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Abstract. M. Wada has constructed several linear representations of the braid group. An overview of three

interesting types of these representations is given in our work. As an extension to the results obtained about

Wada’s representations of types 1 and 2, we prove that type 3 is of Burau type and that all the three types of Wada’s

representations are equivalent. We determine the hecke algebras that these representations arise from.
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1. Introduction

Let Bn be the braid group on n strands. This group has a standard presentation

< σ1, . . . ,σn−1 | σiσ j = σ jσi, if | i− j |> 1;σiσi+1σi = σi+1σiσi+1 for 1≤ i≤ n−2 > .

There is a well known representation, due to Artin, in the group Aut(Fn) of automorphisms of a

free group Fn generated by x1, . . . , xn. The automorphism corresponding to the braid generator

σi, with i ∈ {1, . . . ,n−1}, takes xi to xixi+1x−1
i , xi+1 to xi and fixes all other generators. In [4],
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M. Wada had discovered several linear representations of the braid group by automorphisms of

Fn. The following are the most interesting representations:

(1) For an arbitrary non-zero integer k, the automorphism corresponding to the braid genera-

tor σi, with i ∈ {1, . . . ,n−1}, takes xi to xk
i xi+1x−k

i , xi+1 to xi and fixes all other generators.

(2) The automorphism corresponding to the braid generator σi, with i ∈ {1, . . . ,n− 1}, takes

xi to xix−1
i+1xi, xi+1 to xi and fixes all other generators.

(3) The automorphism corresponding to the braid generator σi, with i ∈ {1, . . . ,n− 1}, takes

xi to x2
i xi+1, xi+1 to x−1

i+1x−1
i xi+1 and fixes all other generators.

Abdulrahim made a complete study of the first two types (see [1] and [2]). In this paper, we

discuss Wada’s representation of type 3 and compare our results to those obtained in [1] and [2].

This completes the study of Wada’s representations.

In section 2, we let z ∈ C∗ and we define the reduced Burau representation βn(z) : Bn →

GLn−1(C), when it is irreducible. We also state some theorems that give a characterization for

irreducible representations, where the matrix of one of the generators of the braid group is a

pseudoreflection.

In section 3, we define Wada’s representations of types 1 and 2 and present some previous

theorems concerning the irreducibility and unitarity of these representations.

In section 4, we consider Wada’s representation of type 3 and show that this representation is

of Burau type.

In section 5, we make a comparison between Wada’s representations of types 1, 2 and 3 and

we present our main theorem, Theorem 23.

In section 6, we introduce the Hecke algebra and conclude with Theorem 30, which deter-

mines the Hecke algebras that Wada’s representations arise from.

2. Burau Representation

Definition 1. An n× n matrix H is a pseudoreflection if H can be written as H = In−AB for

some column and row vectors A and B respectively. Here, In is the n×n identity matrix.
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According to the standard Burau representation, the automorphism corresponding to σi, sends

xi to xixi+1x−1
i , xi+1 to xi and fixes all other generators. Applying Magnus representation to the

image of the braid group, we obtain the Burau representation Bn→GLn(C). The automorphism

σi is mapped to the following n×n matrix

σi(z) = Ii−1⊕

1− z z

1 0

⊕ In−i−1 for i = 1,2, . . . ,n−1.

It is clear that this representation is reducible.

Definition 2. The complex reduced Burau representation βn(z) : Bn → GLn−1(C) is given by

βn(z)(σi) = In−1−CiDi, where

C1 = (z+1,1,0, . . . ,0︸ ︷︷ ︸
n−3

)T ,

Ci = (0, . . . ,0︸ ︷︷ ︸
i−2

,z,z+1,1,0, . . . ,0︸ ︷︷ ︸
n−i−2

)T , for i = 2, . . . ,n−2,

and

Cn−1 = (0, . . . ,0︸ ︷︷ ︸
n−3

,z,z+1)T .

Here, {D1, . . . ,Dn−1} is the standard basis of Cn−1 and T is the transpose.

The associated matrix given by the inner product is

(DiC j) =



z+1 z 0 . . . . . . 0

1 z+1 z 0 . . .
...

0 1 z+1 z . . .
...

0 0 1 . . . . . . 0
...

... . . . 1 z+1 z

0 0 . . . 0 1 z+1


.
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Regarding the question of whether or not the above representation is irreducible for certain

values of z, we state some lemmas and theorems which are proved by E. Formanek.

Lemma 1. [3] For z ∈C∗, βn(z) : Bn→GLn−1(C) is irreducible if and only if z is not a root of

fn(t) = tn−1 + tn−2 + · · ·+ t +1.

We now state some theorems proved by E. Formanek [3], which will be needed in our work.

Lemma 2. [3, p. 286] If n > 3 and z is a root of fn(t) = tn−1 + tn−2 + · · ·+ t +1 then β̂n(z) :

Bn→ GLn−2(C) is a composition factor of βn(z) : Bn→ GLn−1(C), where β̂n(z) is defined by:

β̂n(z)(σi) = βn−1(σi)(i = 1, . . . ,n−2) and β̂n(z)(σn−1) = In−1−PQ,

where P is the column vector given by P = (0, . . . ,0,z)T and Q is the row vector given by

Q = (−1)n−2z(1,−(1+ z),(1+ z+ z2), . . . ,(−1)n−3(1+ z+ · · ·+ zn−3)).

Theorem 1. [3, p. 287] Let ρ : Bn→ GLr(C) be an irreducible representation, where n > 4

and r > 1. Suppose that ρ(σ1) is a pseudoreflection. Then either

(a) the representation ρ is equivalent to βn(z) : Bn→ GLn−1(C), where z ∈ C∗ is not a root of

fn(t) = tn−1 + · · ·+ t +1; or

(b) the representation ρ is equivalent to β̂n(z) : Bn→GLn−2(C), where z∈C∗ is a root of fn(t).

Definition 3. A representation of Bn is of Burau type if it is of degree > 1 and it is equivalent to

the tensor product of a one-dimensional representation and the irreducible representation βn(z)

or its composition factor, namely β̂n(z).

Theorem 2. [3, p. 282] Let X1 = I−A1B1, . . . , Xr = I−ArBr be r invertible pseudoreflections

in Mr(C), where r > 1. Let τ be the directed graph whose vertices are 1, . . . ,r, and which has

a directed edge from i to j (i 6= j) precisely when BiA j 6= 0. Let G be the subgroup of GLr(C)

generated by X1, . . . ,Xr. Then the following holds.

(a) G is an irreducible subgroup of GLr(C) if and only if for each i 6= j (1≤ i, j≤ r), the graph

τ contains a directed path from i to j and (BiA j) ∈Mr(C) is invertible.
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(b) Suppose that G = 〈X1, . . . ,Xr〉 and H = 〈Y1, . . . ,Yr〉 are irreducible subgroups of GLr(C),

generated by pseudoreflections Xi = I−AiBi, Yi = I−CiDi. Then there is a matrix T ∈GLr(C)

such that T XiT−1 = Yi for i = 1, . . . ,r if and only if there exist a1, . . . ,ar ∈ C such that DiC j =

a−1
i a jBiA j (that is, (BiA j) and (DiC j) are conjugates by a diagonal matrix).

3. Proved Results about Wada’s Representations of Type 1 and Type 2

We recall some known results about Wada’s representations of type 1 and type 2, which are

proved in [1] and [2] respectively. More precisely, theorems about irreducibility and unitarity

of such representations are presented.

Wada’s Representation of Type 1:

Definition 4. [1] Let k be a nonzero integer and t an independent indeterminate. Wada’s repre-

sentation of type 1 asserts that the automorphism corresponding to σi, with i ∈ {1, . . . ,n− 1},

takes xi to xk
i xi+1x−k

i , xi+1 to xi and fixes all other generators. By applying Magnus represen-

tation to the image of the braid group under this representation, we obtain the representation

Bn→ GLn(C), where the automorphism σi is mapped to the following n×n matrix

σi = Ii−1⊕

1− tk tk

1 0

⊕ In−i−1, for i = 1,2, . . . ,n−1.

This is a generalization of Burau representation by letting z = tk. It is clear that this representa-

tion is reducible. To determine the composition factor, we present the following definition.

Definition 5. [1] Let k be a non zero integer. Wada’s representation of type 1, namely φ
(1)
k :

Bn→ GLn−1(C), is defined as φ
(1)
k (σi) = In−1−A(1)

i,k B(1)
i,k , where

A(1)
1,k = (tk +1,−1,0, . . . ,0︸ ︷︷ ︸

n−3

)T ,

A(1)
i,k = (0, . . . ,0︸ ︷︷ ︸

i−2

,−tk, tk +1,−1,0, . . . ,0︸ ︷︷ ︸
n−i−2

)T , for i = 2, . . . ,n−2,

and



AN OVERVIEW OF WADA’S REPRESENTATIONS 1435

A(1)
n−1,k = (0, . . . ,0︸ ︷︷ ︸

n−3

,−tk, tk +1)T .

Here, {B(1)
1 , . . . ,B(1)

n−1} is the standard basis of Cn−1.

These representations are irreducible by [3]. Notice that the representation

φ
(1)
k : Bn→ GLn−1(C) is (conjugate to) the reduced Burau representation, βn(tk).

Theorem 3. [1, p. 1323] The images of the generators under φ
(1)
k are unitary relative to a

hermitian positive definite matrix.

Wada’s Representation of Type 2:

Definition 6. [2] Wada’s representation of type 2 asserts that the automorphism corresponding

to σi takes xi to xix−1
i+1xi, xi+1 to xi and fixes all other generators. By applying Magnus represen-

tation to the image of the braid group under Wada’s representation, we obtain the representation

Bn→ GLn(C). The automorphism σi is mapped to the following n×n matrix

σi(z) = Ii−1⊕

2 −1

1 0

⊕ In−i−1, for i = 1, . . . ,n−1.

It is clear that this representation is reduced to a subrepresentation of degree n−1.

Definition 7. [2] Wada’s representation of type 2, φ
(2)
n : Bn→GLn−1(C) is defined as φ

(2)
n (σi)=

In−1−A(2)
i B(2)

i , where

A(2)
1 = (0,−1,0, . . . ,0︸ ︷︷ ︸

n−3

)T ,

A(2)
i = (0, . . . ,0︸ ︷︷ ︸

i−2

,1,0,−1,0, . . . ,0︸ ︷︷ ︸
n−i−2

)T , for i = 2, . . . ,n−2,

and

A(2)
n−1 = (0, . . . ,0, 1︸︷︷︸

n−2

,0).

Here, {B(2)
1 , . . . ,B(2)

n−1} is the standard basis of Cn−1.
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The associated matrix given by the inner product (B(2)
i A(2)

j ) is

(B(2)
i A(2)

j ) =



0 1 0 . . . . . . 0

−1 0 1 0 . . .
...

0 −1 0 1 . . .
...

0 0 −1 . . . . . . 0
...

... . . . −1 0 1

0 0 . . . 0 −1 0


.

Lemma 3. [2, p. 561] Wada’s representation, φ
(2)
n : Bn→GLn−1(C) is irreducible if and only

if n is an odd integer.

Theorem 4. [2, p. 562] Let φ
(2)
n be Wada’s representation, φ

(2)
n : Bn→ GLn−1(C) then one of

the following is true:

(a) if n is odd, then φ
(2)
n is equivalent to βn(−1) : Bn→ GLn−1(C), where βn(z) is the complex

specialization of the reduced Burau representation of Bn and z ∈ C∗;

(b) if n is even, then the composition factors of φ
(2)
n are the irreducible representation β̂n(−1) :

Bn→ GLn−2(C) and the trivial one.

Theorem 5. [2, p. 564] The images of the generators of Bn under Wada’s representations of

type 2 are unitary relative to a hermitian matrix.

4. Wada’s Representation of Type 3

In this section, we study Wada’s representation of type 3 and determine its properties in order

to make a comparison between the three types in section 5.

Definition 8. The representation of type 3, discovered by M. Wada, asserts that the automor-

phism corresponding to σi takes xi to x2
i xi+1, xi+1 to x−1

i+1x−1
i xi+1 and fixes all other generators.
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Let Fn be the free group of rank n with free basis x1, . . . , xn. It is easy to see that Fn =<

g1, . . . ,gn >, where g1 = x1, g2 = g1x2, . . . , gn = gn−1xn. The action of the braid generator σi

on the basis {g1, . . . ,gn} is given by

σ1 :


g1→ g1g2,

g j→ g j, if j 6= 1.

For 1 < i < n, we have that

σi :


gi→ gig−1

i−1gi+1,

g j→ g j, if j 6= i.

Let ρ : Z[Fn]→ Z[t±1], where Z[t±1] is the ring of Laurent polynomials with independent inde-

terminate t. The map ρ is defined as ρ(gi) =


1, if i is even,

t, if i is odd.

Using Magnus representation of subgroups of the automorphism group of the free group Fn =

{g1, . . . ,gn}, we determine Wada’s representation α: Bn→ GLn(Z[t±1]). The images of the

generators under Wada’s representation of type 3 are given by

α(σ1) =

1 t

0 1

⊕ In−2,

α(σk) = Ik−2⊕


1 0 0

−t 1 t

0 0 1

⊕ In−k−1, if k is odd (1 < k < n),

and
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α(σk) = Ik−2⊕


1 0 0

−t−1 1 t−1

0 0 1

⊕ In−k−1, if k is even (1 < k < n).

Lemma 4. Wada’s representation of type 3, namely α: Bn→ GLn(C), is a reducible represen-

tation.

Proof. Let u be the column vector in Cn defined as

u =


(1,0,1,0, . . . ,1,0)T if n is even,

(1,0,1,0, . . . ,0,1)T if n is odd.

It is easy to see that the subspace generated by u is invariant under the representation α because

α(σk)(u) = u for every k ∈ {1,2, . . . ,n−1}. �

Having that Wada’s representation of type 3 is reducible, we then reduce this representation

to a subrepresentation of a lower degree. More precisely, we have the following definition.

Definition 9. Wada’s representation of type 3, φ
(3)
n : Bn→ GLn−1(C) is a family of linear rep-

resentations defined as φ
(3)
n (σk) = In−1−A(3)

k B(3)
k , where

B(3)
1 = (0,−t,0, . . . ,0︸ ︷︷ ︸

n−3

),

B(3)
k =


(0, . . . ,0, t, 0︸︷︷︸

k

,−t,0, . . . ,0), if k is odd (1 < k < n−1),

(0, . . . ,0, t−1, 0︸︷︷︸
k

,−t−1,0, . . . ,0), if k is even (1 < k < n−1).

and
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B(3)
n−1 =


(0, . . . ,0︸ ︷︷ ︸

n−3

, t−1,0), if n is odd,

(0, . . . ,0︸ ︷︷ ︸
n−3

, t,0), if n is even.

Here, {A(3)
1 , . . . ,A(3)

n−1} are the standard basis of Cn−1.

Direct computations show that the associated matrix given by the inner product (B(3)
i A(3)

j ) is

(B(3)
i A(3)

j ) =





0 −t 0 0 . . . 0 0 0

t−1 0 −t−1 0 . . . 0 0 0

0 t 0 −t . . . 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 . . . t 0 −t

0 0 0 0 . . . 0 t−1 0


, if n is odd,



0 −t 0 0 . . . 0 0 0

t−1 0 −t−1 0 . . . 0 0 0

0 t 0 −t . . . 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 . . . t−1 0 −t−1

0 0 0 0 . . . 0 t 0


, if n is even.

Next, we prove our next lemma.

Lemma 5. Wada’s representation of type 3, φ
(3)
n :Bn→ GLn−1(C) is irreducible if and only if n

is an odd integer.
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Proof. If n is an odd integer, direct computations show that the determinant of the (n− 1)×

(n−1) matrix (B(3)
i A(3)

j ) equals one. By Theorem 2 (a), we get that φ
(3)
n is irreducible.

On the other hand if n is an even integer then the determinant of (B(3)
i A(3)

j ) equals zero, and

so the representation is reducible.

�

Lemma 6. If n is even then φ
(3)
n : Bn→GLn−1(C) has an invariant subspace of dimension one.

Proof. It is easy to see that the subspace generated by the vector (1,0,1,0, . . . ,0,1)T is invariant

under φ
(3)
n . Here, T is the transpose. �

Lemma 7. If n is odd then φ
(3)
n : Bn → GLn−1(C) is of Burau type. In particular, φ

(3)
n is

equivalent to βn(−1) : Bn→GLn−1(C), where βn(z) is the complex specialization of the reduced

Burau representation and z ∈ C∗.

Proof. If n is odd then by Lemma 5, we have that φ
(3)
n is irreducible. It follows that by Theorem

1, φ
(3)
n is equivalent to βn(z) for some non-zero complex number z such that fn(z) 6= 0. To

find such a z, direct computations show that, by letting z = −1, the matrices (B(3)
i A(3)

j ) and

(DiC j) are conjugates by an (n− 1)× (n− 1) diagonal matrix, where the diagonal entries are

{t,1, . . . , t,1} and βn(z)(σi) = In−1−CiDi (See Definition 2). �

Lemma 8. If n is even then the composition factors of φ
(3)
n : Bn→ GLn−1(C) are the irreducible

representation β̂n(−1) : Bn→ GLn−2(C) and the trivial one.

Proof. The composition factor of φ
(3)
n : Bn → GLn−1(C) is φ̂

(3)
n : Bn → GLn−2(C), which is

defined by:

φ̂
(3)
n (σi) = φ

(3)
n−1(σi) for i = 1, . . . ,n−2 and φ̂

(3)
n (σn−1) = In−2−XY , where

X = (−1,0,−1,0 . . . ,−1,0)T ,Y = (0, . . . ,0, t).

Since φ̂
(3)
n : Bn → GLn−2(C) is the extension of the irreducible representation φ

(3)
n−1 : Bn−1 →

GLn−2(C) to Bn, it follows that φ̂
(3)
n is irreducible. By Theorem 1, the non-trivial composition

factor of φn, namely φ̂
(3)
n : Bn→ GLn−2(C), is equivalent to β̂n(z) : Bn→ GLn−2(C) for some
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z∈C which is a root of fn(t) = tn−1+ · · ·+ t+1. Along the same computations as in Lemma 7,

one can show, by letting z =−1, that the irreducible representation φ̂
(3)
n and the representation

β̂n(−1) : Bn→ GLn−2(C) are equivalent. �

5. Comparison between Wada’s Representations

In this section, we make a comparison between Wada’s representations of the three different

types and present our main theorem, Theorem 6.

Theorem 6. Wada’s representations of types 2 and 3 are equivalent.

Proof. This is clear by Theorem 4, Lemma 7 and Lemma 8. �

Lemma 9. If tk =−1 then Wada’s representations of types 1, 2 and 3 are equivalent.

Proof. We have that Wada’s representation of type 1 is the complex specialization of Burau

representation with z = tk. Using the fact that Wada’s representations of types 2 and 3 of degree

n−1 (n−2) are equivalent to βn(−1) (β̂n(−1)), we get that Wada’s representations of types 1,

2 and 3 are equivalent when tk =−1. �

Lemma 10. let α and β be two equivalent representations of a group G of degree n. Then α

is unitary relative to a hermitian invertible matrix M if and only if β is unitary relative to a

hermitian invertible matrix N.

Proof. Let α be a unitary representation relative to a hermitian matrix M. Then α(g)Mα(g)∗ =

M for all g ∈ G. Since α and β are equivalent representations, it follows that there exists an

n×n invertible matrix T such that T−1α(g)T = β (g).

We now verify that β is unitary relative to T−1M(T−1)∗.

β (g)T−1M(T−1)∗β (g)∗ = T−1T β (g)T−1M(T−1)∗β (g)∗T ∗(T−1)∗

= T−1α(g)M(T β (g)T−1)∗(T−1)∗

= T−1(α(g)Mα(g)∗)(T−1)∗

= T−1M(T−1)∗.
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Since (T−1M(T−1)∗)∗ = T−1M(T−1)∗, it follows that T−1M(T−1)∗ is hermitian. Using Theo-

rem 5, Theorem 6 and Lemma 10, we get the following Lemma. �

Lemma 11. Wada’s representations of types 2 and 3 are unitary.

6. Wada’s Representations And Hecke Algebra

In this section, we prove our main result, which states that Wada’s representations of types 1,

2 and 3 arise from Hecke algebras.

Definition 10. The Hecke algebra Hn(q) is the complex algebra defined by the presentation

< s1, . . . ,sn | sis j = s jsi, | i− j |> 1,sisi+1si = si+1sisi+1,(si)
2 = (1−q)si +q > .

Here, q is any nonzero complex number.

Under direct computations, we easily verify the next lemma.

Lemma 12. The minimal polynomial of Wada’s representations of type 3 is

(x−1)2 for all n > 2.

Lemma 13. Let α and β be two equivalent representations of a group G of degree n and q be

a nonzero complex number. Then α arises from a Hecke algebra Hn(q) if and only if β arises

from Hn(q).

Proof. Suppose that α arises from a Hecke algebra Hn(q). Then, for every g ∈ G, we have

(α(g))2 = (1−q)α(g)+qIn.

Since α and β are equivalent representations, it follows that there exists an invertible matrix T

in Mn(C) such that T−1α(g)T = β (g).

Multiplying (1) by T−1 from the left and by T from the right, we get that

T−1(α(g))2T = T−1((1−q)α(g)+qIn)T.

This implies that (β (g))2 = (1−q)β (g)+qIn. Therefore, β arises from Hn(q). �
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Having shown that Wada’s representations of types 1, 2 and 3 are of Burau type, we easily

get our main theorem, Theorem 7.

Theorem 7. Wada’s representations of types 1, 2 and 3 arise from hecke algebras.

Proof. It is easy to see that type 1 arises from Hn(tk), whereas type 2 and type 3 arise from

Hn(−1). �
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