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Abstract. In this paper, we present continuous hybrid stomer cowell methods. Using the method of collocation

and interpolation of power series approximate solution to derive a continuous linear multistep method. Block

method was later used to generate the non overlapping solutions at selected grid points. The method developed,

is consistent, zero-stable and convergent. The performance of the new block method was tested with some second

order initial value problems and it was found to compare favourably with the existing methods.
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1. Introduction

Consider the second order initial value problem of the form

y
′′
= f (x,y,y′), y(x0) = y0, y′(x0) = y′0, (1.1)
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where x0 is the initial point and f is continuous within the interval of integration and satisfies

the existence and uniqueness condition.

Conventionally equation (1.1) is usually reduced to systems of first order differential equa-

tions before an approximate method is then applied to solve it. Some of the disadvantages of

method of reduction include; the writing of complicated computer code which always consume

longer time and more human effort [1].

Direct method of solving higher order ordinary differential equations in predictor-corrector

mode have been studied by many scholars including [2], [3], [4], [5] to mention but a few. Al-

though their methods yielded good results but the implementation is too costly, because the

predictors are developed in the same way as the correctors and subroutines are very complicat-

ed to write since they require special techniques to supply the starting values. This eventually

leads to longer computer time and human effort. In order to circumvent the set backs of the

predictor-corrector methods, [11] among others proposed block method for solving general sec-

ond order initial value problems of ordinary differential equation. The method is capable of

giving evaluations at different grids points without overlapping as in the predictor-corrector

method, hence it does not require the development of separate predictors.

Schoars later developed one step method so as to improve on the accuracy of Linear Multistep

Method. It was discovered that as the step length is reducing the efficiency of the method

increases as well. Among the authors that worked in this area are [7], [10] and [11].

In this article, we propose a method which combines the properties of one step method im-

plemented in block method for the solution of second order initial value problems.

2. Methodology

We consider a power series approximate solution in the form:

y(x) =
r+s−1

∑
j=0

a jx j, (2.1)
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where r and s are the numbers of interpolation and collocation points respectively. The second

derivative of (2.1) gives

y
′′
(x) =

r+s−1

∑
j=2

j ( j−1)a jx j−2. (2.2)

Substituting (2.2) into (1.1) gives

f
(
x,y,y′

)
=

r+s−1

∑
j=2

j ( j−1)a jx j−2. (2.3)

Interpolating (2.1) at the xn+r,r = 4
6 ,

5
6 and collocating (2.3) at xn+s,s = 0, 2

6 ,
4
6 ,1 gives a system

of non linear equation of the form

AX =U, (2.4)

where

A =
[

a0 a1 a2 a3 a4 a5

]T
,

U =
[

yn+ 4
6

yn+ 5
6

fn fn+ 1
4

fn+ 2
6

fn+ 4
6

fn+1

]T
,

and

X =



1 xn+ 2
3

x2
n+ 2

3
x3

n+ 2
3

x4
n+ 2

3
x5

n+ 2
3

1 xn+ 5
6

x2
n+ 5

6

x3
n+ 5

6

x4
n+ 5

6

x5
n+ 5

6

0 0 2 6xn 12x2
n 20x3

n

0 0 2 6xn+ 1
3

12x2
n+ 1

3
20x3

n+ 1
3

0 0 2 6xn+ 2
3

12x2
n+ 2

3
20x2

n+ 2
3

0 0 2 6xn+1 12x2
n+1 20x2

n+1


.

Solving (2,4) for a′js using Guassian elimination method and substituting back into (2,1) gives a

continuous linear multistep method which when solved for the independent solution at the grid

points gives a continuous block formula of the form

yn+ j = y(x) =
1

∑
m=0

( jh)(m)

m!
y(m)

n +h2
1

∑
j=0

σ j fn+ j +σ 1
3

fn+ 1
3
+σ 2

3
fn+ 2

3
(2.5)

the coefficient of fn+ j are given by

σ0 =
−1
120

(
27t5−90t4 +110t3−60t2

)
,

σ 1
3
=

1
40

(
27t5−75t4 +60t3

)
,
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σ 2
3
=
−1
40

(
27t5−60t4 +30t3

)
,

σ1 =
1

120

(
27t5−45t4 +20t3

)
,

evaluating (2,5) a t = 0.1
3 ,

2
3 ,1 gives a discrete block formula of the form

A(0)Y(i)
m =

1

∑
i

eiy
(i)
n +h2−i [d f (yn)+bF(Ym)] , (2.6)

where i is the power of the derivative and A0 = 6×6 identical matrix.

Ym =
[

yn+ 1
6

yn+ 1
3

yn+ 1
2

yn+ 2
3

yn+ 5
6

yn+1

]T
,

y(i)n =
[

yn− 1
6

yn− 1
3

yn− 1
2

yn− 2
3

yn− 5
6

yn

]T
,

F(Ym) =
[

fn fn+ 1
6

fn+ 1
3

fn+ 1
2

fn+ 2
3

fn+ 5
6

fn+1

]T
,

f (yn) =
[

fn fn− 1
6

fn− 1
3

fn− 1
2

fn− 2
3

fn− 5
6

fn−1

]T
.

When i = 0,

e0 =



0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1


,e1 =



0 0 0 0 0 1
6

0 0 0 0 0 1
3

0 0 0 0 0 1
2

0 0 0 0 0 2
3

0 0 0 0 0 5
6

0 0 0 0 0 1


,

d0 =



0 0 0 0 0 1057
103680

0 0 0 0 0 97
3240

0 0 0 0 0 193
3840

0 0 0 0 0 28
405

0 0 0 0 0 1825
20736

0 0 0 0 0 13
120


, b0 =



0 193
34560 0 −83

34560 0 53
106680

0 19
540 0 −13

1080 0 1
405

0 117
1280 0 −27

1280 0 17
3840

0 22
135 0 −2

135 0 −2
405

0 1625
6912 0 125

6912 0 125
20736

0 3
10 0 3

40 0 1
60


.

When i = 1,
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e1 =



0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1


, d1 =



0 0 0 0 0 119
1152

0 0 0 0 0 1
8

0 0 0 0 0 15
128

0 0 0 0 0 1
9

0 0 0 0 0 15
128

0 0 0 0 0 1
8


,

b1 =



0 107
1152 0 −43

1152 0 1
128

0 19
72 0 −5

72 0 1
72

0 51
128 0 −3

128 0 1
128

0 4
9 0 1

9 0 0

0 475
1152 0 325

1152 0 25
1152

0 3
8 0 3

8 0 1
8


.

3. Analysis of our new Schemes

Let the linear operator L{y(x) : h} on (2.6) as

L{y(x) : h}= A0y(i)m −
1−i

∑
i=0

hieiy
(i)
n −h2−i [d f (yn)+bF(ym)] (2.7)

Expanding yn+ j and fn+ j in Taylor series and comparing the coefficients of h gives

L{y(x) : h}=C0y(x)+C1y1(x)+ ...+Cphpyp(x)+Cp+1hp+1yp+1(x)+ ....

The linear operator L and associated block method are said to be of order p if C0 =C1 = ...=

Cp =Cp+1 = 0 Cp+2 6= 0.Cp+2 is called the error constant and implies that the truncation error

is given by tn+k = Cp+2hp+2yp+2(x)+O
(
hp+3) . Comparing the coefficient of h , the order of

the method is five with error constant

c0 = c1 = c2 = c3 = c4 = c5 = 0

c6 =

[
−49

11197440
,
−7

349920
,
−1

27640
,
−1

21870
,
−125

2239488
,
−1

12960

]
.

4. Consistency
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A method is said to be consistent, if it has order greater than one. From the above analysis, it

is obvious that our method is consistent.

4.1. Zero stability

A block method is said to be zero stable as h→ 0 the r j, j = 1(1) k of the first characteristics

polynomial ρ(r) = 0 that is
∣∣[∑A0Rk−1]∣∣≤ 1, for those root with |R|= 1 must be simple

For our method

ρ(r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
r



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


−



0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

r5(r−1) = 0. Hence our method gives roots [0,0,0,0,0,1] therefore it is zero stable.

4.2. Convergence

The necessary and sufficient conditions for a linear multistep method to be convergent is that

it must be consistent and zero stable. Hence our method is convergent.

5. Numerical Examples

In this section, we test the efficiency of our method on some numerical examples.

Problem 1. y
′′
+ y = 0, 0≤ x≤ 0.2,

y(0) = 1, y
′
(0) = 1 h = 0.1

Exact Solution: y(x) = cosx+ sinx

Source: [3]

Problem 2. y
′′−100y = 0, 0≤ x≤ 0.02,

y(0) = 1, y
′
(0) =−10 h = 0.01

Exact Solution: y(x) = exp(−10x)

Source: [9]

Problem 3. y
′′− x( y

′
)2 = 0,
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y(0) = 1, y
′
(0) = 1

2 h = 0.01

Exact Solution: y(x) = 1+ 1
2 log(2+x

2−x)

Source: [9]

Error= |Exact result−Computed result|

NM= Error in New Method

Table 1: Comparison of absolute errors for Problem I

X Error in [3] Error in [9] NM

0.1 6.92×10−09 0.00 8.071810 ×10−11

0.2 1.76×10−08 6.00×10−09 3.317995 ×10−10

0.3 1.62×10−08 1.80×10−08 7.638832 ×10−11

0.4 4.37×10−08 2.50×10−08 1.383957 ×10−11

0.5 1.20×10−07 3.40×10−08 2.195177 ×10−11

0.6 1.87×10−07 4.70×10−08 3.195674×10−11

0.7 3.07×10−07 5.30×10−08 4.383823 ×10−11

0.8 4.19×10−07 6.40×10−08 5.747571 ×10−11

0.9 5.79×10−07 7.50×10−08 7.275167 ×10−11

1.0 7.27×10−07 8.80×10−09 8.949942 ×10−11

1.1 9.20×10−07 9.80×10−08 1.075156 ×10−11

1.2 1.10×10−06 1.11×10−07 1.265626 ×10−11
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Table 2: Comparison of absolute errors for Problem 2

X Error in [3] Error in [9] NM

0.01 4.96×10−09 3.00×10−10 7.360845 ×10−11

0.02 1.49×10−08 1.00×10−09 2.854670 ×10−10

0.03 6.68×10−09 2.80×10−09 6.246097 ×10−10

0.04 2.40×10−08 3.00×10−09 1.082590 ×10−09

0.05 6.77×10−07 5.10×10−09 1.551924 ×10−09

0.06 1.08×10−07 6.40×10−09 2.332691×10−09

0.07 1.77×10−07 9.40×10−09 3.118856 ×10−09

0.08 2.32×10−07 1.15×10−08 4.011705×10−09

0.09 3.13×10−07 1.49×10−08 5.012991×10−09

0.10 3.95×10−07 1.77×10−08 6.126237×10−09

0.11 4.96×10−07 2.30×10−08 7.356706×10−09

0.12 6.00×10−06 2.70×10−08 8.711392×10−09

Table 3: Comparison of absolute errors for Problem 3

X Error in [5] Error in [9] NM

0.1 0.26075×10−09 1.603160×10−13 1.332268×10−10

0.2 1.98167×10−09 4.296563×10−13 1.154632 ×10−10

0.3 6.50741×10−09 2.575717×10−13 4.107825 ×10−11

0.4 15.5924×10−09 1.424638×10−12 1.039169 ×10−11

0.5 31.5045×10−09 3.539835×10−12 2.193801×10−11

0.6 56.3746×10−09 6.332490×10−12 4.176659×10−11

0.7 96.1640×10−09 9.671490×10−12 7.476242×10−11

0.8 156.868×10−09 1.475506×10−11 1.291411×10−11

0.9 248.698×10−09 2.297873×10−11 2.189582×10−11

1.0 387.984×10−09 3.483280×10−11 3.700151×10−11
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6. Discussion of result

We have considered three numerical examples to test the efficiency of our method. Problem

[1−3] was solved by [9]. They proposed a self starting Linear Multistep Method for direct

solution of initial value problem of second order ordinary differential equation to solve the three

problems we considered . Our method gave better approximation as shown in Tables (1− 3)

despite the higher order methods they proposed.

7. Conclusion

We proposed a continuous hybrid stomer cowell method for the solution of second order

initial value problems which was implemented in continuous block method. Continuous block

method has advantage of evaluation at all selected points within the interval of integration. The

results show that our method gives better approximation than the existing methods.
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