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Abstract: The Meixner process as a special type of the Levy process is related to the 

Meixner-Pollaczek polynomial by a Martingale relation. Since discovered, the Meixner process has 

been applied to financial data to show that the Normal distribution is a very poor model to fit 

log-returns of financial assets like stocks and indices. 

In this paper, we derived a distribution which is related to Meixner and Exponential distribution. We 

call this distributional relationship ‘the Meixner-Exponential distribution’ and fit it to financial data to 

show how good it fits. Furthermore, we apply the distribution to determine the expected value (wealth) 

of an investor whose initial wealth is    and whose returns is   .     

Keywords: Meixner-Pollaczek polynomial, Exponential distribution, Expected value, Pricing 

derivative. 
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1. Introduction 

The Meixner-Pollaczek Polynomials first discovered by [1] are known in the literature 

as the Meixner Polynomials of the second kind [2]. These polynomials were later 

studied by [3]. 

The polynomials are denoted by   
 (   ), with a hypergeometric representation 
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The Polynomials are completely described by the recurrence formula [4] 
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and have a generating function                                
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They are orthogonal on the real line with respect to the weight function              

                 (     )  | (    )|    {(    ) },              (1.3) 

and the orthogonality is given as 

           ∫   
( )(   )  

( )(   ) (     )   
 (    )

(     )    
   

  

  
.       (1.4)                        

The Meixner process is related to the Meixner-Pollaczek polynomials by a martingale 

relation. It is a special type of levy process which originates from the theory of 

orthogonal polynomials. Its distribution belongs to the class of the infinitely divisible 

distribution and as such gives rise to a Levy process (The Meixner Process). The 

Meixner process is very flexible, has a simple structure and leads to analytically and 

numerically tractable formulas. 

While [5] introduced the process, [6] proposed it to serve as a model in financial data. 

The Meixner distribution is a special case of the generalized z-distributions (GZ), 

defined through the characteristic function [7] 

              (             )  (
 (   

   

  
    

   

  

 (     )
)

  

    (   ),        (1.5)                     

where                    . 

Moreover, the monic Meixner – Pollaczek Polynomials { ̃ (     )        } 



ON THE PORTFOLIO STRATEGY                       1511 

are martingales for the Meixner process (              (
   

 
)) such that;  

                    ̃ (    |      ̃ (      ).                    (1.6)                              

The similarity with classical Martingale relation between standard Brownian motion 

{      } and the Hermite polynomials{  (    )        } is:  

                        [ ̃ (    |  ]    ̃ (     ).                 (1.7) 

The Meixner(          ) is self-decomposable [8]. Therefore we have 

 ( )    (   )   ((
   

 
)  )  (   )   ((

   

 
)  ) (    (

 

 
 ))

  

    (1.8)                                 

with cumulant function of the self- decomposable law given as; 

                   ( )          ((
    

 
))    .                  (1.9)                        

The decomposed Meixner (          )  with the application of the Esscher 

transform to obtain the optimal option hedging strategy was done in [9], where the 

option price by solving the parabolic partial differential equation which arises from 

the Meixner-OU process was obtained. 

Instead in this paper, we derive a distribution which is related to the Meixner 

distribution but has the distributional properties of the exponential distribution. We 

call this distribution the Meixner-Exponential (M-E) distribution and further fit it into 

some financial data, and hence obtain the future wealth of an investor via his 

investment using the M-E distribution.     

2. Distributional Relationship 

2.1 Meixner-Pollaczek-Exponential- Relationship. 

In this section, we obtain the distributional relationship between the Meixner 

distribution and the exponential distribution in which we shall call the 

Meixner-Exponential distribution.  

Describe for each      the Symmetric Meixner-Pollaczek polynomials   
( )

( ) 

by the following recurrence relation [4]:  

                            
( )( )   ,   

( )( )    

 and 

(   )    
( ) ( )     

( )( )  (      )    
( ) ( )           .      (2.1) 

This sequence of polynomials has the generating function 
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𝑒  𝑟𝑐𝑡 𝑛𝑡

(    ) 
 ∑   

( )
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    ,             (2.2) 

with a hypergeometric representation given by 

                    
( )( )  

(  )𝑛

  
     (

        ⁄

  
| ),              (2.3)                                    

and a weight function [5] 

                         ( )  
|𝛤(  

  

 
)|

 

  
.                          (2.4) 

The density of the Meixner distribution related to the Symmetric Meixner-Pollaczek 

polynomials   
( )

( ) is given by [6] as; 
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( co (
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)| ,       (2.5) 

where                       ℝ, and weight function 

                          ( )  |𝛤 (   (
   

 
))|

 

                  (2.6) 

The moments of this distribution are outlined in[9]. To this end we state; 

Theorem 1: Given (2.5), the Meixner-Exponential distribution is: 

              𝑓(         )  
 ( −( +𝑚)) (𝐶𝑜 (

𝑏

 
))

  

 𝐶𝑜 ℎ( +𝑚) ( 𝑛)
  

𝑏

 
(   )

             (2.7) 

The proof of theorem1is a consequence of the proposition below.  

Proposition 1: Let 𝑓( )    𝜔0  in the sense of distribution with known facts 

1. 𝑓(𝜔)  ∫ 𝑓( )   𝜔  

  
      (𝜔  𝜔 )     𝜔0

(𝜔. ). 

2. From 𝛤(𝑧)  ∫        

 

 

 
, put     , then,  𝛤(𝑧)  ∫   (𝑒𝑢)     

 

 
. 

3.    h   
  𝑒−  

 𝑒− 
. 

Then the Fourier transform of the weight function (2.6) is given by: 
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   −( +𝑚) 𝛤(  )

𝐶𝑜 ℎ( +𝑚) ( )
                       (2.8) 

Proof: By definition  
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and by fact 2 
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 so that      𝑦, then  



ON THE PORTFOLIO STRATEGY                       1513 

    𝔉(  ( )( ))   ∫   (𝑒𝑢)    
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) 𝑣)  . 

By fact 1; 
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.  

Substituting back the variable     , gives 

           𝔉(  ( )( ))     ∫         𝑒−( +𝑚)𝑡
    (   )    

 

 

 
 

                             (   )  ∫      (  𝑒−( +𝑚)𝑡)   

 

 

 
. 

Again let 𝑍  (    (   ) )   => 𝑍  (    (   ) )  ,such that 

                 𝔉(  ( )( ))  
   𝑒−( +𝑚) 𝑡

(  𝑒−( +𝑚)𝑡)  
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𝑍

 

 
 

                              
   𝑒−( +𝑚) 𝑡

(  𝑒−( +𝑚)𝑡)
  𝛤(  ). 

By fact 3, we have;  

𝔉(  ( )( ))    (
       

      
)

(   ) 

𝛤(  ) 

                             
   −( +𝑚) 𝛤(  )

𝐶𝑜 ℎ( +𝑚) ( )
 (as required). 

Substituting the Fourier transformed weight function (2.8) into (2.5) gives (2.7).  

The moments of this distribution are straight forward and may be derived as follows: 
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)
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 . 

Notice that for    ,  ( )=𝑉 𝑟( ). 

Corollary 1: Using the moment generating function, we obtain the 

Meixner-exponential distribution for 𝜔  
 

 
 and       as  
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Proof:  Replacing   by 𝜔 (where 𝜔  ∑  𝑟 ta 𝑣𝑣 (𝑟    )  [5]), we get 
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(      𝑟  𝑟)  
 ,    
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By proposition 1 
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Substituting the Fourier transformed weight function (2.10) into (2.5) gives  
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 (   ) is the reflection of the curve 𝑓(       )   l  , about the 

line 𝑓    as seen in figure 1 below. 
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Figure 1:The graph of the curve   l 𝑓(       )  (or equivalently) 

𝑓(       )  
 

 
 (   ) for       and 𝜔  
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Lemma 1: Suppose that   
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relationship becomes 
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3. Investor’s Portfolio and Empirical Data Fitting to Distribution 

A portfolio composition is predicted to change with investment time horizon (i.e., the 

time scale) in a way that can be fully determined once an adequate measure of risk is 

chosen. The portfolio optimization problem consists in finding the optimal 

diversification on a set of possibly dependent assets in order to maximize return and 

minimize risk.   Let   ( ) be the price of asset   at time  , where time is counted 

for trading days in multiples of a fundamental unit (days, say). 

With the notation 

                         ƺ (  𝜏)  l (
  ( )

  (   )
),                       (3.1)                                       

 the return ᶉ (  𝜏) between time   𝜏 and   of asset   is defined as 

                          ᶉ (  𝜏)  
  ( )   (   )

  (   )
  ƺ (   )   .           (3.2)                                          

While (3.1) is the continuous return, (3.2) is the discrete return.                                                                                                     

Consider a portfolio with    shares of asset  whose initial wealth is 

                            Ѡ( )  ∑     ( )𝑁
                       (3.3)                                             

  At time 𝜏 later, the wealth has become Ѡ(𝜏)  ∑     (𝜏)
 
    and the wealth 

variation is ([10])     

   Ѡ  Ѡ(𝜏)  Ѡ( )  ∑     ( )
  ( )   ( )

  ( )
 
    Ѡ( )∑ ѡ 

𝑁
   ( ƺ ( )   ) ,  (3.4)  

 where 
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                               ѡ  
    ( )

∑     ( )𝑁
 = 

                      (3.5)  

is the fraction in capital invested in the     asset at time 0. By (3.2), it is justifiable to 

write the    of the portfolio over a time interval 𝜏 as the weight sum of the 

returns ᶉ (𝜏) of the assets         𝑁 over the time interval 𝜏:  

                             
𝛿𝜏Ѡ

Ѡ( )
 ∑ ѡ ᶉ (𝜏)

𝑁
                      (3.6)                                                           

 Now consider    as an autonomous non-stationary 𝜏-dimensional Bessel process 

govern by the scalar equation  

                        (ᶉ ( ))  
𝛿  

 𝑅𝜏(℥ )
 ᶉ ( )    (ᶉ ( ))            (3.7) 

with   ( )   𝑟    . 

The Bessel process    is transformed into an autonomous process with finite speed 

measure (i.e, a process that possesses a limiting distribution) to which the Motoos 

theorem can be applied. More precisely, if [11] 

                        (ᶉ ( ))    ᶉ ( )( )  
 ( ᶉ ( )   )               (3.8)                                                                     

then 

              (ᶉ ( ))  (𝜏    (ᶉ ( )) ᶉ ( )   √𝑆  (ᶉ   )  (ᶉ ( ))     (3.9) 

On the other hand, let   represent the investment policy. Under this policy the 

portfolio process {  
 (ᶉ ( ))} of the investor over a time 𝜏 evolves according to the 

stochastic differential equation 

                     
   (ᶉ   𝜇)  

    
   𝜏      

   (𝜏)          (3.10)                                             

This implies that {  
 (ᶉ ( ))} is a temporally homogeneous diffusion process with 

drift function  ( )  (ᶉ   𝜇)     and diffusion function   ( )         [12]. 

𝜇 and   are constants and  ( ) denotes the standard Brownian motion process. 

As a first application of the Meixner-Exponential process, we try to find how good 

our model fits to empirical entreprenual financial data. The data sets obtained consist 

of the closing prices for the shares denoted by (  ) ≤ < . 

The series of log returns is obtained by (3.2). We measure the portfolio for two sets 

data, namely, Small Scale Investment (SSI) and Large Scale Investment (LSI) from 

December, 2008 and 13 trading months ahead. Figures 2a and 2b below show the 

performance of (2.7) with the SSI and LSI respectively.  To estimate the Meixner- 

Exponential distribution we assume independent observations as in the parent 

Meixner distribution and use moments.  In particular case of the SSI and LSI 

financial data the result of the estimation procedure is given by    ̂   .    5  
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  ̂   .       ̂   .       ̂   .    56  for the SSI and  ̂   .       ̂  

 .       ̂   .  65   ̂   .       for the LSI.           

                        

 

 

 

b 

 

 

 

 

 

Figure 2:  The LSI and SSI financial data images using equation (2.7). 

 

4.Pricing of Derivatives; The Expected Utility Approach 

Starting the period with initial capital Ѡ   ,the investor is assumed to have 

preferences that are rational with respect to the end- of –period distribution of wealth 

Ѡ    . The preferences are therefore represented by the a utility function 

 (Ѡ    ) determined by the wealth variation       at the end- of-period 𝜏. 

The expected utility theorem states that the investor’s problem is to maximize 

    (Ѡ    ) , where  (. ) denotes the expectation operator: 

                      (Ѡ    )  ∫    (Ѡ    )  𝜏
 (  )

 

𝑊0
.        (4.1)                                   

 The utility function  ( ) has a positive first derivative (wealth) and a negative 

second derivative (risk aversion)[11].     

 Let 
 ″

 ´   , (a constant risk measure of risk aversion). It is easy to see that  

                          (Ѡ)      { Ѡ}.                     (4.2) 

For large initial wealth, we that  

                     (Ѡ    )     𝑊0 ∫     𝜏    𝜏
 (  )

  

  
        (4.3)  

According to the fundamental theorem of asset pricing, the arbitrage free price 𝑉  of 

the derivative at time      𝑇  is given by 

                             𝑉𝒕   𝑄[  𝑟(𝑇  )  ({    ≤ 𝜏 ≤ 𝑇})|ℱ ]  

where Q is an equivalent Martingale measure ,{𝑓 }  is the natural filtration of ,{  } . 

Let   𝜏
 (  ) be as in (2.7), then 
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𝑉      (Ѡ    )  
𝑒− Ѡ0 ( −( + )) (𝑐𝑜 (

𝑏

 
))

  

𝑐𝑜 ℎ( +𝑚) ( 𝑛)
∫     𝜏  

𝑏

 
(   𝜏)  

  

 
 

                   
𝑒

−( Ѡ0−
𝑏
 
𝑚)

 ( −( + )) (𝑐𝑜 (
𝑏

 
))

  

𝑐𝑜 ℎ( +𝑚) ( 𝑛)
            

                      ( Ѡ0 
𝑏

 
 ) ∑

(  ) (
𝑏

 
)
  

(   )
 
   

 ( −( + )) 

𝑐𝑜 ℎ( +𝑚) ( 𝑛)
,          (4.4) 

in particular. An indefinite solution is given as 

    (Ѡ    )  

  ( Ѡ0 
 
 
 ) (  (   )) ( 𝑜 (

 
 ))

  

 𝑜  (   ) (𝜏 )
[(

 
 (

    
 

)

    
)   ] 

                  ( Ѡ0 
𝑏

 
 ) ∑

(  ) (
𝑏

 
)
  

(   )
 
   

 ( −( + )) 

𝑐𝑜 ℎ( +𝑚) ( 𝑛)
[(

𝑒
−(

  −𝑏
 

)

    )   ]. (4.5)                             

5. Conclusion 

Equation (4.4) shows an asset allocation strategy that is continuously rebalanced so as 

to always keep a fixed constant proportion of wealth investor at each point in time. 

The fixed investment policy   is the process     {ᶉ (𝜏) 𝜏   } .For such 

investment strategies in continuous time, the rate of return on investment is defined as 

the net gain in wealth divided by the cumulative investment. For the policy under 

which total wealth is always invested in the risk-free asset, we have by [12] 

ᶉ  
 ƺ(𝒕)  

∫  ƺ   
𝒕
 

 . 

The mean return on investment is maximized by the same strategy that maximizes 

logarithmic utility, which is also known to maximize the exponential rate at which 

wealth grows.   

Notice also that in (2.7), 𝑓(         ) will optimally decrease over time if    , 

but increase over time if    .  
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