
                

*
Corresponding author 

Received July 21, 2013 

1306 

     

Available online at http://scik.org 

J. Math. Comput. Sci. 3 (2013), No. 5, 1306-1324 

ISSN: 1927-5307 

 

SLIP EFFECTS ON MHD PERISTALTIC TRANSPORT OF A 

WILLIAMSON FLUID THROUGH A POROUS MEDIUM IN A 

SYMMETRIC CHANNEL 

B. JYOTHI
1,*

, AND P. KOTESWARA RAO
2 

1
Department of Mathematics, DNR College, Bhimavaram-534202, A.P, India 

2
Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur District, 

Andhra Pradesh, India 
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1. Introduction 

Peristaltic transport is a well known process of a fluid transport which is 

induced by a progressive wave of area contraction or expansion along the length of 

distensible tube containing the fluid. It is used by many systems in the living body to 

propel or to mix the contents of a tube. The peristalsis mechanism usually occur in 

urine transport from kidney to bladder, swallowing food through the esophagus, 

chyme motion in the gastrointestinal tract, vasomotion of small blood vessels and 

movement of spermatozoa in the human reproductive tract. There are many 
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engineering processes as well in which peristaltic pumps are used to handle a wide 

range of fluids particularly in chemical and pharmaceutical industries. It is also used 

in sanitary fluid transport, blood pumps in heart lung machine, and transport of 

corrosive fluids, where the contact of the fluid with the machinery parts is prohibited. 

Because most of the physiological fluids behave like a non-Newtonian fluid, therefore, 

some interesting studies dealing with the flows of non-Newtonian fluids are given in 

(Bohme and Friedrich [3], Siddiqui et al. [17], Hayat et al. [8], Srinivasacharya et al. 

[18], Subba Reddy et al. [19], Nadeem and Akram [13], Subba Reddy et al. [20]). 

Flow through a porous medium has been of significant interest in recent years 

particularly among geophysical fluid dynamicists.  Examples of natural porous 

media are beach sand, sandstone, limestone, rye bread, wood, the human lung, bile 

duct, gall bladder with stones and in small blood vessels. Flow through porous 

medium has been studied by a number workers employing Darcy’s law (Sceidgger 

[16], Raptis and Perdikis [15], Varshney [23]). Elshehawey and Husseny [6] have 

studied the peristaltic motion of a Newtonian fluid through a porous medium in a 

channel. The interaction of peristaltic flow with pulsatile fluid under the effect of a 

transverse magnetic field through a porous medium bounded by a two-dimensional 

channel is studied by Afifi and Gad [1].  Mekheimer and Arabi [12] studied the 

non-linear peristaltic transport of MHD flow through a porous medium.  Non-linear 

peristaltic transport through a porous medium in an inclined planar channel has 

studied by Mekheimer [11] taking the gravity effect on pumping characteristics. 

Vajravlu et al. [24] have investigated the peristaltic flow of a Newtonian fluid through 

a porous medium in a vertical annulus with heat transfer. Hall effects on peristaltic 

transport of a Maxwell fluid in a porous medium have been studied by Hayat et al. [9].  

Subba Reddy et al. [21] have investigated the non-linear peristaltic flow of a fourth 

grade fluid through a porous medium in an inclined asymmetric channel.  

On the other hand it is observed that limited attention is paid to the peristaltic 

flows of non-Newtonian fluids when no-slip condition is not adequate. El Sehaway et 

al. [7] have studied the effect of slip on the peristaltic flow of a Maxwell fluid in a 
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channel. The effects of slip and non- Newtonian parameters on the peristaltic flow of 

a third grade fluid in a circular cylindrical tube were investigated by Ali et al. [2]. 

Chaube et al. [4] have discussed the slip effects on the peristaltic flow of a micropolar 

fluid in a channel. Hayat et al. [10] have studied the simultaneous effects of partial 

slip and heat transfer on the peristaltic flow of viscous fluid in a two-dimensional 

channel are reported. Effect of slip and induced magnetic field on the peristaltic flow 

of pseudoplastic fluid was studied by Noreen et al. [14]. Subba Reddy et al. [22] have 

investigated the slip effects on the peristaltic motion of a Jeffrey fluid through a 

porous medium in an asymmetric channel under the effect of magnetic field. 

In view of these, we studied the effects of slip and magnetic field on the 

peristaltic transport of a Williamson fluid through a porous medium in a 

two-dimensional channel under the assumptions of low Reynolds number and long 

wavelength. The flow is investigated in a wave frame of reference moving with 

velocity of the wave. The perturbation series in the Weissenberg number ( 1We  ) 

was used to obtain explicit forms for velocity field, pressure gradient per one 

wavelength. The effects of various pertinent parameters on the pressure gradient and 

pumping characteristics are discussed through graphs in detail.  

 

2. Mathematical Formulation  

We consider the peristaltic transport of a Williamson fluid through a porous 

medium in a two-dimensional symmetric channel of width 2a . The flow is generated 

by sinusoidal wave trains propagating with constant speed c  along the channel walls. 

A uniform magnetic field B0 is applied in the transverse direction to the flow. The 

fluid is taken to be of small electrical conductivity, so that the magnetic Reynolds 

number is small and the induced magnetic field is neglected in comparison with the 

applied magnetic field. Fig. 1 shows the physical model of the channel. 
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The wall deformation is given by  

 
2

( , ) cos ( )Y H X t a b X ct



      ,      (2.1) 

where b is the amplitude of the wave,   - the wave length and X and Y - the 

rectangular co-ordinates with X measured along the axis of the channel and 

Y perpendicular to X . Let ( , )U V  be the velocity components in fixed frame of 

reference ( , )X Y . 

 

Fig. 1 The physical model  

The flow is unsteady in the laboratory frame ( , )X Y . However, in a co-ordinate 

system moving with the propagation velocity c (wave frame (x, y)), the boundary 

shape is stationary. The transformation from fixed frame to wave frame is given by 

 , , ,x X ct y Y u U c v V               (2.2) 

where ( , )u v  and ( , )U V  are velocity components in the wave and laboratory 

frames respectively. 

The constitutive equation for a Williamson fluid is 

   
1

0 1     


 
     
 

        (2.3) 

where   is the extra stress tensor,   is the infinite shear rate viscosity, o  is the 

zero shear rate viscosity,   is the time constant and   is defined as   
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1 1

2 2
ij ji

i j

               (2.4) 

where   is the second invariant stress tensor. We consider in the constitutive 

equation (2.3) the case for which 0   and 1   so we can write, 

  0 1                  (2.5) 

 The above model reduces to Newtonian for 0    

 The equations governing the flow in the wave frame of reference are  

 0
u v

x y

 
 

 
             (2.6) 

  2 0
0

yxxxu u p
u v B u c

x y x x y k

 
 

      
                 

  (2.7) 

 0xy yyv u p
u v v

x y y x y k

  


    
      

     
      (2.8) 

where  is the density,   is the electrical conductivity and  k  is the permeability 

of the porous medium.    

The corresponding dimensional boundary conditions are 

       xyu c     at ( )y H x (slip condition)    (2.9) 

        0
u

y





        at y=0    (symmetry condition)  (2.10) 

Introducing the non-dimensional variables defined by  

2

0

,  , ,  ,  ,  ,
x y u v a pa b

x y u v p
a c c c a

 
    

        

0 0 0

,  ,  ,  ,  ,xx yyxx xy xy yy

H ct a
h t

a c c c

 
     

   
      

0

R ,  ,  ,e

ac c a q
We q

a c ac

 





                (2.11) 

into the Equations (2.6) - (2.8), reduce to (after dropping the bars) 
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0
u v

x y

 
 

 
             (2.12) 

 2 2 1
Re 1

xyxxu u p
u v M u

x y x x y Da


 

      
                 

    

                 (2.13) 

2
3 2Re

xy yyv v p
u v v

x y y y y Da

  
  

    
      

     
   (2.14) 

where   2 1xx

u
We

x
 


  


,   21xy

u v
We

y x
  

  
    

  
,  

 2 1yy

v
We

y
  


  


, 

1
2 22 2

2 2 22 2 ,
u u v v

x y x y
   

        
         

         

 0

0

M aB



  is the Hartmann number and 

2

k
Da

a
  is the Darcy number.  

Under lubrication approach, neglecting the terms of order   and Re, we get 

  2 1
1 1

p u u
We M u

x y y y Da

       
               

     (2.15) 

 0
p

y





               (2.16) 

From Eq. (2.15) and (2.16), we get  

  
22

2

2
1

dp u u
We N u

dx y y y

    
     
     

           (2.17)  

here 
2 1

N M
Da

   . 

The corresponding non-dimensional slip boundary conditions in the wave 

frame are given by  

2

1
u u

u We
y y


   

     
    

  at  1 cos2y h x      (2.18) 



B. JYOTHI, AND P. KOTESWARA RAO                  1312
 

 0
u

y





    at 0y           (2.19) 

The volume flow rate q  in a wave frame of reference is given by 

  

0

h

q udy  .             (2.20) 

 The instantaneous flow ( , )Q X t  in the laboratory frame is 

  

0 0

( , ) ( 1)

h h

Q X t UdY u dy q h            (2.21) 

 The time averaged volume flow rate Q  over one period T
c

 
 
 

 of the 

peristaltic wave is given by 

  

0

1
1

T

Q Qdt q
T

               (2.22) 

 

3. Solution 

Since Eq. (2.17) is a non-linear differential equation, it is not possible to obtain closed 

form solution. Therefore we employ regular perturbation to find the solution. 

For perturbation solution, we expand ,
dp

u
dx

 and q as follows  

  2

0 1u u Weu O We                    (3.1) 

  20 1
dpdp dp

We O We
dx dx dx

                   (3.2) 

  2

0 1q q Weq O We                    (3.3) 

Substituting these equations into the Eqs. (2.17) - (2.19), we obtain 

3.1. System of order 
0We  

 

2
2 20 0

02

u dp
N u N

y dx


  


          (3.4)  
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and the respective boundary conditions are 

 0
0 1

u
u

y



  


  at  y h                (3.5) 

 0 0
u

y





  at 0y            (3.6) 

3.2. System of order 1We
 

 

22
21 1

12

ouu dp
N u

y dx y y

   
     

     

          (3.7) 

and the respective boundary conditions are 

 

2

01
1 0

uu
u

y y
 

 
   

  
  at  y h             (3.8) 

 1 0
u

y





   at 0y            (3.9) 

3.3 Solution for system of order 
0We  

Solving Eq. (3.4) using the boundary conditions (3.5) and (3.6), we obtain  

0
0 2

1 cosh
1 1

cosh sinh

dp Ny
u

N dx Nh N Nh

 
   

 
     (3.10)  

The volume flow rate 
0q  is given by 

 
 

 
0

0 3

sinh cosh sinh

cosh sinh

Nh Nh Nh N Nhdp
q h

dx N Nh N Nh





     


   (3.11) 

From Eq. (3.11), we have 

 
  

 

3

00
cosh sinh

sinh cosh sinh

N q h Nh N Nhdp

dx Nh Nh Nh N Nh





 

    

     (3.12)  

3.4 Solution for system of order 
1We  

Substituting Eq. (3.10) in the Eq. (3.7) and solving the Eq. (3.7), using the 

boundary conditions (3.8) and (3.9), we obtain 

 

2

0

1 1
1 2 12 3 3

1

1 cosh 2
1 cosh sinh sinh 2

cosh sinh 3 2

dp

dp Ny Adx
u A Ny A Ny Ny

N dx Nh N Nh N A

 
               
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                  (3.13) 

where 
1 cosh sinhA Nh N Nh   

2

2

1 3
sinh sinh 2 cosh cosh 2 sinh

2 2
A Nh Nh N Nh N Nh N Nh         

The volume flow rate 
1q  is given by  

 
2

3 01
1 13 4 3

1 1

1 2
sinh

3

A dpdp
q Nh NhA

N A dx N A dx

 
    

 
        (3.14) 

where 1
3 2 1 1

3
sinh cosh cosh 2

4 4

A
A A Nh A Nh Nh A    .  

From Eq. (3.14), we have       

 
 

2

3 3 0
1 14 3

11

1

2

3

sinh

A dp
N q A

N A dxdp

dx Nh NhA

  
  

   


        (3.15) 

Substituting Equations (3.12) and (3.15) into second equation of the Eq. (3.2) 

and using the relation 0 1
dp dpdp

We
dx dx dx

   and neglecting terms greater than  O We , 

we get 

 
 

 

 

23 5

1 3

3

1 1

2

sinh 3 sinh

q h N A N A q hdp
We

dx Nh NhA Nh NhA

  
  

   

   (3.16) 

The dimensionless pressure rise per one wavelength in the wave frame is 

defined as 

 
1

0

dp
p dx

dx
                (3.17) 

 Note that, as Da   and 0   our results coincide with the results of 

Subba Reddy et al. [22].   

 

4. Results and Discussions 

Fig. 2 shows the variation of axial pressure gradient 
dp

dx
 with Weissenberg 



1315              SLIP EFFECTS ON MHD PERISTALTIC TRANSPORT 

number We  for 0.6  , 0.1   and 0.1Da  . It is observed that, the axial 

pressure gradient 
dp

dx  
increases with increasing Weissenberg number We .   

 

The variation of axial pressure gradient 
dp

dx
 with slip parameter   for 

0.6  , 1M  , 0.02We   and 0.1Da  is shown in Fig. 3.  It is found that, 

the axial pressure gradient 
dp

dx  
decreases with increasing slip parameter .  

Fig. 4 depicts the variation of axial pressure gradient 
dp

dx
 with Hartmann 

number M  for 0.6  , 0.1Da  , 0.1  and 0.02We  . It is noted that, the 

axial pressure gradient 
dp

dx  
increases with increasing Hartmann number M .

 

The variation of axial pressure gradient 
dp

dx
 with Darcy number Da  for 

0.6  , 1M  , 0.1  and 0.02We   is depicted in Fig. 5. It is observed that, 

the axial pressure gradient 
dp

dx  
decreases with increasing Darcy number Da .

 

Fig. 6 illustrates the variation of axial pressure gradient 
dp

dx
 with amplitude 

ratio   for 1M  , 0.1Da  , 0.1   and 0.02We  . It is found that, the axial 

pressure gradient 
dp

dx  
increases with increasing amplitude ratio  .

 

The variation of pressure rise p  with time-averaged volume flow rate Q   

for  different values of Weissenberg number We  with 0.6  , 1M  , 0.1   

and 0.1Da   is shown in Fig. 7. It is noted that, the time averaged volume flow 

rate Q  increases with increasing We  in pumping  0p  , free-pumping 
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 0p   and co-pumping  0p   regions. Further, it is observed that, the 

pumping is more for Williamson fluid than that of Newtonian fluid.       
 

Fig. 8 shows the variation of pressure rise p  with time-averaged volume 

flow rate Q  for different values of slip parameter   with 0.6  , 1M  , 

0.02We   and 0.1Da  .  It is observed that, the time-averaged volume flow rate 

Q  decreases with increasing   in both the pumping and free pumping regions, 

while it increases with increasing   in co-pumping region for chosen  0p  .  

The variation of pressure rise p  with time-averaged volume flow rate Q  

for different values of Hartmann number M  with 0.6  , 0.1Da  , 0.1   

and 0.02We   is shown in Fig. 9.  It is found that, the time-averaged volume flow 

rate Q  increases with increasing M  in the pumping region, while it decreases with 

increasing M  in both the free-pumping and co-pumping regions.     

Fig. 10 depicts the variation of pressure rise p  with time-averaged volume 

flow rate Q  for different values of Darcy number Da  with 0.6  , 1M  , 

0.1   and 0.02We   is shown in Fig. 9.  It is found that, the time-averaged 

volume flow rate Q  decreases with increasing Da  in the pumping region, while it 

increases with increasing Da  in both the free-pumping and co-pumping regions.    
 

The variation of pressure rise p  with time-averaged volume flow rate Q  

for different values of amplitude ratio   with 0.02We  ,  1M  , 0.1   and 

0.1Da   is depicted in Fig. 11. It is observed that, the time-averaged volume flow 

rate Q   increases with increasing   in both the pumping and free-pumping 

regions, while it decreases with increasing   in the co-pumping region for chosen 

 0p  .  
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5. Conclusions  

In this paper, we investigated the effect of slip on the peristaltic flow of a 

Williamson fluid through a porous medium in a planar channel, under the assumptions 

of low Reynolds number and long wavelength. The perturbation series in the 

Weissenberg number ( 1We  ) was used to obtain explicit forms for velocity field, 

pressure gradient per one wavelength. It is found that, the axial pressure gradient 

increases with increasing ,We M  and  , while it decreases with increasing   and 

Da . Further, it is observed that in the pumping region the time averaged flow rate Q  

increases with increasing with increasing ,We M  and  , while it decreases with 

increasing   and Da . Moreover it is found that the pumping is more for 

Williamson fluid than that of Newtonian fluid.  

 

 

Fig. 2 The variation of axial pressure gradient 
dp

dx
 with We  for 0.6  , 1M  ,         

     0 . 1  and 0.1Da  .     
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Fig. 3 The variation of axial pressure gradient 
dp

dx
 with   for 0.6  , 1M  ,   

0.02We   and 0.1Da  .    
 

 

 

Fig. 4 The variation of axial pressure gradient 
dp

dx
 with M  for 0.6  , 0.1  ,               

     0 . 0 2We   and 0.1Da  .     

 



1319              SLIP EFFECTS ON MHD PERISTALTIC TRANSPORT 

 

Fig. 5 The variation of axial pressure gradient 
dp

dx
 with Da  for 0.6  , 1M  ,   

     0 . 1  and 0.02We  .     

 

 

Fig. 6 The variation of axial pressure gradient 
dp

dx
 with   for 0.1Da  , 1M  ,         

     0 . 1   and 0.02We  .     
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Fig. 7 The variation of pressure rise p  with time-averaged volume flow rate Q   

      for different values of We  with 0.6  , 1M  , 0.1   and 0.1Da  .    

  

 

Fig. 8 The variation of pressure rise p  with time-averaged volume flow rate Q   

     for different values of   with 0.6  , 1M  , 0.02We   and 0.1Da  .  
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Fig. 9 The variation of pressure rise p  with time-averaged volume flow rate Q   

     for different values of M with 0.6  , 0.1  , 0.02We   and 0.1Da  .      

 

 

Fig. 10 The variation of pressure rise p  with time-averaged volume flow rate Q     

       for different values of Da  with 0.6  , 1M  , 0.1   and 0.02We  . 
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Fig. 11 The variation of pressure rise p  with time-averaged volume flow rate Q   

      for different values of   with 0.02We  , 1M  , 0.1   and 0.1Da  .    
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