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1. Introduction 

When considering the direct product of automata, one would intuitively think that the 

direct product of two strongly connected automata would be strongly connected. Fleck [5] 

showed that for any non trivial (more than one state) automata A and B, if A is 

homomorphic to B (or vice versa) then A × B is not strongly connected. This is because 

an automaton homomorphism is a transition preserving function. Any input string which 

sends a state s to s itself in A must send every state t to t itself in B if there is a 

homomorphism from A to B. Therefore there is no transition between the states (p,a) and 

(q,b) in A × B when a ≠b. Thus, if the direct product of two strongly connected automata 

is strongly connected then there is no homomorphism between them. When the transition 

monoid of an automaton is a group, we say the automaton is a permutation automaton. 
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When an automaton has at least one reset input function, i.e. an input function which 

maps every state into a single fixed state, we say the automaton is a synchronizing (reset) 

automaton. Hong [7] showed that the direct product of a permutation strongly connected 

automaton and a reset strongly connected automaton is strongly connected. If a strongly 

connected automaton is decomposable, then the quotient automata obtained by 

decomposition must be strongly connected because of the canonical homomorphisms. If 

an automaton can be decomposed into two quotient automata, it is isomorphic to the 

direct product of its quotient automata. Specifically, if a strongly connected automaton 

can be decomposed into a permutation strongly connected quotient automaton and a 

synchronizing strongly connected quotient automaton, then the quasi ideal automaton is  

isomorphic to the direct product of a permutation strongly connected automaton and a 

synchronizing strongly connected automaton. 

2. Preliminaries 

The definition of an automaton in this paper is from [3]. For a non-empty finite set X, we 

denote the free monoid over X by X* and the empty input string by ε. An automaton 1 is 

a triple A = (Q, X, ) where Q is a set of states; X is a non empty set called the input 

alphabet;  : Q × X* → Q is the transition function satisfying  pQ , x,y  X*, (p, 

xy) = ((p,x),y) and (p,ε) =p. We often denote (p,x) by px when there is no chance of 

ambiguity. An automaton is finite if and only if its set of states is finite. All automata are 

finite in this paper. 

For the sake of brevity, A = (Q, X, ) and B = (R, X, γ) are finite non-trivial automata 

throughout this paper.  An automaton A is strongly connected (transitive) if for every 

p,a, S, there exists x  Σ* such that (p,x) = a. A mapping  : Q → R such that 

((p,x)) = γ((p),x) for every p  Q, x  X* is a homomorphism from A to B. An 

isomorphism is a bijective   homomorphism. If there is an isomorphism between A and B, 

we say A is isomorphic to B, denoted by A ≌ B. 

Define a relation A on X* by x,y  X*, x A y if and only if (p, x) = (p,y) for every 

p  Q. The relation in A is an equivalence relation. Let x  X, we denote the 

equivalence class {y  X* : x A y} by |x|A. We denote {|x|A : x  X*} by M(A). We 

define an operation on M(A) by |x|A|y|A = |xy|A and |ε|A|x|A = |x|A|ε|A = |x|A|ε|A = |x|A for 

every |x|A.|y|A  M(A). M(A) with this operation is a monoid with the identity |ε|A and is 
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called the transition monoid of A. We denote {|x|A : x  X
+
} by S(A) where X

+
 = X* - 

{ε}. We define an operation on S(A) by |x|A|y|A =|xy|A for every |x|A,|y|A  S(A). S(A) 

with this operation is a semigroup and is called the transition semigroup of A. 

When viewing x  X* as a function from Q to Q, i.e. x : Q → Q, x(p) = (p,x) for every 

p Q we call x an input function. We denote the range of an input function x by ImA(x) = 

{(p,x) : p  Q} and the rank of x by | ImA(x)|. A right ideal  of a semigroup S is a 

nonempty subset of Q such that r   and p  Q imply rp  . This is equivalent to Q 

 . Similarly a left ideal of Q  is a nonempty subset L satisfying Q L  L. An ideal I of 

a semigroup S is a subset which is both a left and a right ideal J of S, J  I implies J = I. 

An idempotent element of a semigroup S is an element e  S such that ee = e. Any finite 

semigroup has at least one idempotent element. 

Let I(A) = { |x|A  S(A) : |ImA(x)| is minimal}  be the minimal ideal of the transition 

semigroup S(A) (by [8] Chapter 2 Preposition 1.3). I(A) is called the minimal transition 

ideal of A. I(A) is a finite semigroup. Thus it has at least one idempotent element. 

Denoted the set of all the idempotent elements in I(A) by E(A). Note that E(A)  I(A). A 

is a permutation automaton if and only if its transition monoid M(A) is a group if and 

only if px =qx,implies p = q for allp,qQ,xX
*.

It is possible that the transition 

semigroup S(A)  of an automaton is a group even when A is not  a permutation 

automaton. So if an automaton A is strongly connected and its transition semigroup  S(A) 

is a group then its transition monoid M(A) is a group,i.e. A is a permutation automaton. 

Let xX
*
, x is a reset input function of A if there exists q Q such that (p,x) = q  

pQ.If x is a reset input function of A then [x]A  is a right zero element of the transition 

semigroup S(A). Thus z x A  x and xz is a reset  input function of A    x  X*, If x is a 

reset input function of A. An automaton A is called a synchronizing (reset) automaton, if 

A has  atleast one reset input function. The minimal ideal I(A) of a synchronizing 

automaton, A consists of all reset input functions of A, hence a right zero group[4].A 

semigroup S(A) is right simple  if S itself is the only right ideal of S.A semigroup S is 

right simple if and only if aS = S for every aS if and only if a,bS,there exists xS 

such that ax = b  [4]. A semigroup is a right group  if and only if it is a right simple group 

and has an idempotent element [4].Thus the finite semigroup is a right group if and only 

if it is right simple. 
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3.  Strongly Connected Automaton 

Definition1 

An automaton A is triplet A =(Q,X,) where Q is a nonempty finite set of states, X is a 

nonempty finite set of binary alphabets X and  is the next state function called state 

transition function such that (a, xy) =((a,x),y) and (a,)=a  aQ  and all 

x,yX
*
.Here X

* 
is  the free semigroup generated by the elements of X and  is its identity. 

Definition 2. 

Let A=(Q,X,) be an automaton, A permutation  on Q is called an automorphism of the 

automaton A if ((a,x))=((a),x) for all aQ, and xX
*
.Then set of all automorphisms 

of A forms a group, denoted G(A) and it is called automarphism group of A. Here the 

product ghG(A) of g, hG(A) means gh(a)=g(h(a))aQ. 

Definition 3. 

An automation A= (Q,X,) is called a permutation automaton if (a,) is a permutation 

on Q, X (ie) every input function is bijective.       

 

 

 

 

 

Definition 4.  Synchronizing Automaton 

 

In the theory of DFA, a synchronizing word (or) reset sequence is a word in the input 

alphabet of the DFA which sends any state of the DFA to one and the same state.(ie) An  

Automaton admitting reset word is called Synchronizing Automaton. 

 

 0 1 

p p q 

q r p 

r q r 

Fig.1.permutation automaton 
Table(i): Transition Table for A. 
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 If there is word xX* such that a,b,c Q where (a,x)=(b,x) (or 

equivalently|(Q,w)|=1). Then we say that w synchronizes A then A is synchronizing 

Automaton. 

Definition 5. Strongly connected Automaton 

 

 

 

An Automaton A= (Q,X,) is strongly connected if for every a,bQ, there exists xX
*
 

such that (a,x) =b.(ie) for every input, there exists path between the two states. 

 

Definition 6.  Synchronizing strongly connected Aleshin type Automaton 

 

 

 

 

 

Here B=(R,X,) is said to be the synchronizing strongly connected Aleshin type 

automaton, if the automaton is strongly connected, synchronized Aleshin type 

automaton[1] 

 

 

 0 1 

a c b 

b b c 

c a a 

Fig.3 Strongly Connected Automata 

Table (ii): Transition Table for  

B 

Fig.4. Aleshin Type Automata 

Fig.2. Synchronizing Automaton 
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 Lemma 1. 

A synchronizing strongly connected Aleshin type automaton has a property that the 

cardinality of the minimal transition ideal equals the number of [10] states of the 

automaton. Here B is the synchronizing strongly connected automata. 

Lemma 2. 

Let A be a strongly connected automaton. If A has at least one reset input function then 

there exists a unique (up to the equivalence relation A ) reset input function xp , for  

every pQ, such that (q, xp) = p for all qQ 

Definition 7. 

The direct product of an automaton A and an automaton B is defined as the automaton 

AxB=(QxR, X, AxB) where AxB((p,a),x)=(p,x),(a,x) for every pQ, aR, xX
*
. Here 

A&B  have  the same binary input X. 

 

4.  Direct product of an Automaton A x B 

Theorem 1.  

 

The [7] direct product of a permutation strongly connected automaton and a 

synchronizing strongly connected Aleshin type automaton is also strongly connected.  

Proof.  

Let A be a permutation strongly connected automaton and B is synchronizing strongly 

connected Aleshin [2] type automaton. Let (p,a),(q,b) QxR. Since A is strongly 

connected, there exists xX
*
 such that (p,x)=q. since B is synchronous automaton, there 

exists a reset input function yX
*
 such that (a,y)=b  aR. In particular (a,y)=b, M(A) 

is a group. Since A is a permutation automaton Thus there exists zX
*
 such that zy A . 

Consider the input string xzyX
*
. xzy=x(zy)A xAx. On the other hand, xzy B y since 

y is a reset input function of B. Now AxB((p,a), xzy) = (( p,xzy), (q,xzy) = 

((p,x),(a,y) ) = (q,b). Hence AxB is strongly connected. 
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The direct product of A and B, AxB = (QxR, X, δAxB) where δAxB is defined by the 

transition table. 

{(p,a)x:x∈X*} = {(p,b)x: x∈X*}   {(p,c)x:x∈X*} 

{(q,a)x:x∈X*} = {(q,b)x: x∈X*}  {(q,c)x:x∈X*}   

{(r,a)x:x∈X*} = {(r,b)x: x∈X*}  {(r,c)x:x∈X*} 

Therefore A x B is strongly connected. 

 

Lemma 3 

Let A and B be automata. Let x   X* then 

(i) ImAxB  I(A) = ImA(x)    ImB(x) 

(ii) [x]|AxB   I(AxB) if and only if |x|A   I(A) and |x|B   I(B) 

 

Proof 

(i) It is obviously true 

 

By (i), | ImAxB(x)| is minimal if and only if both |ImA(x)  | and | ImB(x)| are minimal 

If  is a right group and E is the set of all idempotent in  , then  =  e   E
Re  

. By [8], 

thus I(A) =  [e]A  E(A)I(A)[e]A if I(A) is a right group. 

 

δAxB 0 1 

(p,a) (p,c) (q,b) 

(p,b) (p,b) (q,c) 

(p,c) (p,a) (q,a) 

(q,a) (r,c) (p,b) 

(q,b) (r,b) (p,c) 

(q,c) (r,a) (p,a) 

(r,a) (q,c) (r,b) 

(r,b) (q,b) (r,c) 

(r,c) (q,b) (r,a) 

Table (iii) Transition Table for AxB 
Fig.5. Synchronizing strongly connected Aleshin type 

automaton 
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Lemma 4.  

Let A be a strongly connected automaton. If I(A) is  a  right group,  then Q = 

 e E(A)ImA(e). 

 Proof. 

I(A) itself is its only right ideal, by [8] then Q =  [x]A I(A)ImA(x). Since ImA(xe)   ImA(e) 

for [x]A  I(A) and [e]A E( A). We have Q =  [xe]A I(A)E(A)ImA(xe) =   [e]A E(A)ImA(e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X  A p q r 

     p q r 

0  p r q 

 1  q p r 

00     p q r 

01  q r p 

10  r p q 

11  p q r 

010  r q p 

011 0 p r q 

100 1 q p r 

101 010 r q p 

0100 01 q r p 

0101 10 r p q 

    0 1 01 10 010 011 100 

      0 1 01 10 010 011 100 

0 0     01 1 010 10 11 100 

1 1 10 11 101 110 1010 1011 11 

01 01 010 011    ε 0110 10 1 011 

     0 1 01 10 010 

   ε     0 1 01 10 010 

0 0     01 1 010 10 

1 1 10     010 0 01 

01 01 010 0 10     1 

010 010 01 10 0 1    ε 

X  B a b c 

     a b c 

0  c b a 

 1  b c a 

00   a b c 

01  a c b 

10  b a c 

11  c a b 

010  c a b 

011  b a c 

                     Table(vii):  Cayley Table of I(B) 

Table(iv) : Input function of A 

 

Table(v):  Cayley Table of I(A) 
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Table(vi) : Input function of B 

Definition  8. 

 An automaton A is called a quasi ideal automaton if  

(i) A is strongly connected 

(ii) Its minimal transition ideal I(A) is a right group. 

(iii) the ranges of the idempotent elements of its minimal transition ideal I(A) form a 

merging of a partition on Q that is,   [e]A E(A)ImA(e) = Q and  [e]A, [f]A E(A), ImA(e)   

ImA(f)=φ or ImA(e) = ImA(f). 

 

Theorem 2. 

 The direct product of a permutation strongly connected automaton and synchronizing 

strongly connected Aleshin type Automaton is a quasi ideal automaton. 

Proof.  

Let A be a permutation strongly connected automaton and B be a synchronizing strongly 

connected Aleshin type automaton, By Theorem 1, A x B is strongly connected 

Automaton.Let [x]AxB, [y]AxB∈ I(AxB) , By Lemma 3(ii), [x]A, [y]A∈I(A) and [x]B, [y]B∈

I(B) since A is permutation automaton, M(A) is a group. Therefore, there exists x’∈X* 

such that xx’ A ε. Then xx’y A  y. Since [y]B ∈ I(B), y is a reset input function of B. 

We have xx’y AxBy, that is the minimal transition ideal I(AxB) of AxB is right simple 

hence a right group. By Lemma 4, Q x R =  [e]AxB E(AxB)ImAxB(e), by  the Table (viii) .  

Suppose ImAxB(e)   ImAxB(f) ≠φ for [e]AxB , [f]AxB∈E(AxB).  By Lemma 3(i), we have 

ImA(e)   ImA(f)≠φ and ImB(e)   ImB(f)≠φ. Both e and f are reset input function of B,  From  

Fig.(v),  | ImB(e)| = | ImB(f)| = 1. 

So, ImB(e) = ImB(f). M(A) is group, ImA(e) = ImA(f) = Q. Hence Im(AxB)(e) = ImA(e)× ImB(e) 

= ImA(f) × ImB(f) = Im(AxB)(f). Therefore { Im(AxB)(e): [e]A∈E(AxB)} forms a partition of Q 

x R.  

100  b c a 

101  c b a 

0100  a c b 

0101   a b c 
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We have shown that we can compose a quasi-ideal automaton by taking the direct 

product of a permutation strongly connected automaton and a synchronizing strongly 

connected automaton. We shall decompose a quasi-ideal automaton by using automaton 

congruence relations. 

 An automaton congruence relation on an automaton A is an equivalence relation θ on Q 

compatible with the transition function, i.e. p θ q implies (p,z) θ (q,z) for all z  X*. 

We denote the θ equivalence class of p Q by [p]θ = {q  Q : q θ p} and Q / θ = {[p]θ : p 

 Q}. With an automaton congruence relation θ on A, we can construct  θ-quotient 

automaton A/θ = (Q/θ,X,A/θ) where , A/θ : Q/θ × X* → Q/θ is defined by 

A/θ(|p|θ,z)=[(p,z)]θ for all z  X*.  

Theorem 3. 

 Let A  be a strongly connected automaton. If the minimal ideal I(A)  is a right group, 

then  there exists anautomaton congruence relation   on Q defined byp,qQ,pπq  if 

and only if (p,x) = (q,x)  for every [x]A I(A).The  -quoitent automaton  A/  is a 

permutation strongly connected automaton.  

Proof.  

I(A) itself  is its only right ideal. By [6], A/   is a permutation automaton. A/   is 

strongly connected since A is strongly connected.From Table(vi) and  Table(vii). Since  

I(A) is a right group, so is I(A)  a right simple  group and has an idempotent element (00) 

and (11).  

 

Theorem 4.  

Let A be a quasi ideal automaton. There exists an automaton congruence relation  on Q 

defined by  p,qQ, p  q if and only if p,q  ImA(e) for some [e]AE(A). The [10]   - 

quotient automaton A/ is a automaton A/ is a synchronizing strongly connected 

automaton   SSCA . 

Proof.  

From Table(viii),  { ImA(e): [e]A∈E(A)} forms a partition on Q. Let  be the equivalence 

relation on Q induced by the partition that is for every p,qQ,    p  q if and only if p,q  

ImA(e) for some { ImA(e): [e]A∈E(A)} forms a partition on Q. Let  be the equivalence 
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relation on Q induced by the partition that is for every p,qQ, p  q if and only if p,q  

ImA(e) for some [e]AE(A) by Table(viii). To show  is an automaton congruence 

relation let p,q Q, ZX*. Suppose p  q, then there exists [e]AE(A) and p’q’Q such 

that p=p’e and q=q’e. Since I(A) is an ideal. [ez]AI(A) I(A) is right group. I(A)= 

   |f|A   E(A)I(A)|f|A. Then there exists [x]AI(A) and |f|AE(A) such that ez A xf. 

Thus pz = p’ez = p’xf  ImA(f) and similarly qz  ImA(f). Therefore  pz  qz. A/ is 

strongly connected since A is strongly connected. .From Table(ix),Let [e]AE(A), p 

ImA(e). Consider [p]. Let [q]Q/p. Since te ImA(e), we have p  qe, that is [p]=[qe] 

=A/([q] ,e) since [q] was arbitrarily choosen, e is a reset input function of A/. Thus 

A/ is a synchronizing automaton. 

We have shown that we can decompose a quasi-ideal automaton into two strongly 

connected quotient automata, one is permuting and other is synchronizing.  

Define a binary operation on relations   and   on a set Q by     = {(p,q)   Q × Q / 

 u Q} such that {(p,u)    and (u,q)   ρ} we denote the equality identity relation {(p,p) : 

p   Q by 1Q}. 

                                                

Theorem 5.  

Let A be an automaton.[6],[9], If there exists automaton congruence relations π and ρ on 

A such that π ∩ ρ = 1Q and    = Q × Q then  A ≅ A/π × A/ρ  

Proof. 

 Define  :Q→Q/π x Q/  by α(p) = ([p]π,[p]ρ) for all p∈Q. α is well defined and a 

homomorphism. Let p,q∈Q and α(p) = α(q) that is ([p]π,[p]ρ) = ([q]π,[q]ρ). Then p π q 

and p ρ q that is (p,q) ∈ π ∩ ρ = 1Q. We have p = q. Hence α is injective. To show that α 

is surjective. Let ([p]π,[q]ρ)∈ Q/π × Q/ρ. Since (p,q)∈Q×Q =   . There exists uQ 

such that (p,u)∈π and(u, q)∈ρ. Thus [p]π = [u]π and  [u]ρ = [q]ρ. We have α(u) = 

([u]π,[u]ρ) = ([p]π.[q]ρ) By Theorem 2, proved the if part. Let A be a Quasi-ideal 

Automaton. By Theorem 3,                                                                              

A/π is a permutation strongly connected automaton where π is the automaton congruence 

relation defined on Q by p,q∈Q, p π q if and only if δ(p,x) = δ(q,x) for every [x]A ∈ 

I(A). By Theorem 4, A/ρ is a synchronizing strongly connected automaton where ρ is the 
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automaton congruence relation defined on Q by   p,q ∈ Q, p ρ q if and only if p,q ∈ 

ImA(e) for some [e]A∈E(A). Let p,q ∈ Q. 

 

 

 

 

 

 

 

                                                          

 

 

 

 

 

 

 

 

                                                                                                       

 

 

 

 

X  AxB (p,a) (p,b) (p,c) (q,a) (q,b) (q,c) (r,a) (r,b) (r,c) 

  (p,a) (p,b) (p,c) (q,a) (q,b) (q,c) (r,a) (r,b) (r,c) 

0  (p,c) (p,b) (p,a) (r,c) (r,b) (r,a) (q,c) (q,b) (q,a) 

1  (q,b) (q,c) (q,a) (p,b) (p,c) (p,a) (r,b) (r,c) (r,a) 

00  (p,a) (p,b) (p,c) (q,a) (q,b) (q,c) (r,a) (r,b) (r,c) 

01  (q,a) (q,c) (q,b) (r,a) (r,c) (r,b) (p,a) (p,c) (p,b) 

11  (p,c) (p,a) (p,b) (q,c) (q,a) (q,b) (r,c) (r,a) (r,b) 

10  (r,b) (r,a) (r,c) (p,b) (p,a) (p,c) (q,b) (q,a) (q,c) 

000  (p,c) (p,b) (p,a) (r,c) (r,b) (r,a) (q,c) (q,b) (q,a) 

001  (q,b) (q,c) (q,a) (p,b) (p,c) (p,a) (r,b) (r,c) (r,a) 

010  (r,c) (r,a) (r,b) (q,c) (q,a) (q,b) (p,c) (p,a) (p,b) 

011  (p,b) (p,a) (p,c) (r,b) (r,a) (r,c) (q,b) (q,a) (q,c) 

100  (q,b) (q,c) (q,a) (p,b) (p,c) (p,a) (r,b) (r,c) (r,a) 

101  (r,c) (r,b) (r,a) (q,c) (q,b) (q,a) (p,c) (p,b) (p,a) 

110  (p,a) (p,c) (p,b) (r,a) (r,c) (r,b) (q,a) (q,c) (q,b) 

111  (q,a) (q,b) (q,c) (p,a) (p,b) (p,c) (r,a) (r,b) (r,c) 

X  AxB p q r 

  p q r 

00  p q r 

11  p q r 

X A/π p q r 

  p q r 

0  p r q 

1  q p r 

Table(viii) : Input function of AxB 

 

Table (ix): Idempotent of AxB Table (x)  merging of p,q,r 
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Proof.  

By Theorem 2, proved the  if part. Let A be a Quasi-ideal Automaton. By Theorem 3, 

A/π is a permutation strongly connected automaton where π is the automaton congruence 

relation defined on Q by p,q∈Q, p π q, if and only if δ(p,x) = δ(q,x) for every [x]A ∈ 

I(A). By Theorem 4, A/ρ is a synchronizing strongly connected automaton where ρ is the 

automaton congruence relation defined on Q by   p,q ∈ Q, p ρ q if and only if p,q ∈ 

ImA(e) for some [e]A∈E(A). Let p,q ∈ Q. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b c a b c a b c 

0 c b a c b a c b a 

1 b c a b c a b c a 

00 a b c a b c a b c 

01 a c b a c b a c b 

11 c a b c a b c a b 

10 b a c b a c b a c 

000 c b a c b a c b a 

001 b c a b c a b c a 

010 c a b c a b c a b 

011 b a c b a c b a c 

100 b c a b c a b c a 

101 c b a c b a c b a 

110 a c b a c b a c b 

X A/ a b c 

  a b c 

0  c b a 

1  b c a 

X  AxB a b c 

  a b c 

00  a b c 

0101  a b c 

Table(xi):  Cayley Table of I(A×B) of merging a,b,c 

 

Table (xii): Idempotent of AxB 

 

Table (xiii) merging of a,b,c 
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Suppose (p,q) ∈ π ∩ ρ. Then p,q ∈ ImA(e). For some e∈E(A) since p ρ q. There exist 

p’q’∈Q such that p = p’e and q = q’e. We have pe = qe since p π Q. Now p = p’e = p’ee 

= pe = qe = q’ee = q’e = q. Hence (p,q)∈IQ that is π∩ρ = IQ. Let (p,q)∈ Q×Q. By 

Lemma 2, q∈ImA(e) for some [e]A∈E(A). Let [x]A∈I(A). Since I(A) is rightsimple, 

ez Ax forz∈X*.By[9] px=pez=peez=(pe)x. So, pπpe. Since pe∈ImA(e), peρq. Hence 

(p,q)∈   ,we have   =Q×Q. By then [ 5] A ≅A/π × A/ρ 

Theorem  6.  

An automaton is isomorphic to the direct product of a permutation strongly connected 

automaton and synchronizing strongly connected Aleshin type [8] automaton if and only 

if it is a quasi ideal automaton. 

Proof.  

By Theorem 2, proved  the if part. Let A be a Quasi-ideal Automaton. By Theorem 3, 

A/π is a permutation strongly connected automaton where π is the automaton congruence 

relation defined on Q by p,q∈Q, p π q if and only if δ(p,x) = δ(q,x) for every [x]A ∈ 

I(A). By Theorem 4, A/ρ is a synchronizing strongly connected automaton where ρ is the 

automaton congruence relation defined on Q by  p,q ∈ Q, p ρ q if and only if p,q ∈ 

ImA(e) for some [e]A∈E(A). Let p,q ∈ Q. 

  ImA(0)= ImA(1)={p,q,r}=Q  All inputs of A are permutations. M(A)=I(A) is a group. 

{p:xX
*
}={q:xX

*
}={r:xX

*
}=Q. A is strongly connected. A is strongly connected 

permutation  automaton.  

 Let B={R,X,) be an automaton  where R = {a,b,c}, X= {0,1}and γ is defined by 

transition function. ImB(00)={a,b,c} and ImB(0101)={a,b,c}.From figure 4, and Table 

(viii) and (ix), Both 0 and 1 are the reset input functions of B. I(B) is a right zero 

semigroup. {ax:x X*}={bx:x X*}={cx:x X*}. B is strongly connected. B is 

synchronizing strongly connected automaton. The Cayley table of I(AxB), [x]AxB 

I(AxB) , [x]AxB I(AxB)=I(AxB). I(AxB) is right simple. (00)(00)=(00) and 

(11)(11)=(11). Thus 00 and 11 are idempotent elements of I(AxB). I(AxB) is a right 

group. ImAxB(00)={ (p,c), (p,b), (p,a), (r,c) ,(r,b), (r,a) ,(q,c) (q,b), (q,a) }. From 

Table(iv), when we are merging all ‘p’ columns, ‘q’ columns and ‘r’ columns,we get. 
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ImAxB(00)={p,r,q}. ImAxB(11)= {(q,b) ,(q,c) ,(q,a) ,(p,b), (p,c), (p,a), ,(r,b), (r,c),(r,a)}. 

From Table(iv), when we are merging all ‘q’ columns, ‘p’ columns and ‘r’ columns, we 

get ImAxB(11)= {q,p,r}.They are disjoint and the union of them is equal to QxR.  

Let C= (QxR,X, δc) be an automaton, where (QxR)={ (p,a), (p,b), (p,c) ,(q,a) (q,b), 

(q,c) ,(r,a) ,(r,b), (r,c) } and  δAxB = C  is defined by the transition Table(iii). Direct 

product of AxB is C ≌ AxB, so C is quasi-ideal automaton.  

 

 

                         

 

 Table(xiv)                                                                                Fig.6 

 

              

 

                                                                            

 

 

                                                                                    

 

 

 

                   Table(xv)                                                           Fig.7                                     

 

I(AxB) is a right group, so is I(C). We define an automaton congruence relation [ From 

Fig.6]  on C by p,qQ,qp if and only if δAxB (q,x)= δAxB(p,x) for every [x]C=I(C).  

[p]={ (p,a), (p,b), (p,c)}; [q]={ q,a) (q,b), (q,c)} ;[r]={ (r,a) ,(r,b), (r,c)}. 

We construct quotient automaton C/π = (Q/, X, δ C/π) where Q/={[p] , [q] , [r]} and 

[ From Fig.6]  δ C/π is defined by the transition Table(x). E(C)={[00]C,[11]C}. 

ImC(00)={p,r,q}, ImC(11)={q,p,r}. They form the merging of partition on Q. We define on 

δ c/π p q r 

0 p r q 

1 q P r 

δ c/ 0 1 

   a c b 

b b c 

c a a 
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automaton congruence relation  on C by  a,b R, b  a if and only if a,b  ImC(e) for 

some [e]C  E(C). From Fig.7 and Table(xi),[a]={(p,a),(q,a,(r,a)}, [b]={(p,b),(q,b),(r,b} 

and [c]={(p,c),(q,c),(r,c)}. we construct a quotient automaton C/={R/,X, δ C/}, Where 

R/={[a], [b], [c]} and  δ C/  is defined by the transition Table(xi).                                   

 

Theorem 7.   

In synchronized strongly connected aleshin type automata, reverse of inverse of aleshin 

type automaton is equal to inverse of reverse, i.e., RI[A(S)]=IR[A(S)] 

Proof.   

In Fig. 9 ,  [(p,a), 1]= (p,c) ; [(p,b), 1] = (p,b);  [(p,c), 1] = (p,a) ;  

 [(q,a),1] = ( r,c)  ; 

[ (q,b),1] =(r,b), [(q,c),1] = ( r,a);  [(r,a) ,1] = (q,c),  [(r,b),1] =  (q,b) ; [(r,c),1] = 

(q,a) 

[(p,a), 0]= (q,b) ; [(p,b), 0] = (q,c);  [(p,c), 0] =(q,a);  [(q,a),0] = ( p,b)  ;[ (q,b),0] = 

(p,c),   

 [(q,c),0] = ( p,a);  [(r,a) ,0] = (r,b),  [(r,b),0] =  (r,c); [(r,c),0] = (r,a) 

In Fig. 11,  [(p,a), 1]= (p,c) ; [(p,b), 1] = (p,b);  [(p,c), 1] = (p,a) ;  

 [(q,a),1] = ( r,c)  ; 

[ (q,b),1] =(r,b), [(q,c),1] = ( r,a);  [(r,a) ,1] = (q,c),  [(r,b),1] =  (q,b) ; [(r,c),1] = 

(q,a) 

[(p,a), 0]= (q,b) ; [(p,b), 0] = (q,c);  [(p,c), 0] =(q,a);  [(q,a),0] = ( p,b)  ;[ (q,b),0] 

=(p,c),   

 [(q,c),0] = ( p,a);  [(r,a) ,0] = (r,b),  [(r,b),0] =  (r,c) ; [(r,c),0] = (r,a) 
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                  Reverse Automata        Inverse Reverse Automata         

 

                                 

 

 

 

                                        

     

 

                                     

                                 Fig.8                             Fig. 9 

 

   Inverse Automata               Inverse Reverse Automata      

 

 

 

 

 

 

 

 

 

            Fig. 10                               Fig.11 

     

    Fig. 9 and   Fig.11  R[I(A(S))] = I[R(A(s))] 

 

 Therefore, LHS = RHS,   Hence the theorem. 

 

Definition  9.  

 An automaton A is said to be persistent if the automaton is continuously, constantly 

working in their existing path with their respective input alphabet. Here  the direct 

product of A x B is persistent 
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Conclusion 

The strongly connected quasi Ideal automaton is isomorphic to the direct product of 

strongly connected permutation automaton and the synchronizing strongly connected 

Aleshin type automaton. The reverse of inverse of the  strongly connected Aleshin type 

automaton is  equal to the inverse of reverse of strongly connected  Aleshin type 

automaton. So it is reversible and bireversible. Hence the direct product of strongly 

connected aleshin type automaton is invertible, also persistent. 
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