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Abstract. In this paper, we will propose and study the evolutionary dynamics of a two-team hawk-dove

(HD) game, each team consists of two players. The replicator dynamics equations for the two team

HD game will be set. Then, we will find the equilibrium solutions and the conditions of their locally

asymptotic stability. Numerical simulations will be used to illustrate the behavior of the proposed game.
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1. Introduction

Evolutionary Game theory [1, 2] is an important approach to study complex adaptive

systems. However, standard game theory has shown some differences from observations

and experiments i.e., in the prisoner’s dilemma game (PD), ultimatum game, etc. We

propose that a reason for such discrepancies is that some realistic features (e.g. dynam-

ics, repetitions, memory, local effects and mistakes) are not included in the standard

game theory. Repeated game has been shown [1] to explain the PD paradox. Memory
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games [3, 4, 5] have been shown to solve both the PD and ultimatum game paradoxes.

The importance of allowing mistakes has been realized long ago [6, 7] but recently it has

been included in evolutionary games [8, 9, 10]. It explains why in real life, some bad or

dominated strategies persist. An interesting approach to dynamic games has been pio-

neered by Puu [11] and expanded later on. This approach combines dynamic, repetition

and mistakes features by turning the game into a dynamical system and by assuming

bounded rationality.

Recently multi-team games have been introduced [12, 13]. In these games there are

several teams, each team consists of some players. An example of multi-team games is

M branches of McDonald fast-food shops competing against L branches of Burger King

fast-food ones.

In section 2, we study the dynamics of the standard hawk-dove game. In section 3, we

study the dynamic of multi-team hawk-dove game. We proposed two ways to overcome

the singularity of the HD game. The equilibrium points and their stability are discussed

in this section. Some numerical results are given.

2. Dynamic Hawk-Dove Game

Conflicts among animals (of the same kind) for food, habitat and mates are often settled

by displays rather than all-out fitting. The escalating fights leading to injury or death are

relatively rare. John Maynard Smith [14] used game theory to explain this phenomena.

He suppose that there are only two possible behavioral types: one escalates the fight until

injury or his opponent retreats, the other behavior sticks to display and retreats if his

opponent escalates. These two types of behavior are called hawks and doves.

The hawk-dove game [15] is a good example of how game theory is applied in population

dynamics. Hawk-dove game is a two player game, such that two strategies, hawk (H) and

dove (D) are allowed with the payoff matrix;

Π =

 V − C

2
V

0
V

2

 ,
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where V is the value of the contested resource (food, habitat, mates,..) and C is the cost

of an escalated fight. It is always assumed that the value of the resource is less than the

cost of a fight, i.e., 0 < V < C.

The exact value of the dove vs. dove payoff varies between model formulations. Some-

times the players are assumed to split the payoff equally (V/2 for each), other times the

payoff is assumed to be zero (since this is the expected payoff to a war of attrition game,

which is the presumed models for a contest decided by display duration). While the

hawk-dove game is typically taught and discussed with the payoffs in terms of V and C,

the solutions hold true for any matrix with the payoffs matrix [16];

Π =

 X W

L T

 ,

where X < L < T < W .

Biologists have explored modified versions of classic hawk-dove game to investigate a

number of biologically relevant factors. These include adding variation in resource holding

potential, and differences in the value of winning to the different players [17], allowing the

players to threaten each other before choosing moves in the game [18], and extending the

interaction to two plays of the game [19].

The replicator dynamic equation for the hawk-dove game is given by;

d xi

d t
= xi

(
(Πx)i − xΠx

)
, i = 1, 2,

where x1, x2 are the fractions of hawks and doves respectively and Π is the above payoff

matrix. These equations can be written in the following form;

d x1

d t
=

x1

2

(
(V − C) x1 (1− x1) + 2V x2 (1− x1)− V x2

2

)
,

provided that x1 + x2 = 1.

In a population consisting mostly of doves, hawks will spread, for they are likely to

meet only doves and gain V , while a dove will only get V/2. But in a population of

mostly hawks, the dove avoids every fight and keeps its fitness unchanged, while hawks

meet hawks with loss in their fitness by (C − V )/2. Neither type of behaviors are better

than the other. So, the two behaviors are unstable.
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The above equations admits three fixed points (equilibrium states), the unstable pure

states (1, 0) with the eigenvalues λ1, 2 =
C − V

2
,
C − V

2
> 0 and (0, 1) with the eigen-

values λ1, 2 =
V

2
> 0, −V

2
< 0 and the interior asymptotically stable state (

V

C
,
C − V

C
)

with the eigenvalues λ1, 2 = −V (C − V )

2C
< 0.

3. Dynamic Two-Team Hawk-Dove Game

Now, consider two teams playing HD game among them and every player plays HD

game with his team-mate. Thus each player has 4 possible strategies, HH̀ which means

that he (she) plays hawk with his (her) team-mates and with the other team as well. The

second strategy is HD̀ which means that a player that adopts hawk with his team-mates

and adopts dove against the other team. Similarly one can define DH̀ and DD̀. The payoff

matrix Π of this game is given by,

(1) Π =


v−c+v′−c′

2
v−c+2 v′

2
2 v+v′−c′

2
v + v′

v−c
2

v−c+v′

2
v v + v′

2

v′−c′

2
v′ v+v′−c′

2
v
2
+ v′

0 v′

2
v
2

v+v′

2

 ,

where 0 < v < c and 0 < v′ < c′.

When we tried to get the equilibrium points to this game, we noticed that the solutions

eventually tends to a fixed point which depends on the initial conditions not just the

parameter values v, v′, c, c′. The reason is that replicator equations are not sufficient

to uniquely determine all the fractions since the given payoff matrix in equation (1) is

singular (det(Π) = 0).

This singularity is lifted if mistakes are allowed into the game. Recently the paper-

s [8, 9, 10] have studied the dynamics of learning in multi-agent systems, where the agents

use reinforcement learning [20]. They showed that, although the agents are not directly

interacting with each other, a collective game between them arises through their interac-

tion with the environment. Such interactions can be modelled via a modified replicator
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type equations:

(2)
dxi

dt
= xi [(Πx)i − xΠx] + γi xi

n∑
j=1

xj ln(
xj

xi

)

where γi, i = 1, 2, .., n are nonnegative constants measuring the average rate of mistakes

(lose of memory) done by the player adopting strategy i. Note that equation (2) implies

that non of xi can be equal 0 or 1. Applying (2) to the values v = 1, c = 3, v′ = 1, c′ = 2,

we obtained the solution x1 = 0.173, x2 = 0.184, x3 = 0.328, x4 = 0.315 for γi =

0.05, i = 1, 2, 3, 4 which is independent of the initial conditions.

An alternative way to avoid the singularity of the payoff matrix (1) is to modify it

according to our game. So, the following payoff matrix of the hawk-dove game is proposed:

(3) Π (HH ′, HH ′) =
1

2

(
min(v, v′)− c− c′

)
,

where min (v, v′) is the minimum value of v, v′ and v ̸= v′. Since going into two fights

typically gains less than the sum of going into each of the fights. Thus the following payoff

matrix is the modification proposed for the (1);

(4) Π =



min(v, v′)−c−c′

2
v−c+2 v′

2
2 v+v′−c′

2
v + v′

v−c
2

v−c+v′

2
v v + v′

2

v′−c′

2
v′ v+v′−c′

2
v′ + v

2

0 v′

2
v
2

v+v′

2

 ,

which is not singular (since v ̸= v′). The replicator equation of of the two team hawk-dove

game is given in the form;

dxi

dt
= xi [ (Π x)i − xΠx ] , i = 1, 2, 3, 4,(5)

where x1, x2, x3, x4 are the fractions of the total population adopting HH ′, HD′, DH ′

and DD′ respectively. Using that min (v, v′) = v and the above proposed payoff matrix

in equation (4). The replicator dynamics equation (5) can be written in details in the
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following form;

dx1

dt
=

x1

2
[ (v + v′) (x1 + x2 + x3 + x4) (1− x1 − x2 − x3 − x4)

−c (x1 + x2) (1− x1 − x2)− c′ (x1 + x3) (1− x1 − x3)

+(v − v′)x1 (1− x1) + v (x3 + x4) + v′ (x2 + x4) ],

dx2

dt
=

x2

2
[ (v + v′) (x1 + x2 + x3 + x4) (1− x1 − x2 − x3 − x4)

−c (x1 + x2) (1− x1 − x2) + c′ (x1 + x3)
2 − (v − v′) x2

1

+v (x3 + x4)− v′ (x1 + x3) ],

dx3

dt
=

x3

2
[ (v + v′) (x1 + x2 + x3 + x4) (1− x1 − x2 − x3 − x4)

+c (x1 + x2)
2 − c′ (x1 + x3) (1− x1 − x3)− (v − v′) x2

1

−v (x1 + x2) + v′ (x2 + x4) ],

dx4

dt
=

x4

2
[ (v + v′) (x1 + x2 + x3 + x4) (1− x1 − x2 − x3 − x4)]

+c (x1 + x2)
2 + c′ (x1 + x3)

2 − (v − v′) x2
1

−v (x1 + x2)− v′ (x1 + x3) ].

Proposition 3.1. Pure strategies are not asymptotically stable for the system (5).

Proof. We have four pure strategies:

S1 = ( 1, 0, 0, 0), S2 = ( 0, 1, 0, 0),

S3 = ( 0, 0, 1, 0), S4 = ( 0, 0, 0, 1).

The first one (1, 0, 0, 0) is not asymptotically stable since its eigenvalues
c+ c′ − 2 v

2
,

c+ c′ − 2 v

2
,
c− 2 v + v′

2
,
c′ − v

2
are positive. It is clear from the values of the first column

of the payoff matrix (4), that the fitness of the individual that adopts the strategy HH ′
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is less that the others

E(HH ′, HH ′) < E(HD′, HH ′), E(DH ′, HH ′), E(DD′, HH ′),

so it is evolutionary unstable [1].

The second one (0, 1, 0, 0) is not stable since there are three positive eigenvalues of its

four eigenvalues
c− v − v′

2
,
c− v + v′

2
,
c− v

2
,
v′

2
. The same thing, it is clear from the

values of the second column of the payoff matrix (4), that the fitness of the individual

that adopts the strategy HD′ is less that the others

E(HD′, HD′) < E(HH ′, HD′), E(DH ′, HD′), E(DD′, HD′),

so it is evolutionary unstable.

The third one (0, 0, 1, 0) is not stable since there are three positive eigenvalues of its

four eigenvalues
c′ − v′ − v

2
,
c′ − v′ + v

2
,
c′ − v′

2
,
v

2
. From the values of the third column

of the payoff matrix (4), we find that the fitness of the individual that adopts the strategy

DH ′ is less that the others

E(DH ′, DH ′) < E(HH ′, DH ′), E(HD′, DH ′), E(DD′, DH ′),

so it is evolutionary unstable.

Finally, the fourth one (0, 0, 0, 1) is not stable since there are three positive eigenvalues

of its four eigenvalues
v + v′

2
, −v + v′

2
,
v

2
,
v′

2
. The same thing, it is clear from the values

of the fourth column of the payoff matrix (4), that the fitness of the individual that adopts

the strategy DD′ is less that the others

E(DD′, DD′) < E(HH ′, DD′), E(HD′, DD′), E(DH ′, DD′),

so it is evolutionary unstable. This completes the proof.

The system (5) has the following boundary equilibrium points. The first one is S5 =(
v′

c′ + v′ − v
,

c′ − v

c′ + v′ − v
, 0, 0

)
, which is unstable because there are at least two positive

eigenvalues of its four eigenvalue

(
λ =

c− v

2
, λ =

(c− v) (c′ + v′ − v) + v′ (v′ − v)

2 (c′ + v′ − v)

)
.
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The second one is S6 =

(
v

c+ v′ − v
, 0 ,

c+ v′ − 2 v

c+ v′ − v
, 0

)
, which is unstable because

there are at least two positive eigenvalues of its four eigenvalue

(
λ =

c′ − v′

2
, λ =

(c′ − v′) (c+ v′ − v) + v (v′ − v)

2 (c+ v′ − v)

)
.

The third one is S7 =

(
v + v′

c− v + c′ + v′
, 0 , 0 ,

c− 2 v + c′

c− v + c′ + v′

)
, which is unstable be-

cause if one of the following two eigenvalues is negative the other is positive

(
λ =

−v′ (c− v) + v (c′ − v)

2 (c− v + c′ + v′)
, λ =

v′ (c+ v′)− v (c′ + v; )

2 (c− v + c′ + v′)

)
.

The fourth one S8 =

(
0,

c′ − v′ + v

c+ c′
,
c− v′ + v

c+ c′
, 0

)
, which is not stable since at

least one of the following two eigenvalues is positive and the other is negative

(
λ =

c (c′ − v′)− c′ v

2 (c+ c′)
, λ =

−c (c′ − v′) + c′ v

2 (c+ c′)

)
.

The fifth one S9 =

(
0,

v

c
, 0,

c− v

c

)
, is not stable since there is two positive eigenvalues

of its eigenvalues

(
λ =

v′

2
, λ =

v′

2

)
.

The sixth one S10 =

(
0, 0 ,

v′

c′
,
c′ − v′

c′

)
, is not stable since there is two positive eigen-

values of its eigenvalues

(
λ =

v

2
, λ =

v

2

)
.

The seventh one S11 =

(
v′

c′ + v′ − v
,
v

c
− v′

c′ + v′ − v
, 0 , 1−v

c

)
, provided that

v′

c′ + v′ − v
<

v

c
, is unstable since it has the following positive eigenvalue λ =

v′ (v′ − v)

2 (c′ + v′ − v)
.

The eighth one S12 =

(
v

c+ v′ − v
, 0 ,

v′

c′
− v

c+ v′ − v
, 1−v′

c′

)
, provided that

v

c+ v′ − v
<

v′

c′
, is unstable since it has the following positive eigenvalue λ =

v (v′ − v)

2 (c+ v′ − v)
.

The ninth one S13 =

(
x1,

v

c
− c+ v′ − v

c
x1,

v′

c′
− c′ + v′ − v

c′
x1, 0

)
, where x1 =

c′ v − c (c′ − v′)

c c′ + (c+ c′) (v′ − v)
provided that

v

c+ v′ − v
<

v′

c′
, is unstable since it has a positive

eigenvalue.

The tenth one S14 =

(
0,

v

c
,
v′

c′
, 1− v

c
− v′

c′

)
, provided that

v

c
+

v′

c′
< 1, is stable since

there is three negative eigenvalues λ = −v c′ (c− v) + c v′ (c′ − v′)

2 c c′
, λ2+

v c′ (c− v) + c v′ (c′ − v′)

2 c c′
λ+
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v v′ (c c′ − v c′ − c v′)

4 c c′
= 0, which has negative eigenvalues since the coefficient of λ and

the constant term are positive [21], and the fourth one is 0. Figure (1) shows the sta-

bility diagram of the individuals that adopt this mixed strategy with the parameters

values are v = 1, c = 3, v′ = 1.5 and c′ = 3. So, we get the stable steady state

(0, 0.3334, 0.4999, 0.1667)
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Figure 1

4. Conclusion This hawk-dove game with the payoff matrix (5) has no internal equilib-

rium point. The only stable equilibrium point is S14, which mean that the fraction x1 that

adopt the strategy HH ′ will vanish. Note that the other fractions has a strategy D or D′

in their choices because if they do not gain they will not loss. So, this game has only one

stable mixed strategy.
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