the rational sine-cosine method [11] and
many other methods see [7, 10, 17, 19, 20, 21, 22].

The main aim of this paper is to apply the Sine-Cosine function method with the help of sym-
bolic computation to obtain new soliton solutions of (1, 2). By using Sine-Cosine function
method, many kinds of nonlinear partial differential equations arising in mathematical physics

have been solved successfully [15, 16, 8, 9].

2. The Sine-Cosine Method

Since we restrict our attention to traveling waves, we use the transformation u(x,#) = u(z),
where the wave variable z = x — ct, converts the the nonlinear PDE to an equivalent ODE. The

sine-cosine algorithm admits the use of the ansatz [8, 9]

u(x,t) = Asin®(z), [¢] <

T
=, 3
" (3)
and the ansatz [8, 9]

T
2u’

where A, U, ¢ and B are parameters that will be determined. Substituting (3) or (4) into the

u(x,t) =Acos?(uz), |z <

(4)

reduced ODE gives a polynomial equation of cosine or sine terms. Balancing the exponents
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of the trigonometric functions cosine or sine, collecting all terms with same power in cos?(uz)
or sin®(uz) and set to zero their coefficients to get a system of algebraic equations among the
unknowns A, p and B. The problem is now completely reduced to an algebraic one. Having
determined A, U, ¢ and B by algebraic calculations or by using computerized symbolic calcula-

tions, the solutions proposed in (3) and in (4) follow immediately.

1. SOLVING THE DP EQUATION BY THE SINE-COSINE METHOD

Applying the wave variable z = x — ¢t to equation (1) yields the following nonlinear ODE

(3K° =) f'(2) + (e = f(2))f"(2) +4£ (2) f (2) = 3f'(2) " (z) = 0. (5)
First, we apply ansatz (3) to the resulting ODE (5) to obtain an algebraic equation involving

powers of the function sin(z)
Ky + Ky sin®(uz) + Kz sin® (uz) + Ky sin® 8 (uz) = 0, (6)
where
K| = (—4+6B—2B*)cu’
K> =2¢ —6k> +2B%cu’
K3 = (4—12B+8B*)Au?
Ky = —8A(1+B*u?)
Observing (6) and (7), we choose B = 2 and accordingly K; =0, K> + K3 =0 and K4 = 0.

Therefore,

A=—203, ,u:i%. (8)

Thus the obtained solution of equation (1) is

u(x,r) = 208 sinhz(x_TCt). (9)

Figure 1 represents profile solutions of the DP equation by appling the Sine method.
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FIGURE 1. Profile solutions of the DP equation when —5 <x<5andr= 0.1, 1, 2, 3

andk=1,c=0.5

Second, by applying ansatz (4) we obtain the same results as in (8) and therefore the solution
of the DP equation by the Cosine method is

—ct
u(x,t) = —2k3cosh2()%). (10)

Figure 2 represents profile solutions of the DP equation by appling the Cosine method
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FIGURE 2. Profile solutions of the DP equation when —5 <x < 5and¢t= 0.1, 1, 2, 3

andk=1,c=0.5

2. MODIFIED KDV EQUATION

Applying the wave variable z = x — ¢t to Equation (2) yields the following nonlinear ODE

(=4 @f"(2) = (=4 f(@)f" (@) +4(c—4)f(2)f'(z) = 0. (11)
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First, we apply ansatz (4) to the resulting ODE (11) to obtain the following algebraic equation,
(=14 B)u®+24%sin*> "8 (uz) = 0. (12)
The above equation is satisfied if the following conditions are hold
B=—-1,A==+u (13)
Therefore, the solution of the modified KdV is given by
u(x,t) = pesc(pu(x—ect)). (14)

Figure 3, represents the solution obtained in (14).
Second, by applying the cosine method, we get the same algebraic equations and the same
conditions. Thus, a second solution of the modified KdV is given by

u(x,t) = psec(u(x—ct)). (15)

Figure 4, represents the solution of the mKdV obtained in (15).
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FIGURE 3. Profile solutions of the modified KdV equation when —5 < x < 5 and

t= 0.1, 1,2, 3and g = 1,¢ = 0.5. The Sine method

3. Conclusion

The Sine-Cosine method has been successfully implemented to establish Periodic and soli-

tary wave solutions of the Degasperis-Procesi equation and the modified KdV equation. The
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FIGURE 4. Profile solutions of the modified KdV equation when —5 < x < 5 and

t=0.1,1,2 3and u =1,c=0.5. The Cosine method

proposed method is powerful tool that convert the nonlinear partial differential equations into a

system of algebraic equation that can be solved by symbolic computation like Mathematica.
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