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1. Introduction

The benchmark theory in mathematical finance is the Black-Scholes-Merton framework.
Based on Gaussian asset return distributions the mathematics of option-pricing has many
advantages and remains tractable even in complex situations (e.g. HCrlimann (2012a)).

Unfortunately, this model assumes symmetric returns with very thin tails and is therefore not
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consistent with real-world financial data. For example, observed sample logarithmic returns
of equity market indices are often negatively skewed and have a much higher excess kurtosis
than is allowed by a normal distribution. Many alternatives have been proposed, from stable
models by Mandelbrot (1963) (see e.g. Mandelbrot (1997), part 1V, Rachev and Mittnik
(2000)) and generalized hyperbolic distributions (see e.g. Eberlein (2001)) to more recent
tempered stable distribution (see e.g. Rachev et al. (2011)). A general model that
encompasses many of the alternative proposals is the normal variance-mean (NVM) mixture
model, which retains some of the convenience of the Gaussian model (see e.g.
Barndorff-Nielsen et al. (1982), Bingham and Kiesel (2001), HUrlimann (2013a)). The NVM
model includes important parametric families of distributions, namely the generalized
hyperbolic (GH) distribution and the normal tempered stable (NTS) distribution. Analytically
tractable members of the GH distribution are the normal-inverse Gaussian (NIG), the
variance-gamma (VG) and the hyperbolic skew t (HST). The NTS family also includes the
NIG distribution. The present contribution is devoted to statistical estimation of these
multivariate models. Maximum likelihood estimation based on the EM-algorithm has been
considered by many authors (e.g. Liu and Rubin (1995), Protassov (2004), Embrechts et al.
(2005) and Hu (2005)). In particular, the latter author provides special algorithms for the
multivariate normal inverse Gaussian (NIG), variance gamma (VG) and skew hyperbolic t
(SHT). The EM-algorithm for the NIG has also been considered in Karlis and Papadimitriou
(2003), Oeigard et al. (2005), and Chang et al. (2010) among others. Since computational
implementation of the EM-algorithm is highly complex, it is justified to consider simpler
alternative methods. We extend the multivariate moment method in HCrlimann (2013b) to the
framework of the NVM mixture models and exemplify its statistical use for some of its most
tractable members. Though moment methods are known to be statistically less efficient than
the maximum likelihood method, there are numerous applications of them. A recent portfolio
theoretical application of the moment method in the univariate NVM framework is
Harlimann (2013d). An application to bivariate option pricing is HUrlimann (2013c). A more
detailed account of the content follows.

Section 2 recalls the multivariate NVM mixture model and briefly introduces the notions

of coskewness and cokurtosis, or degree three and four central moments, which are often
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used in the newer portfolio selection theory. Theorem 2.1 derives formulas for them for the
multivariate NVM mixture model with fixed first four cumulants of the mixing distribution.
Section 3 presents our general multivariate moment method in terms of coskewness and
cokurtosis, which depends upon the solution of a sextic equation. It shows that the covariance
matrix of the multivariate NVM mixture distribution is functionally dependent upon
coskewness and cokurtosis. It enables simultaneous estimation of the parameters given
sample estimates of the mean vector, coskewness vector and cokurtosis matrix. The obtained
algorithm is a generalization of the moment method for the multivariate asymmetric Laplace
distribution presented in HUrlimann (2013b) (see also HUrlimann (2013c) for the multivariate
variance gamma distribution). This method is worked out in Section 4 for a selection of
important mixing distributions, namely the inverse Gaussian, the gamma, the inverse gamma
and the classical tempered stable distributions. These mixing distributions give rise
respectively to the normal inverse Gaussian (NIG), the variance gamma (VG), the hyperbolic
skew t (HST) and the normal tempered stable (NTS) multivariate distributions. A real-life
application is studied in Section 5. It concerns the statistical estimation of the corresponding
bivariate models for the Standard & Poors 500 and NASDAQ 100 stock market indices. The
models are successfully fitted to seven bivariate daily data sets over different time periods.
The goodness-of-fit of the margins are optimized and compared. The numerical evaluation of
the goodness-of-fit statistics encountered in the data analysis are done with the fast Fourier
transform (FFT) approximation of a distribution with known characteristic function (see the
Appendix 1 for a summary of the method). For the NIG and VG a direct numerical evaluation

is also possible using the analytical formulas for their densities derived in Appendix 2.

2. Coskewness and cokurtosis of multivariate NVM mixtures

A random vector X =(X,,..,X,) is called a n -dimensional multivariate normal

variance-mean (NVM) mixture if it satisfies a stochastic representation

X=E+B-W+WW-2Z, (2.1)
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where Z ~ N(0,X) is a multivariate normal random variable with positive semi-definite
covariance matrix X =(o;),1<i, j<n, W isanon-negative mixing random variable with
cumulant generating function (cgf) c,® , Z,W are independent, and

E=(&), f=(B). i=1..,n, arereal-valued parameter vectors. One knows that the cgf of the

NVM model is given by

Cy(U)=¢"u+C, (B u+iu'zu) (2.2)

for all values of u=(u,,..u,) for which the expression (2.2) exists. The first four
moments and cumulants of W  are summarized into vectors m=(m,,m,,m;,m,) and
x=(x,,K,,k;,k,) respectively. In terms of the latter parameters, a short hand notation for
the random vector (2.1) is X ~ NVM (&, ,Z,«) . In afirst step, we determine the mean vector
1= (ay,..., ;1) of X, and the matrix of k -th order central moments M, [X], k = 2,3,4. For
k=2 the nxn matrixM,[X]=D[X]= (V;),1<i,j<n, is the covariance matrix with
elements V; = E[(X; —z)(X; —;)]. The nxn® matrix I\Ws[X]:(Sijk),lg Ljk<n,
consists of the coskewness elements S;, = E[(X; — 24)(X; — #;)(X,, — )], and the nxn®

matrix I\W4[X]=(Kijk[),1si,j,k,fﬁn, consists of the cokurtosis elements

Ki = ELCX; = 16) (X — 1)) (X, — 14 )(X, — 1,)]. In general, one has the relationships

Sijk = E[XinXk]_(:uiij + 1V +:ukvij)_:ui:uj/uk’
Ki = EDX X X X 1= (S + #4Si + meSiip + 14, Si) (2.3)
_(;ui:ujvk/ + N+ 1Ny + 1Ny F Ny +;Uk/uf,vij)_ﬂiﬂj,uk/”c-

The following result generalizes Proposition 2.1 in HUlimann (2013a) for the multivariate

asymmetric Laplace case with W ~ Exp(1) the exponential random variable with mean one.
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Theorem 2.1. (Moments of the NVM model) The mean, covariance, coskewness and cokurtosis

parameters of the multivariate NVM random vector X ~ NVM (&, 5,2,x) are given by

=& +x Py V=K, B Koy, 1<i j<n,

Six =K3 - BiBiBc t K, (Bioy + Bioy + Beoy), 1<i,jk<n,

Kij = (4 +3K22)'ﬂiﬂjﬂkﬂ( (2.4)
+ (15 + KK, - (ﬂiﬂjak/ +BBoy + BBy + BiBoy + BiBow+ BiBo;

+ (%, +K12)'(Uij0k€ +oy0;, +o,0), 1<i, )k f<n.

Proof. In virtue of the representation (2.1) the expression for the mean vector is immediate.

For the central moments it suffices to consider the case & =0. With (2.1) the vector

components of X are X, =W +\/V_\I-Zi, i=1..,n, where W is independent of

Z, ~ N(0,0;) . The relationships between moments and cumulants

2 2
K,=m, K,=mM,—-m, x,=m;—3mm,+2m/,

K, =m, —4mm, —3m; +12m?m, — 6m;

will be used repeatedly without further mention. One has
E[X; X;1=E[BOW? +(BZ; + BZ )W +Z,ZW]=m,f,B; + Moy,

which implies the expression for the covariance. Similarly, one has

E[Xixjxk] = E[:Biﬂjﬂkws +(ﬁiﬂjzk +:Bi/8kzj +,Bj:8kzi)W5/2
+(BZ,Z, + B, Z,Z, +ﬁkZiZj)W2 +ZiZjZkW3/2].

With the fact that E[Z;Z,Z,]=0 (theorem of Isserlis) one sees that



WERNER HURLIMANN 768

E[xixjxk] =m, - BB B +m, ‘(ﬂio'jk + B0y + Boy)-

Insert this and the fact that 4 =m,,,V; =, 8,8, + .05 into the first relation of (2.3)

to obtain the coskewness formula in (2.4). Proceeding in the same way, one shows that

E[XinXkX/,’]= E[ﬂiﬂjﬁkﬂsz4

+(BBiBZ, + BB BL +BBBLZ; + BB BLIW "

+(BBZ L, + BBLZ, +BBLL+ B BLLZ, + BB, +ﬂk18é’zizj)w3
+(B2,2,Z, + B;Z,ZZ, + B ZZZ, +ﬂ,,,ZiZJ-Zk)W3/2 +ZiZjZkZ[W2].

Since E[ZZ,Z,Z,]= 0,0, +0y0;, +0,0; (theorem of Isserlis) one gets

E[xixjxkxﬁ] =m, BB, B, +m; '(ﬂiﬂjo'k{z + B Boy

+B.B,0y + B Bioi, + BiB.ow + BB,o;)+m, (0,0, +0y0; +0,0).

Insert this, 4 =m B,V =x,8p; +Kxo0; and the coskewness relation in (2.4), into the

second part of (2.3) to get

Kijk( =(m, —4m x, _6m12K2 _mf)'ﬂiﬂjﬂkﬁ/
+(m, —2m,x, —m;)- (BiBiow + B.Bo; +BB.ow+ BB+ BiB,oy + BB

+m, (00, + 040}, +0,0).

Taking into account the relationships between moments and cumulants one obtains after

rearrangement the cokurtosis formula in (2.4). ©

3. Ageneral moment method

We are ready for the generalization of the moment method in HUrlimann (2013b), Section 3.

For any fixed «=(x,,x,,k5,k,) and given the mean parameters (z;), the coskewness
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and cokurtosis parameters (S; ) and (K;,), we determine the remaining parameters
Vi), (o), (&), (B) interms of them. In particular, it is shown that the covariance matrix
(V) of the NVM distribution functionally depends upon coskewness and cokurtosis. First
of all, given the mean x and assuming S has been determined, it is clear that & is
obtained from the mean vector equation as &= u—x; . Similarly, once (V;), (5)
have been determined, the parameter matrix X = (o) is obtained from the covariance
equation as oy = K {V,; —x, - B B;} Next let us examine the coskewness equations. For
this, consider the coskewness vector S(X)=(S,,...,S,) derived from the star product

S(X)=1,,,*M,[X] such that

- i Sy, i=L..n. (3.1)

j,k=1

Si
The following short hand notation for sums of covariances and parameters is used:

V, =J_i_lvij :ji_lvji, V=3V, M=X3. (3.2)
The evaluation of (3.1) based on the coskewness formula in (2.4) yields the relationships

{r, V —(Bx; —Kkx3)-M?}- B +2k,-MV, =x,-S;, i=1..,n (3.3)

Set further S = isi and add the equations in (3.3) to get the equationin (M ,V):
i=1

3k, VM — (3x. —Kx,x5)-M® =k, -S =0. (3.4)

Consider now the cokurtosis equations and define the cokurtosis matrix =~ K(X)=(Kj;)
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using the star product K(X)=1__*M,[X] such that
Kj :k,%lK””’ i,j=1..,n. (3.5)

A calculation of (3.5) based on the last equations in (2.4) yields

Ky = (x, +3x7)-M?BB;

+ (x5 +r,x,) {7t (V — x,M z)ﬂiﬂj +2K'l_l(\/j - x,MB;)MB,

+ 2 (Vi = 16, MB)MB; + k' (Vy = K, 5, 5;)M *}

+ (1, + &) x (V= 1B )N —5,M %) + 267 (V; = 5, MB )V = x,MB;)}
={K1_1(1<3 +K,K,) —Kl_ZK‘Z (x, +1<12)}-Vﬁiﬁj

+{Kc, +3K; — 6Ky i, (ic; + iy K,) +3ky Pk, (i, + K1)} M2 BB,

+{2K1"2(1<3 +K1K2)—2K1"2K2(K2 +K12)}~ M .(Vj,Bi JrVi,BJ-)+2K1"2(K2 +K‘12)ViVj

+{K{2 (K5 +1,K,) = Kfsz (, + Klz)} M 2Vij + Kfz (, + Klz) 'Wij :
Multiplying with  x/  and rearranging one obtains the equations

{(xx5 _Kzz)v — (31, (2K _Kzz)_KlzK4)M 2}'18i18j
+2(rc, 54 _Kzz) ‘M '(Vjﬂi +Viﬂj)+2(K2 +K12) ViV, (3.6)

+{(x K _Kzz)M 2+ (%, +K12) 'V}'Vij = Klz K-

Further, summing (3.6) with the short hand notation K, = iKij = iKii, i=1...,n, one
j=1 j=1

gets

{B8(xyx; —x3) -V = (3x, 2K,k — K7) — K7 K,) - M} MB,

3.7
+{3(xx, —x2)-M? +3(c, +7)-V}V, =7 -K;, i=1..,n 6.1

With K :iKi one obtains through addition of (3.7) a further equation in (M,V),

i=1

namely
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{3k, 2K, —x2) — k2,3 M —6(k,x, —x2) VM 2
2 1™3 2 1™4 1™3 2

(3.8)
~3(x, + 7))V +x7-K=0.

The resulting system of non-linear equations (3.3), (3.4), (3.6), (3.7), (3.8) in the unknowns

(8,,M,V;;,V;,V) s solved by applying a three-stage procedure.

Step 1: solve the equations (3.4) and (3.8) for the parameters (M,V)

From (3.4) one gets

V= (3K22—K1K3)-M3+K18. (3.9)
3k, -M
Insert this expression into (3.8) and multiply with 9x2-M? to see that M satisfies

the following sextic equation in the parameters (S, K):

{8x2 (2K, —3x% —K,) + K2 Bk, — k) M®

(3.10)
— 2A2x, %, + 3K,k — Kk K, 3 SM® +3k7 - KM ? —(x, +x7)-S? =0.
Step 2:  solve the equations (3.3) and (3.7) for the parameters  (5.,V,),i=1...,n
From (3.3) one gets
g = S =26, MV, i=1...n. (3.11)

- K,V —(Bx? —KkK5)-M?

Insert this into (3.7) to see that V, is function of the parameters (M,V,S;,K,), which

are determined using the values from Step 1. One obtains
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v.=A isin with (3.12)

A =xi-K - xif3(ryx; — &3) -V — (3K, (2x,x; — k7) — K'K,) - M} MS,
' K,V —(Bx] —KK,) - M?

B, = 3{(xx; —K‘22) M?+ (x, + Kf) ‘V} (3.13)

2, {8(k 1k —x2)-V — (B, 2,0, — K2) — Kk K,)-M?}-M?

K,V —(3x; —K,,) - M ?

Step 3: the unknowns (V) are obtained from the equation (3.6), where one must verify

that the covariance matrix (V) and its associated correlation matrix are positive

semi-definite. The stated condition can be tested simply and efficiently (e.g. Kurowicka and

Cooke (2006), Section 4.5.1, or HUrlimann (2012b), Lemma 2.1).

The described general moment method is useful for parameter estimation. Given a sample

(X;,-.nXy) of size N, where each x is an observation of the random vector

X =(X,,..., X,), one considers the following sample estimates of the coskewness vector and

cokurtosis matrix:

S(X)= (8,108 ) =N L * 3 (x. X ®X,),
r=1

R \ (3.14)
K(X)=(Ky) = N1+ 200X @ X]).
r=1
Samples estimates of the quantities S, K;, K, are obtained through summation as
$=3$, K =¥K, =YK, i=1.,n K=%K, (3.15)
i=1 j=1 =1 i=1

Inserting these estimates into the derived formulas, one obtains for any fixed
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Kk =(Kk,,K,,k;,k,) estimates of the NVM parameters in terms of the sample mean vector,

coskewness vector and cokurtosis matrix. The final Section illustrates with a real-world

application of this procedure for a selection of mixing distributions.

4. Moment method for a selection of mixing distributions

To illustrate the moment method for multivariate NVM mixture models, we consider the
generalized hyperbolic (GH) distribution with a generalized inverse Gaussian (GIG) mixing
distribution, and the normal tempered stable (NTS) distribution with a classical tempered
stable (CTS) mixing distribution. There is a wide and continued interest in the GH family of
distributions (e.g. Eberlein and Keller (1995), Prause (1999). Eberlein (2001), Eberlein and
Prause (2002), Bibby and Sorensen (2003), Eberlein and Hammerstien (2004), Embrechts et
al. (2005), etc.). The GH distribution contains three important subfamilies, namely the normal
inverse Gaussian (NIG) with an inverse Gaussian (IG) mixing distribution, the
variance-gamma (VG) with a gamma mixing distribution, and the skew hyperbolic t (SHT)
with an inverse gamma mixing distribution. The NIG has been used for financial modelling
by Eberlein and Keller (1995), Barndorff-Nielsen (1997/98) and Rydberg (1998) among
others. The VG has been introduced by Madan and Seneta (1990) (see also Madan and Milne
(1991), Madan et al. (1998), Madan (2001), Carr et al. (2002), Geman (2002), Fu et al. (2006),
etc.). The univariate version of the SHT has been considered in Frecka and Hopwood (1983),
Theodossiu (1998), Aas and Haff (2006), Scott et al. (2009), HCrlimann (2009) and Ghysels
and Wang (2011) among others. The NTS has been initially studied as subordinated Gaussian
process by Barndorff-Nielsen and Shephard (2001) and Barndorff-Nielsen and Levendorskii
(2001). More recent studies include Krause (2011) and Kim et al. (2012). The NTS also

includes the NIG as special case. The presentation is divided into two parts.

4.1. Generalized inverse Gaussian mixing distribution
An important class of NVM models is the generalized hyperbolic (GH) distribution. It

belongs to the generalized inverse Gaussian (GIG) mixing random variable

W ~GIG(4,0,y) with cgf
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7/2_2t K, ()

Cw (V) —%ﬁ..ln{y—z}ﬂn{K’lw i 2t)}

where K, (x) is the modified Bessel function of the third kind. The domain of variation

of the parameters depends upon three cases.

Case 1: generic GH distribution with —co<A<ow, >0, >0
Case 2: variance-gamma (VG) distribution with  4>0, 6=0, y>0

Case 3:  skew hyperbolic t (SHT) distributionwith A<0, 6>0, =0

In the limiting Case 2 the mixing distribution reduces to a gamma distribution (VG
distribution) and in Case 3 one has an inverse gamma distribution (SHT distribution). We

begin with the NIG distribution as representative of the generic case. In Case 1 it is

convenient to re-parameterize the GIG by setting « =3y >0, so that the cgf reads

2 K 2 2 2
Co® =22 % L Kiat =20 | (4.1)
2 a”—20°t K, (@)
Case 1: Multivariate normal inverse Gaussian (NIG)
The normal inverse Gaussian (NIG) is obtained for A=-1 with  cgf

C, () =a—+a®—25%t. We assume a mean of one unit, hence &° =« . The first four

cumulants are then given by

K, =—=. (4.2

Q
Q
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The multivariate moment method for the NIG can be summarized as follows. The

straightforward details of the derivation are left to the interested reader.

Step 1. parameters (M,V) as functionof («,S,K)

12SM 3 —3aKM ? + ?(1+ @)S2 =0, V =§‘—I\j.

Step 2: parameters (f,,V;) asfunctionof (a,M,V,S,,K,)

v -1 a’K, —6aMs, 5 _ a5, 2 (a’K,-6aMs;)-M
' 3al+alV-2M?" TV 3(al+a)V -2M?).V'

where one must assume that a(l+a)V —2M? #0.
Step 3: parameters  (V;) asfunctionof  (a,M,V,S,V,,Kj)

= azKij —20(+a)VV; —NB B 4V 5 +ViSiM
i all+a)V +2M? |

Case 2: Multivariate variance-gamma (VG)

The variance-gamma (VG) is obtained from a gamma mixing random variable

W ~T(@/v1/v) withcgf C,(t)=-v"-In(L—-wt). The first four cumulants are

K =1 K,=v, K;= 2v2, K, = 612, (4.3

A summary of the moment method follows. The special case v =1 is the multivariate
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asymmetric Laplace (AL) discussed in HUrlimann (2013b). For arbitrary v >0

method has first been applied in HUrlimann (2013c).

Step 1. parameters (M,V) as functionof (v,S,K)

2 3
v —DV*ME —2(1+ 4v)v2SM® + 3 KM 2 —(1+1)S2 =0, V :%.
Step 2: parameters (f,,V,) asfunctionof (v,M,V,S; K,)
C1 K -3,
'3+ v)V —viIM?
S, 2 (K, =3mWS;)-M :
ﬂi: 2 _-— 2 P N |:1,...,n,
v(V-iM°) 3V -wW)-(L+v)V-v M)
where one must assume that  (V —vM?)-(A+v)V —v°*M?) #0.
Step 3: parameters  (V;) as functionof  (v,M,V, 5.V,,Kj)
_ Kij —20+v)VV, —vi(V _3‘/M2):Biﬂj _ZVZ(Viﬂj + V)M Cdi=l..n

! L+ V)V +v2M?

Case 3: Multivariate skew hyperbolic t (SHT)

776

the

The skew hyperbolic t (SHT) is obtained from an inverse gamma mixing random variable

W ~ IT(e, : 52) with characteristic function (chf) @, (z) = 2(-i15%2)? K, (V—-2i5%2) IT(a) .

The cumulants exist only for « >4 and are given by
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5° 5
Ki=——, K,= 5 ,
2(a-1) da-1)(ax-2)
. 5° = 3(a -11)5°
P 2a-D)(a-2)(@-3) ' 8a-D'(a-2)*(a-3)(a-4)

Setting 6% =2(a—1) to normalize the mean to one unit, one obtains

ST 4 6(5a —11)

Ky=————, K, = > . (4.9
oa—2 (a-2)(ax-3) (x-2)(x-3)(x—4)

Omitting the calculations, the moment method summarizes as follows.

Step 1. parameters (M,V) as functionof («,S,K)

(@ +5)°M°® =2(a—2)(a —3)(a — 4)(a = 7)SM ® =3(a — 2)( = 3)* (@ — 4)KM ?
(@=2)*(a—3)S — (a +1)M°
3(a-2)(a—-3M '

+(a-D(a-2)*(a—-3)*(x¢-4)S°=0, V=

Step 2: parameters (f.,V,) asfunctionof (o,M,V,S, K,)

The equations (3.3) and (3.7) are equivalent to the following linear system of equations

(@-2)(@-3){(@-2)S, ~2MV;}

' (-2 (a=3)V +(a+1)M?

30 -5 3’ - -8
V +
(¢ -2)*(a-3) (a—2)*(a-3)(a—4)
+{ 3a-5 M 2 a-1 1

- + V}-V, ==K,
(a—2)(x-3) o—2 3

{ M?}-Mp,

Step 3: parameters  (V;) asfunctionof  (a,M,V,S,V,,Kj)
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{ 3a2—5 |\/|2+0‘_‘1v}.vij :Kij_MViVj
(a=2)" (-3 a—2 o—2
_ 3a -5 3(B3a? —a -8) -
Y@ w-oa-aa-a 0P
_ 2Q@a-))
@27 AN

4.2. Classical tempered stable mixing distribution

The classical tempered stable (CTS) mixing random variable W ~CTS(«,0,y) IS

determined by the cgf
CyM=a*{r“—(y*-25)7}, a<(02),5,7>0.

The corresponding NVM mixture is called normal tempered stable (NTS) model. A study and

application of the univariate model is found in HCrlimann (2013e). A calculation shows that

a k*
ClO®) =% (% 25 1] -a), k=1
j=1
k=
where an empty product is one. It follows that «, = 5%y * -Hi(Zj —a), k>1. Setting
=

6% =y*“ to normalize the mean to one unit, one obtains

2—«a :(Z—a)(4—a) o :(Z—a)(4—a)(6—a)

Ky :1’ K, = a ! K3 2a 4 3a

/4 v v

(4.5)

In the special case «a =1 one recovers the NIG distribution analyzed in Case 1 of Section

4.1. In general, and in contrast to Section 4.1, the multivariate moment method offers more

flexibility while depending upon two free parameters o €(0,2),y >0 . The method

summarizes as follows.

Step 1: parameters (M,V) as function of («,y,S,K)
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20-a)2-a)*{2-a)(4—a)-2(1-a)y“IM°®
—42-a)y*{2-a)4-a)+(1-a)y“ISM?
+32-a)’ y*KM? —y**(2-—a+y“)S* =0,

V= 20-a)2-a)M?® +y**S
3(2-a)y*M '

Step 2: parameters (f.,V,) asfunctionof (e,y,M,V,S; K.)

The equations (3.3) and (3.7) are equivalent to the following linear system of equations

S —22-a)y MY,
C(2-a){rV -20-a)M}’

B

2(2-a)By°V —(1-a)(6- )M *}- Mg,
+y6(2-a)M? +3y*2—a+y*WV}-V, = yr*K..

Step 3: parameters  (V;) asfunctionof  (a,7,M,V, 5.V, K;)

y 22-a)M? +y* (2—0{+7/”’)V}-Vij = ysaKij —2)/2“(2—a+y/“)-ViVj
-2Q2-a){yV -(1-a)6-a)M?}- BB, —42-a)y "MV, B; + BV,)

5. Statistical estimation of bivariate NVM logarithmic returns

We consider now two stock market indices for which all the mean, coskewness and
cokurtosis quantities can be estimated. Return observations stem from the following seven
different pairs of bivariate data from the Standard & Poors 500 (SP500) and the NASDAQ
100 (NDX) data sets:

SP500/NDX/3Y:
754 daily closing prices over 3 years from 04.01.2010 to 31.12.2012
SP500/NDX/5Y:
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1259 daily closing prices over 5 years from 02.01.2008 to 31.12.2012
SP500/NDX/10Y:

2516 daily closing prices over 10 years from 02.01.2003 to 31.12.2012
SP500/NDX/15Y:

3773 daily closing prices over 15 years from 02.01.1998 to 31.12.2012
SP500/NDX/20Y:

5093 daily closing prices over 20 years from 04.01.1993 to 31.12.2012
SP500/NDX/25Y:

6302 daily closing prices over 25 years from 04.01.1988 to 31.12.2012
SP500/NDX/27Y:

6808 daily closing prices over 27 years from 02.01.1986 to 31.12.2012

These data sets are typical as they contain short to medium high volatile periods (recent 3 and
5 years), moderate long term periods (10 and 15 years), and long term periods (20,25 and 27
years). The last data set has been included because it contains the highest and lowest daily
changes observed so far (drop in 22.9% and 16.3% for SP500 respectively NDX on
19.10.1987, increase of 17.2% for NDX on 03.01.2001).

The Table 5.1 below lists the required sample moment estimates for the bivariate
logarithmic returns obtained from each of these combinations. Up to the 15Y and 20Y
periods the coskewness vector has always negatively skewed components. The exception is
the NDX. In the 15Y case one has also S =S, +S, >0. Over the longest period of 27Y the

coskewness components take the highest negative values. Up to the shortest 3Y period the

overall cokurtosis coefficient K =K, +2K,,+K,, exceeds 5 and is highest for the 5Y

and 27Y periods. For specific fixed values of x=(x,,x,,x;,,) the bivariate NVM

mixtures are fitted to the data following the moment method in Section 4.
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Table 5.1: Sample moment estimates of bivariate log-returns

moment estimates

unit 1074 107-6 107-6

SP500/NDX pl p2 S1 S2 S K11~ K12=K21 K22 K
3Y 3.05639 4.56635|-2.53599 -2.38737 -4.92336| 0.49211 0.49395 0.50763 1.98765
5Y -0.11603 2.07454(-3.14410 -2.33368 -5.47779| 2.95173 2.94873 3.03195 11.8811

10Y 1.79008 3.78059|-1.88119 -1.36265 -3.24384| 1.53194 1.54845 1.62493 6.25377
15Y 1.00817 2.57285|-0.55355 1.38095 0.82739]| 1.42779 1.85222 3.06706 8.19929
20Y 2.35612 4.00594|-0.87526 0.43794 -0.43732| 1.11516 1.44658 2.39096 6.39928
25Y 2.72626 4.45475(-1.14828 -0.12651 -1.27479] 0.93652 1.20443 1.97202 5.31740
27Y 2.81711 4.43105|-6.53485 -4.19231 -10.7272| 2.18012 2.12053 2.63988 9.06107

One can argue that linear correlation cannot be fitted once the margins are fixed. However,
the proposed moment method does not fit the margins separately, but provides an overall
parsimonious fit of all its parameters regardless of the margins and the dependence structure.
For this reason, it is important to discuss its goodness-of-fit capabilities. In particular, an
analysis of the goodness-of-fit of the estimated margins is undertaken. To do so our

goodness-of-fit (GoF) measure is based on statistics, which measure the difference between

the empirical distribution functions F, (x) and the estimated marginal distribution

functions F(x). We use the Cramé&-von Mises family of statistics defined by (e.g.

D’Agostino and Stephens(1986), Cizek et al.(2005) and Burnecki et al.(2010))

T =n- [[F,00- FOOPWOOdF (), (5.1)

where  w(x) is a suitable weighting function. If W(X):]./[F(X)IE(X)] one gets the
A?  Anderson-Darling (1952) statistic. Consider the order statistics of the return data such
that r,<r,<..<r, and let F(r),i=1..,n, be the estimated values of a marginal
distribution function. Then one has

n 2i—1

A? =-—n— = In{lf(ri )- I%(rn_i+l )} (5.2)

The values If(ri) are obtained numerically by integration of the marginal densities
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(Appendix 1) or their fast Fourier transform (FFT) approximations (Appendix 2). The
Anderson-Darling statistic yields one of the most powerful test if the fitted distribution
departs from the true distribution in the tails (e.g. D’Agostino and Stephens(1986)), and is
recommended in this situation. Now, the observed sample return marginal data is skewed and
has a much higher kurtosis than is allowed by a normal distribution, which indicates that the
fit in the tails matters and justifies the use of (5.2). Needless to say, the proposed moment
method is only a starting point for improved GoF estimation methods. However, a more
complex data analysis is beyond the scope of the present study. To weight the influence of the

margins, we use the Euclidean distance to define an overall GoF measure as
||A||2 =(A’)? + (A%, with  A?,i =12, the Anderson-Darling statistics of the margins.
To calculate the FFT approximations of the marginal densities as specified in Appendix 2,

one uses the following analytical expressions for their characteristic functions. Suppose that

the marginal distributions are of the form

X =& + B W+IW -Z,,Z, ~N(0,72), k=12,

NIG distribution: ¢, (2) = exp{&, -iz +a—Ja? +a- (722 -2, -iz)}

VG distribution: #y, (2) = ep{&, iz} L+ 1v-(r22? - 2B, i)}

by, ()= 265" L (a~1)- (22 ~ 25, -2)}"
T(a) K, (J2(a-1)- (z222 -2, -iz))

SHT distribution:

where TI'(e) isthe gamma functionand K, (x) is the Macdonald function (also called

modified Bessel function of the 2nd kind, hyperbolic Bessel function of the 3rd kind, Basset

function, modified Hankel function) (see (Oldham et al. (2009), Section 51).

NTS distribution: ¢y (z) = exp{¢, -iz + at -y (P2 -2, [i2))7}}

The estimated parameters and GoF statistics of the different NVM mixtures are summarized
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and compared in the Tables 5.2 to 5.6. Table 5.7 summarizes the GoF |A| ranking

between these bivariate return distributions. Except for the 3Y period, best fitted by the
bivariate VG, the best fit is always attained at the bivariate NTS and its NIG subfamily,
followed by the bivariate VG (4 times) and the bivariate SHT (2 times). Let us attribute
points to these rankings, say as much points as the rank is. Then, the NTS achieves 13 points,
the NIG 25 points, the VG 39 points and the SHT 43 points. One can conclude that, in the
present case study, the bivariate NTS and NIG perform best in terms of overall
goodness-of-fit. A significant difference between the NTS and the NIG is only observed over

the middle periods 5Y and 10Y, as seen in Table 5.5. One notes that the SHT moment method

remains feasible over the range « €(2,4), a # 3, though the third and fourth order cumulant

do not exist. An explanation for this analytical continuation remains to be formulated in

mathematical terms.

Table 5.2: Parameter estimates and GoF statistics for the bivariate NIG family

parameter estimates GoF statistics GoF statistics
unit 107-3 107-2 FFT method numerical integral
period| a €1 €2 B1 B2 ol ° p A12 A22 ||AlI] A12 A2 ||A]]

3Y | 0.775[ 1.63850 1.52567 -1.33286 -1.06903| 1.1397 1.1654| 0.96500| 0.87 1.00 1.32( 0.85 1.01 1.323
0.800| 1.66909 1.55028 -1.36345 -1.09365| 1.1449 1.1707| 0.96500( 0.96 0.87 1.29| 0.96 0.87 1.289
0.825] 1.69959 1.57482 -1.39395 -1.11818| 1.1498 1.1757]| 0.96500| 1.09 0.73 1.31] 1.07 0.74 1.305
5Y | 0.375[ 0.46976 0.38601 -0.48136 -0.17855| 1.6138 1.6394| 0.95867| 1.23 2.07 2.40[ 1.40 2.26 2.656
0.400| 0.49001 0.39354 -0.50162 -0.18608| 1.6327 1.6586( 0.95866( 1.44 1.56 2.12| 1.59 1.74 2.360
0.425| 0.51002 0.40098 -0.52162 -0.19352| 1.6504 1.6765]| 0.95864| 1.82 1.29 2.23|] 1.96 1.46 2.445
10Y | 0.375( 0.58586 0.50977 -0.40686 -0.13171]| 1.3680 1.4119]0.94649| 3.52 8.67 9.36] 3.77 9.02 9.781
0.400| 0.60298 0.51533 -0.42398 -0.13727| 1.3841 1.4284| 0.94647( 5.17 6.24 8.10| 5.39 6.57 8.497
0.425| 0.61989 0.52082 -0.44089 -0.14276| 1.3991 1.4438] 0.94645| 7.06 4.43 8.33| 7.26 4.73 8.669
15y | 0.525[ 0.51993 -0.31111 -0.41911 0.56839| 1.3982 1.9718| 0.69932| 2.71 6.82 7.34| 2.86 7.31 7.850
0.550| 0.53329 -0.32923 -0.43247 0.58651| 1.4089 1.9868| 0.69927( 3.87 6.23 7.33| 4.00 6.70 7.806
0.575| 0.54656 -0.34723 -0.44574 0.60451| 1.4190 2.0010] 0.69922| 5.33 6.38 7.89] 5.33 6.38 8317
20Y [ 0.450| 0.65518 0.06165 -0.41957 0.33894( 1.2793 1.8061| 0.70063| 3.76 11.5 12.1] 3.92 12.2 12.82
0.475| 0.67037 0.04938 -0.43476 0.35122| 1.2912 1.8229 0.70057( 5.91 9.00 10.8| 6.04 9.66 11.39
0.500| 0.68543 0.03721 -0.44982 0.36338| 1.3024 1.8387| 0.70051| 8.40 7.18 11.1] 851 7.82 11.55
25Y [ 0.450| 0.76206 0.21393 -0.48944 0.23155( 1.2253 1.7192| 0.70166| 4.02 10.6 11.3] 4.01 11.5 12.20
0.475| 0.77979 0.20555 -0.50716 0.23993| 1.2368 1.7352| 0.70159( 6.54 8.30 10.6| 6.50 9.18 11.25
0.500| 0.79735 0.19724 -0.52472 0.24823| 1.2475 1.7502] 0.70153| 9.52 6.82 11.7] 9.46 7.66 12.18
27Y [ 0.300| 1.43306 0.59002 -1.15135 -0.14691| 1.4675 1.6391| 0.69981| 26.8 37.9 46.4] 254 39.0 46.50
0.325| 1.49079 0.59780 -1.20908 -0.15469| 1.4909 1.6643| 0.69951( 37.1 26.6 45.6| 35.6 27.6 45.07
0.350] 1.54753 0.60543 -1.26582 -0.16233| 1.5125 1.6875| 0.69926| 48.2 18.3 51.6] 583 13.3 59.82
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Parameter estimates and GoF statistics for the bivariate VG family

unit
period

€1

parameter estimates

107-3

€2

Bl

B2

107-2
Tl 2

p

GoF statistics
FFT method

A1?

A2?

LAl

GoF statistics
numerical integral

A12

A2?

AL

3Y

1.02
1.03
1.04

1.88232
1.87088
1.85966

1.72341
1.71422
1.70520

-1.57668
-1.56524
-1.55402

-1.26678
-1.25758
-1.24856

1.1819 1.2062
1.1804 1.2048
1.1810 1.2033

0.96505
0.96505
0.96505

0.80
0.76
0.72

0.56
0.61
0.66

0.98
0.97
0.98

0.75
0.70
0.67

0.56
0.61
0.66

0.9311
0.9308
0.9386

5Y

1.60
1.65
1.70

0.66333
0.64915
0.63575

0.45815
0.45288
0.44790

-0.67494
-0.66075
-0.64735

-0.25070
-0.24543
-0.24044

1.7604 1.7867
1.7520 1.7782
1.7438 1.7700

0.95832
0.95832
0.95832

1.86
1.65
1.52

1.75
1.94
2.20

2.55
2.55
2.67

1.99
1.79
1.67

1.93
213
2.40

2.776
2.784
2.925

10Y

1.60
1.65
1.70

0.74951
0.73752
0.72618

0.56303
0.55914
0.55546

-0.57050
-0.55851
-0.54718

-0.18497
-0.18108
-0.17740

1.4923 1.5387
1.4852 1.5314
1.4783 1.5243

0.94608
0.94608
0.94608

9.44
8.45
7.64

6.75
7.84
9.07

11.6
115
11.9

9.61
8.64
7.84

7.11
8.22
9.46

11.954
11.925
12.291

15Y

1.30
1.35
1.40

0.64722
0.63267
0.61910

-0.48374
-0.46401
-0.44561

-0.54640
-0.53185
-0.51828

0.74103
0.72129
0.70290

1.4832 2.0914
1.4752 2.0802
1.4675 2.0693

0.69738
0.69738
0.69738

7.40
6.40
5.70

7.62
8.15
8.92

10.6
10.4
10.6

7.49
6.51
5.82

8.28
8.82
9.63

11.162
10.963
11.247

20Y

1.40
1.45
1.50

0.81036
0.79629
0.78311

-0.06371
-0.05234
-0.04169

-0.57475
-0.56068
-0.54749

0.46430
0.45294
0.44228

1.3783 1.9447
1.3712 1.9347
1.3643 1.9249

0.69874
0.69875
0.69875

14.4
12.6
11.2

10.4
11.8
13.5

17.7
17.3
17.6

143
12.5
11.1

11.2
12.7
14.4

18.167
17.816
18.233

25Y

1.45
1.50
1.55

0.92655
0.91117
0.89672

0.13616
0.14344
0.15027

-0.65392
-0.63854
-0.62409

0.30931
0.30204
0.29521

1.3140 1.8413
1.3074 1.8321
1.3009 1.8230

0.69970
0.69970
0.69971

16.4
14.7
13.5

14.2
15.9
18.0

21.7
21.7
22.5

16.0
14.4
13.2

15.3
17.0
19.1

22.145
22.279
23.240

27Y

2.00
2.05
2.10

1.86615
1.84044
1.81586

0.65195
0.64850
0.64520

-1.58443
-1.55873
-1.53414

-0.20884
-0.20539
-0.20210

1.6244 1.7971
1.6176 1.7897
1.6109 1.7824

0.69520
0.69522
0.69525

70.5
67.7
65.3

384
42.9
47.6

80.3
80.2
80.8

67.6
64.7
62.3

39.6
44.1
48.9

78.313
78.320
79.165

784
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Table 5.4: Parameter estimates and GoF statistics for the bivariate SHT family

parameter estimates GoF statistics

unit 107-3 107-2 FFT method
period a €1 £2 B1 B2 1l 12 ) A1Z A2 ||A]]
3y 2.52| 1.27641 1.24598 -0.97077 -0.78934( 1.1121 1.1211]| 0.96530| 2.04 1.64 2.617

2.53| 1.28831 1.25582 -0.98268 -0.79918|1.1163 1.1251(0.96531| 2.10 1.56 2.615
2.54] 1.30014 1.26560 -0.99450 -0.80897|1.1205 1.1290| 0.96532| 2.16 1.48 2.623
4.0314( 2.49386 1.61861 -2.18822 -1.16198| 1.0955 1.0851(0.99582| 3.65 1.99 4.161
4.0315( 2.50859 1.64138 -2.20295 -1.18475|1.0972 1.0901( 0.99472| 3.69 1.91 4.156
4.0316( 2.52257 1.66304 -2.21693 -1.20640| 1.0988 1.0947(0.99371| 3.72 1.85 4.156

5Y 2.21] 0.32517 0.33298 -0.33677 -0.12553| 1.4469 1.4649| 0.95731| 4.64 397 6.10
2.22| 0.33450 0.33647 -0.34611 -0.12901| 1.4608 1.4790| 0.95729| 4.79 3.76 6.09
2.23| 0.34372 0.33991 -0.35532 -0.13245( 1.4742 1.4925| 0.95728| 497 3.61 6.15
4.0006599| 1.64801 0.74354 -1.65961 -0.53608( 1.9226 2.0054| 1.00000| 35.24 28.29 45.19
4.001| 1.64178 0.77301 -1.65338 -0.56556| 1.9558 2.0230( 0.98300| 37.55 29.38 47.68

10Y 2.20| 0.45570 0.46811 -0.27669 -0.09005| 1.2141 1.2488| 0.94493| 9.65 8.86 13.10
2.21) 0.46370 0.47072 -0.28469 -0.09266|1.2265 1.2615| 0.94492| 10.61 7.68 13.09
2.22| 0.47159 0.47329 -0.29259 -0.09523( 1.2384 1.2736| 0.94490| 11.61 6.67 13.39

4.000546( 1.58664 0.76117 -1.40763 -0.38311| 1.6205 1.7243( 1.00000| 91.38 41.43 100.34
4.001| 1.57711 0.79583 -1.39811 -0.41777| 1.6623 1.7457(0.97148| 99.32 44.36 108.77

15Y 2.31] 0.39923 -0.14743 -0.29841 0.40472| 1.2770 1.8003| 0.68962| 6.18 11.22 12.81
2.32| 0.40516 -0.15548 -0.30434 0.41276| 1.2847 1.8113( 0.68949 6.73 10.79 12.71
2.33| 0.41104 -0.16346 -0.31023 0.42074( 1.2923 1.8219| 0.68937| 7.31 10.44 12.75
4.0000198| 1.25319 -1.30337 -1.15237 1.56066( 1.4856 2.1840| 1.00000| 57.45 42.62 71.54
4.001| 1.24867 -1.29938 -1.14785 1.55667| 1.6431 2.3191| 0.71095| 95.22 59.71 112.39

20Y 2.26] 0.53283 0.16046 -0.29726 0.24014| 1.1598 1.6330| 0.69238| 11.60 14.45 18.53
2.27| 0.53974 0.15491 -0.30413 0.24568| 1.1685 1.6453| 0.69228| 12.78 13.23 18.40
2.28| 0.54653 0.14942 -0.31092 0.25117(1.1770 1.6571) 0.69218| 14.03 12.19 18.59
4.0000073| 1.50981 -0.62921 -1.27419 1.02981 1.3707 2.0807| 1.00000| 97.13 61.39 114.91
4,001| 1.50841 -0.62762 -1.27280 1.02822| 1.5433 2.1839| 0.70820| 161.9 81.43 181.18

25Y 2.25| 0.61102 0.28549 -0.33839 0.15999| 1.1043 1.5414| 0.69317| 11.09 15.01 18.67
2.26| 0.61910 0.28167 -0.34647 0.16380|1.1130 1.5535| 0.69308| 12.47 13.75 18.56
2.27| 0.62709 0.27789 -0.35447 0.16758( 1.1214 1.5651| 0.69298| 13.95 12.72 18.88
4.0000933| 1.77519 -0.27843 -1.50256 0.72390( 1.2877 1.9917| 1.00000| 107.5 92.46 141.82
4.001| 1.75876 -0.25866 -1.48613 0.70414(1.4614 2.0728| 0.72943| 191.8 114.8 223.60

27Y 2.12] 0.94133 0.53564 -0.65962 -0.09253| 1.2486 1.3533| 0.68436| 36.81 56.72 67.62
2.13( 0.97124 0.53990 -0.68953 -0.09679| 1.2714 1.3776| 0.68433| 44.13 47.61 64.92
2.14| 1.00033 0.54405 -0.71862 -0.10095( 1.2926 1.4003| 0.68427| 51.54 40.12 65.32

4012121 5.05933 0.42347 -4.77761 0.01963| 1.5635 1.9740( 1.00000| 272.3 107.0 292.60
4.02) 494132 0.75073 -4.65961 -0.30762| 1.7188 2.0721| 0.82040( 357.6 137.6 383.18
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Table 5.5: Parameter estimates and GoF statistics for the NTS and NIG family
parameter estimates GoF statistics
unit 107-3 101-2 FFT method
period a Y €1 €2 B1 B2 11 © p A1 A22 ||A]]
3Y 0.98 0.81 | 1.40834 1.34118 -1.10270 -0.88454| 1.1518 1.1748( 0.96508( 0.93 0.86 1.27
1 0.80 | 1.66909 1.55028 -1.36345 -1.09365| 1.1449 1.1707| 0.96500| 0.96 0.87 1.29
5Y 0.73 0.48 | 0.32663 0.33300 -0.33823 -0.12555| 1.6769 1.7005( 0.95797| 1.42 138 1.97
1 0.40 | 0.49001 0.39354 -0.50162 -0.18608| 1.6327 1.6586| 0.95866| 1.44 1.56 2.12
10Y 1 0.41 | 0.60977 0.51753 -0.43077 -0.13947| 1.3902 1.4347| 0.94646] 590 5.44 8.03
1.17 0.38 | 1.94972 0.95107 -1.77071 -0.57301f 1.2985 1.4131| 0.97209] 5.42 3.93 6.69
15Y 0.89 0.59 | 0.56619 -0.37384 -0.46537 0.63113| 1.4141 1.9942( 0.69962( 3.18 6.40 7.15
1 0.54 | 0.52796 -0.32200 -0.42714 0.57928| 1.4047 1.9809| 0.69929]| 3.38 6.43 7.26
20Y 0.88 0.53 | 0.67288 0.04736 -0.43726 0.35324| 1.3075 1.8454( 0.69970( 6.64 8.16 10.52
1 0.48 | 0.67340 0.04694 -0.43778 0.35366( 1.2935 1.8261| 0.70055] 6.38 8.58 10.69
25Y 0.98 0.48 | 0.76717 0.21151 -0.49455 0.23396| 1.2382 1.7368( 0.70118| 6.34 8.42 10.54
1 0.47 | 0.77625 0.20722 -0.50363 0.23826| 1.2345 1.7320( 0.70160f 5.99 8.69 10.56
27Y 1 0.31 | 1.45628 0.59315 -1.17457 -0.15004| 1.4771 1.6494| 0.69968]30.79 32.95 45.10
1.01 0.31 ] 1.59380 0.61062 -1.31208 -0.16752| 1.4669 1.6488| 0.70285]|31.46 32.15 44.98
Table 5.6: minimum ||A|| GoF statistic on a grid for the NTS and NIG family
period a Y [ 1A]] period a Y | 1A]] period a Y [ 1A]]
3y 0.97 0.81 | 1.27192| 5Y 0.72 0.48 1.97700( 10Y 099 0.4 8.17594
0.97 0.82 1.26798 0.72 0.49 1.97522 0.99 041 8.04533
0.97 0.83 1.27131 0.72 0.50 1.99798 0.99 0.42 8.13940
0.98 0.80 | 1.27389 0.73 0.47 1.99341 1.00 0.40 | 8.10034
0.98 0.81 | 1.26767 0.73 0.48 1.97361 1.00 0.41 | 8.02945
0.98 0.82 | 1.26907 0.73 0.49 1.98078 1.00 0.42 | 8.18328
0.99 0.80 | 1.27545 0.74 0.47 1.98457 1.16 0.36 | 7.09262
0.99 0.81 | 1.27407 0.74 0.48 1.97372 1.16 0.37 | 6.73519
0.99 0.82 | 1.28020 0.74 0.49 1.99005 1.16 0.38 | 6.80486
1.00 0.79 | 1.29995 1.00 0.39 2.18379 1.17 0.37 | 6.77697
1.00 0.80 1.29445 1.00 0.40 2.12207 1.17 0.38 6.69209
1.00 0.81 1.29686 1.00 041 2.12355 1.17 0.39 7.06194
1.01 0.79 1.34766 1.01 0.39 2.16884 1.18 0.38 7.34736
1.01 0.80 | 1.34409 1.01 0.40 2.12238 1.18 0.39 | 7.15127
1.01 0.81 | 1.34833 1.01 0.41 2.13935 1.18 0.40 | 7.59654
period a v [ 1A]] period a Y [ 1A]] period a Y [ 1A]]
15y [ 0.88 0.59 | 7.16142] 20v | 0.87 0.52 | 10.67624| 25Y 0.97 0.47 | 10.75328
0.88 0.60 | 7.15325 0.87 0.53 | 10.52789 0.97 0.48 | 10.53570
0.88 0.61 7.20876 0.87 0.54 10.55249 0.97 0.49 | 10.61594
0.89 0.58 7.18967 0.88 0.52 10.59404 0.98 0.47 | 10.65069
0.89 0.59 7.14939 0.88 0.53 10.51677 0.98 0.48 | 10.53517
0.89 0.60 7.17622 0.88 0.54 10.61423 0.98 0.49 | 10.72048
0.90 0.58 | 7.16248 0.89 0.52 | 10.54217 0.99 0.47 | 10.58464
0.90 0.59 | 7.15724 0.89 0.53 | 10.53861 0.99 0.48 | 10.57515
0.90 0.60 | 7.22030 0.89 0.54 | 10.71029 0.99 0.49 | 10.86695
1.00 0.53 | 7.28807 1.00 0.47 | 10.89829 1.00 0.46 | 10.78287
1.00 0.54 | 7.26230 1.00 0.48 | 10.69321 1.00 0.47 | 10.55718
1.00 0.55 | 7.33272 1.00 0.49 | 10.75092 1.00 0.48 | 10.65685
1.01 0.52 | 7.36767 1.01 0.47 | 10.82585 1.01 0.46 | 10.68721
1.01 0.53 | 7.28498 1.01 0.48 | 10.71449 1.01 0.47 | 10.57014
1.01 0.54 7.30336 1.01 0.49 10.86734 1.01 0.48 | 10.78116
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Table 5.7: Goodness-of-fit ||A|| ranking between NTS, NIG, VG and SHT

data set FFT GoF statistics

period 1 2 3 4
3Y VG NTS NIG SHT
5Y NTS NIG VG SHT
10y NTS NIG VG SHT
15Y NTS NIG VG SHT
20Y NTS NIG VG SHT
25Y NTS NIG SHT VG
27Y NTS NIG SHT VG

Appendix 1: FFT approximation of the marginal densities and distribution functions

If no tractable expression for a probability density function is available, it is possible to
approximate it using the fast Fourier transform (FFT) (e.g. Scherer et al. (2012)). We use the
interpolation scheme by Jelonek (2012), Appendix B, which has been adapted here to the

mid-point rule (MPR) for a higher accuracy.

Consider a finite interval [a,b] that is divided into N disjoints subintervals of
equal length h=(b—a)N™" and assume that the random variable X  with pdf
f,(x) has a known characteristic fnction ¢, (z),zeC. For k=0,.,N-1 set

X, =a+hk.For N sufficiently large the constant c=7z-h™ isalso large and one has

the pdf approximation

1 = . 1 ¢ Ni2(p-a)
fx) == [e™™ ¢ (@)dz~—— e ™ -4 @)dz= | e .4 (27 u)du.
27 “w 27 ¢ “N/2(b-a)

For j=0,..,N set u;=(j—-%)(b-a)™" andconsiderthe mid-points
m =3 +u,,)=>-%)b-a)", j=0..,N-1.
Applying the MPR to the right-hand side integral one obtains the finite sum approximation
N1 7-m;X
f, (x)~(b-a)"- >e g (2m-m))
J:

oo N=L oo NLy L
:(b—a)lze A-(F+H)(1-57)5

j=0

O (5 (1= 57).
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27 (A +k)(j-h L 2k (N-1)

Since e"=-1 one has further e

Inserted into the above sum, one gets the desired representation
: GEHOND N )@ £ (i N, a2
fy(x)~(0-2)" (- 2D g G- e
J=

which one interprets as  k -th component of a Discrete Fourier Transform (DFT)

S HIN-D

fX (Xk)zck 'DFT(y)k, Ck =(b—a)_1.(_1)(bfa N ,
y= (yo,..., yN_l), yj = (_1)(bf1)~1 '¢x %(] _%))’ J =0...N—1.

= ()N 6

788

e d
—Zm-kﬁ

An efficient software implementation of the DFT is based on the Fast Fourier Transform

(FFT) algorithm by Cooley and Tukey (1965). For numerical approximation of the

distribution function F,(x)=[* f (t)dt one derives a similar DFT approximation in

terms of the chf (e.g. Kim et al. (2010), Proposition 1) or one uses the recursive formula

Fx (Xk) = Fx (Xk—l) + hfx (Xk—l)' k=1..,N-1, I:x (Xo) =0,

and a simple piecewise linear interpolation for intermediate values:

Fye (0 = F (4 ) +h (X=X P () = Fe (4 )} xe X%} k=1..,N-L

Finally, we note that similar approximations can be obtained for the value-at-risk measure

(VaR), the stop-loss transform and the related conditional value-at-risk measure (CVaR) (see

Kim et al. (2010) for formulas in terms of the chf). They can be used for further important

financial applications of the multivariate NVM mixtures in option pricing and risk

management.

Appendix 2: Numerical integration of the NIG and VG marginal densities

Alternatively to the FFT approximation method in Appendix 1, the NIG and VG marginal

distributions have been calculated more accurately using their analytical density expressions.
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NIG marginal density

The probability density of the unit mean inverse Gaussian mixing random variable reads

fi (W) = [£e“W ™ exp{—4 (w+w™)}.
The marginal random variables of the multivariate NIG distribution are of the form
X=¢+4-U+JU-Z,Z~N(0)),

where U =7°-W has the density

fy (U) =7 zZeu 7 ep{—1(2u+ar?-u)}.

It follows that

B (U) =] fpy () fy (W)

Fron{-4(x—E- 40} rfgeu ep -4 (sutart-ut)du

I
o8

_ Jg oD il farn O ()
T

oy exp{a +£ ()},

where K, (x) isthe Macdonald function of order 1.

VG marginal density

A bilateral gamma (BG) random variable is defined by (e.g. KUthler and Tappe (2008))

X=(+at-G -p"-G,~BG(&y,a,8,8),7.a,8, >0 —0<&<ow0,
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with independent G, ~T(y1),G, ~T'(5,) (standardized gamma’s with scale parameter 1).
It suffices to restrict the attention to the BG with vanishing location & =0. The BG pdf,

denoted by f(x)= f(x;y,a,8,8), is the convolution  f(x)=(f,* f,)(x) of the two

gamma pdf’s:

f,()=T() a’x e 1x>0}, f,(x)=T) "L e’ 1x<0} (A1)

The following “generalized gamma function” representation seems new. It is equivalent to
the representation (A.6) below in terms of the confluent hyper-geometric function of the 2nd

kind.

Theorem A.1 (Generalized gamma function representation). The probability density function

of the bilateral gamma  BG(& =0,7,a,5,) s given by

() =T() TS L) a7 x e ™ -T(5,7,(a+ B)X), x>0, A2

5-1 —

F() =T() ') ) BN e -T(,6,(a+ BN, x<0,

with the generalized gamma function

I(a,b,x) = [t @+ x )" Ledt. (A3)
0

Proof. Using the symmetry relation f(x;7,a,8,8)= f(-x.8,8,7,a) it suffices to
consider the case  x € (0,). Through elementary integration (change of variables y =—tx)
one obtains
0
FOO=(f = £,)00) = [ f,(x=y) f,(y)dy =T (»)"T(6) "a’ e~ - 1(x),

0 ©
| (X) — _[(X _ y)y—l (_y)é—le(owﬁ')ydy — IX7+5—1 (1+ t)y—ltﬁ—le—(owﬁ)xtdt’
—0 0
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The transformation t=c(x)'u with ¢(x) = (a+ £)x Yyields further
1(x) = x"*"e(x)™° ~T(1+ c(x)u)utetdu = X" (a+ B)° -T(S,7,c(x)).
0
Insert into the first integral expression for  f(x) to get (A.2). ¢

In virtue of the limiting property limI'(a,b, x):Tta‘le‘tdtzl“(a) the naming of the
X—>00 0

integral (A.3) is justified. Furthermore, one has also trivially T'(a,1,x)=T(a). Another

justification arises from the fact that when « —>o or S -—>o the pdf converges to a

left- and right-tail gamma pdf respectively, as should be. Moreover, a close look at the
confluent hyper-geometric function of the 2nd kind, introduced by Tricomi (1947) and also

called Tricomi function, shows the relationship
I'(a,b,x) =T'(a)x*U(a,a+b,x), (A.4)

where the Tricomi function is defined by (e.g. Oldham et al. (2009), 48:3:6 and 48:3.7)

0 1 1
U(a,b,x)=T(@)" - [t**(L+t)"* e ™Mdt=T(a) " - [t* (L-t) eV dt. (A5)
0

0

The generalized gamma function is a transformed Tricomi function and (A.2) rewrites
f(x)=T() e’ x e (px)’ -U(S,y +5,(a+ B)X), x>0,

5-1 (A.6)
f(x)=T()*B°X e (ax)” U@,y +6,(a+B)X), x<O.

In the variance-gamma special case VG(p,a,8)=BG(E=0,y=p,a,5=p,B) the

relevant Tricomi function reduces to a Macdonald function of the type (Oldham et al. (2009),
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48:4:3 and 48:13:6)

1

X2

—a

U(a,2a,x) =——e"K_, (X). (A7)

S

Inserting these expressions into the Tricomi representation (A.6) one obtains the VG pdf

@ (Y i K
f(X)_\/;F(p)[OH-,BJ exp(—L(a - B)x) K, Gla+p)x). x=0. (AS8)

This closed-form expression has been first derived in Madan et al. (1998) for the

parameterization

(0.0%v)=((@™ - p)p.2p) p.p™) (A.9)

However, in its original form the VG pdf takes the less symmetrical form

20p(0 k) x? B
v \2ro - T(v?) (07 +2v7 0’

KoL (o"2 \/(6’2 +2v o ?)x? ) Xx#0

f(x) =

(A.10)
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