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1. Introduction :  

Studies of epidemic models that incorporate diseases causing death and varying total 

population have become one of the important areas in the mathematical theory of 

epidemiology. Largely inspired by the works of Anderson and May [1], vaccination is an 

effective way to control the transmission of a disease. The study of vaccination, treatment, 

and associated behavioral changes related to disease transmission has been the subject of 

intense theoretical analysis. A population with a constant flow of infective immigrants within 

the simple SIS framework proposed by Kermack and Mckendrick in [10] is considered in a 
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model that incorporates the impact of a vaccination program. Gumel and Moghads [5] 

proposed a model for the dynamics of an infectious disease in the presence of a preventive 

vaccine considering non-linear incidence rate ,Li and Ma[11] studied the SIS model with 

vaccination and temporary immunity. Moghadas S.M [13] proposed SVIS model and he gave 

analysis of an epidemic model with stability of equilibrium points by using the Poincare 

index. Hethcote and Tudor [10] discussed endemic infectious disease model for which 

infection confers permanent immunity with no disease–related mortality but with vaccination. 

     In this paper, we consider an SIS model with vaccination, the vaccination is given to the 

newly born and the susceptible. The sufficient conditions for the existence and locally 

stability of the equilibrium points of this model are obtained. Also the global stability of each 

possible equilibrium points are proved by using Lyapunov theorem. Moreover, The local and 

global dynamics of our model are studied numerically. 

 

 2. Model formulation :  

 Consider an SIS disease when a vaccination program is in effect and there is a constant flow 

of incoming immigrants. A population of size )(tN  is partitioned into three classes of 

individuals; susceptible, infections and vaccinated, with sizes denoted by )(),( tItS  and )(tV , 

respectively. A constant flow of 2A  new members arrives into the population in a unit time 

with the fraction p of 2A  arriving infected )10(  p . The susceptible population is 

vaccinated at a constant rate 7A , and the rate at which the vaccine wears off is 6A . The 

population is replenished in two ways, birth and immigration, assume that newborns enter the 

susceptible class at the constant rate is 1A . The per capita natural death rate is 04 A   in each 

class. A constant 05 A  of infective recovers in unite time. Accordingly the dynamics of 

SVIS epidemic model with constant number of immigrant the model can be represented by 

the following non linear system  

SAVAIASA
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Where 83 , AA  are infection constant rate coefficients for the susceptible individuals and 

vaccinated individuals respectively , the non linear term 
2

2

1 I

I


 represents the incidence rate 

which is known as Holling-type III functional response .The initial condition for system(1) 

may be taken as any point in the region 

 

Theorem 3.1: All solutions of system (1) with non-negative initial condition are uniformly 

bounded  

Proof. consider the following function )()()()( tItVtStW  ,time derivative of  

)(tW along the trajectory of system(1) gives the following differential equation   

  214 )()( AAtWAtW 


                                                                                              (2) 

Which has an integrating factor tA
e 4  and hence a solution is 

tA
ce

A

AA
tW 4

4

21)(





   where 

4

21)0(
A

AA
Wc


 ,that means  

tAtA
eWe

A

AA
tW 44 )0()1()(

4

21 



  hence all solutions of 

system(1) that initiate in the region 3

R  are eventually confined in the region   

}:),,{(
4

21

A

AA
IVSWIVSM


  

3. Existence of Equilibrium points  

   An investigation of system (1) shows that there are at most two possible non-negative  

equilibrium points, the existence conditions of them are gives as the following  

  1)  The disease free equilibrium point  ( , ,0)E S V always exists 

 where 1 2 4 6

4 4 6 7

( )( )

( )

A A A A
S

A A A A

 


 
 and 7 1 2

4 4 6 7

( )
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A A A
V

A A A A




 
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2) The endemic equilibrium point ( , , I)E S V exists in the region 3R  if and only if there is 

a positive solution to the following non-linear equations  

 

 
2

3
1 2 4 5 6 72

(1 ) 0
1

A SI
A p A A S A I A V A S

I
       


                                                        (3.a) 

2

8
7 4 62

0
1

AVI
A S A V A V

I
   


                                                                                     (3.b)                                   

2 2

3 8
2 4 52 2

0
1 1

A SI AVI
pA A I A I

I I
    

 
                                                                         (3.c)                  

By adding (3.a) , (3.b) and (3.c) we get  1 2 4 4 4 0A A A S A V A I       that is  

1 2 4

4

( )A A A V I
S

A

  
                                                                                                          (4)  

Clearly 0S   if  1 2

4

0
A A

V I
A


     ,from Eq.(3.b) we obtain that  

2

7

2

S(1 )A I
V

A BI





                                                                                                                      (5)  

Where 4 6A A A   and 8B A A  .Substituting the value of V  in Eq.(3.c) we get 

2 2

2

2 2 2

7 8 3

(1 )[ ]( )

[ (1 ) ( )]

I cI pA A BI
S

I A A I A A BI

  


  
                                                                                       (6) 

Clearly from Eq.(5) we note 0S   if  2cI pA   

Now by substitution Eq(5) and Eq.(6)  in Eq.(3.c) and then simplifying the resulting term 

gives the following polynomial equation  

5 4 3 2

5 4 3 2 1 0 0a I a I a I a I a I a                                                                                          (7) 

Where  

0 2 4 7( ) 0a pA A A A                                                                                                  (8.a) 

1 4 7 4 2( )a cA A A pA B Ac                                                                                         (8.b) 

2 1 2 7 8 3 2 4 7 4 2( )( ) 2 ( )a A A A A A A pA A A A pA A B                                                 (8.c) 
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3 4 7 4 2 4 7 8 32 ( ) ( )a cA A A pA B Ac A A A A A                               (8.d) 

4 7 8 3 1 2 2 4 7 4( B)(A )a A A A A pA A A A cB                                                               (8.e) 

5 4 7 4 7 8 3( B) 0a cA A A A A A                                                                                  (8.f) 

Straightforward computation shows that Eq.(7) has a positive root namely I provided that 

one set of the following sets of conditions holds  

 1 20 , 0a a    with 3 0a                                                                                        (9.a) 

 1 2 30 , 0 , 0a a a    with 4 0a                                                                               (9.b) 

 1 30 , 0a a    with 5 0a                                                                                           (9.c) 

Substitution the value of  I in Eq.(6) gives the value of S and then Substituting the value of 

S and I in Eq.(5) gives the value of V . 

4. Stability analysis 

     In the following, the local stability analysis for the above equilibrium points is studied. 

The general Variational matrix of the system (1) at (S,V, I)  is given by 

  

11 12 13

21 22 23

31 32 33

J(S,V, I)

a a a

a a a

a a a

 
 

  
 
 

                 

where 
2

3
11 4 72

I
0

1

A
a A A

I
    


, 12 6 0a A  , 3

13 5 2 2

2

(1 )

A SI
a A

I
 


, 21 7 0a A  , 

2

8
22 4 6 2 2

A 0
(1 )

A I
a A

I
    


, 8

23 2 2

2
0

(1 )

AVI
a

I


 


,  

2

3
31 2

0
1

A I
a

I
 


, 

2

8
32 2

0
1

A I
a

I
 


, 

3 8
33 4 52 2 2 2

2 SI 2 VI

(1 ) (1 )

A A
a A A

I I
   

 
  

 Therefore, the Variational matrix about the equilibrium points E  given below:  

4 7 6 5

7 4 6

4 5

J( ) 0

0 0

A A A A

E A A A

A A

  
 

   
   

  

Therefore the eigenvalues of J( )E  satisfy the following relations:  
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1 2 4 7 6(2 )A A A                                                                                                 (10a) 

1 2 4 4 6 7. ( )A A A A                                                                                      (10b) 

3 4 5( )A A                                                                     (10c)                    

 

Theorem 4.1: The disease free equilibrium point  E  of system (1) is always locally 

asymptotically stable in the 3. RInt . 

Proof. From equations (10a),(10b) and (10c) we have 1 2 0    , 
1 2. 0    and 

3 0   

hence all the eigenvalues have negative real parts and by Routh-Hurwitz criterion the disease 

free equilibrium point E  is locally asymptotically stable in the 3. RInt .  

 

Theorem 4.2: Assume that the endemic equilibrium point ( , , I)E S V  of system(1) exists 

then it  is locally asymptotically stable if the following conditions are satisfied: 

3 8 3
4 52 2 2 2 2 2

2 SI 2 VI 2 SI

(1 ) (1 ) (1 )

A A A
A A

I I I
   

  
                                                                   (11a) 

2 2

1 8 1( )R A R I                                                                                                 (11b) 

2 2

2 3 2( )R A R I                                                                                               (11c)                                                                         

where 1 3 6 4 8 6 8R A A A A A A   , 2 7 8 3 4 3 7R A A A A A A    

proof. The characteristic equation of the J( )E  can be written as:  

      3 2

1 2 3 0d d d        

Where : 1 11 22 33(a )d a a     , 2 11 22 12 21 33 11 22 13 31 23 32(a ) (a ) (a )d a a a a a a a a       

3 33 12 21 11 22 31 13 22 12 23 32 11 23 13 21(a ) (a ) (a )d a a a a a a a a a a a a      . 

Eq. (11a) gives that 33 0a   and hence 1 0d  ,for 3d we have  

2 2 2 2

8 3 3 8
12 21 11 22 4 4 6 4 7 42 2 2 2

I I I I
a [(A )(A ) A (A ) (A )] 0

1 1 1 1

A A A A
a a a A

I I I I
         

   
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and Eq.(11a) gives that 13 0a    so 3 0d  ,on the other hand we have 1 2 3d d d    

11 22 12 21 11 22 1 33 13 31 23 32 33

13 11 31 21 32 23 22 32 12 31

(a )[( a a ) ] ( )

( ) ( )

a a a d a a a a a a

a a a a a a a a a a

     

   
 

And equations (11b),(11c) give that 11 31 21 32 0a a a a  , 031123222  aaaa  and  hence 0   

Therefore, all the requirements of Routh-Hurwitz criterion[12 ]are satisfied. Hence E   is 

locally asymptotically stable.  

 

Theorem 4.3: The disease free equilibrium point  E  of system (1) is globally asymptotically 

stable in the sub region 

6 7 4 7 4 6
1 2 1 2

( )( )
{( , , ) : 0 ,0 , 2 }

A A A A A A
S V I I V or I V I S or I S

S V SV

 
         

Where 

2 2 2

8 8 4

1

4

4

2

A V A V A
V

A

 
 ,

2 2 2

8 8 4

2

4

4

2

A V A V A
V

A

 
 , 

2 2 2

3 3 5

1

5

4

2

A S A S A
S

A

 
 ,

2 2 2

3 3 5

2

5

4

2

A S A S A
S

A

 
  

Proof. Consider the function   1 2
1 2

1 2

(S,V, I)

S V

S V

u S u V
L du du I

u u

 
      

By differentiating L  with respect to t  along the solution of  the system (1), we get  

. .
dL S S dS V V dV dI

dt S dt V dt dt

 
  

 
2

3
4 6 7 4 6 7 521

A SIS S
A S A V A S A S A V A S A I

S I

 
        

 
      

            
2

8
7 4 6 4 6 721

AVIV V
A S A V A V A V A V A S

V I

 
       

 
 

             
2 2

8 3
5 42 21 1

AVI A SI
A I A I

I I
   

 
                                                                         (12) 

2 24 7 4 6 6 7( ) ( )
( ) (V ) ( )( )(V )

A A A A A A
S S V S S V

S V S V

 
               

            3 5 8
42 2

( ) IS ( ) I
1 1

A I A AVI
A

I S I
   

 
                                                                    (13) 
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Now for any ( , , )S V I in   and by Eq.(13) we get      

2 24 7 4 6 6 7( ) ( )
( ) (V ) ( )( )(V )

A A A A A AdL
S S V S S V

dt S V S V

 
                                             

2 24 7 4 6 4 7 4 6( ) ( ) ( )( )
( ) (V ) 2 ( )(V )

A A A A A A A A
S S V S S V

S V SV

   
         

24 7 4 6( ) ( )
[ ( ) (V )] 0

A A A A
S S V

S V

 
       

dt

dL
 is negative definite and hence L  is a Lyapunov function with respect to E  hence, E  

is  globally asymptotically stable in the sub region  .                  

 

Theorem 4.4: Assume that the endemic equilibrium point ( , , I)E S V  of system(1) is 

locally asymptotically stable then it is globally asymptotically stable in the sub region   

that satisfies the following conditions 

23 8
4 5

( S V)K
( )(1 I )

A A
A A

H


                                                                                 (14a) 

2 2 23 3 8
5 3 5 4 5

2

3 4 7 4 7

SK ( S V) K
( ( ) I ) (( )(1 I ) )

((A ) I )

A A A
A A A A A

H H

A A A A


      

   

                 (14b)                                                                                       

2 2 2 2

6 7 3 4 7 4 7 4 6 8 4 6(( )(1 I )) ((A )I )((A )I )A A A A A A A A A A                     (14c)                                                                     

2 2 28
8 4 6 8 4 6

2 3 8
4 5

VK
( I ) ((A ) I )

( S V) K
(( )(1 I ) )

A
A A A A A

H

A A
A A

H

     


  

                                             (14d) 

Where 21H I  , K I I   

Proof.  Consider the function   31 2
1 2 3

1 2 3

P(S,V, I)

S V I

V IS

u Iu S u V
du du du

u u u

 
       

By differentiating P  with respect to t  along the solution of the system (1), we get  

2 2

3 3
4 7 5 62 2

( ) ( )( ) ( ) ( )
1 1

A SI A SIdP
S S A A S S A I I A V V

dt I I

 
          

  
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2 2

8 8
7 4 62 2

( ) ( ) ( )( )
1 1

AVI AVI
V V A S S A A V V

I I

 
        

  
 

             
2 2 2 2

8 8 3 3
4 52 2 2 2

( ) ( )( )
1 1 1 1

AVI AVI A SI A SI
I I A A I I

I I I I

 
        

    
                     (15) 

2 2
2 23 8

4 7 4 62 2
( ) (V )

1 1

A I A IdP
A A S S A A V

dt I I

   
           

    
               

2
23 8 3 3

4 5 52 2 2 2
(I I) ( )(I I)

H(1 ) H(1 ) H(1 ) 1

A SK AVK A SK A I
A A A S S

I I I I

   
            

      
 

 
2

8 8
6 7 2 2

( )( ) ( )( )
1 H(1 )

A I AVK
A A S S V V V V I I

I I

 
        

  
                                (16)              

 Now from Eq.(16) and Eq.(14)(a-d)  we have       

2
2 2

3 4 7 4 7 4 6 8 4 6

2

( ) ( )1
( ) (V V)

1 2 2

A A A I A A A A A I A AdP
S S

dt I

        
     

   

                              

2

2 3 8
2 4 5

3 4 7 4 7

2

( S V) K
( )(1 I )

( )1
( ) (I I)

1 2 2

A A
A A

A A A I A A HS S
I

 
   

   
    

  
 
 

 

2

2 3 8
2 4 5

4 6 8 4 6

2

( S V) K
( )(1 I )

( )1
(V ) (I I)

1 2 2

A A
A A

A A A I A A HV
I

 
   

   
    

  
 
 

 

0  

So 
dP

dt
 is negative definite and  P  is a Lyapunov function with respect to E  hence, E  

is  globally asymptotically stable in the sub region  . 

 

4.Numerical  analysis 

     In this section the global dynamics of system (1) is studied numerically. The objectives of 

this study are confirming our analytical results and understand the effects of immigration and 

the existence of vaccine on the dynamics of SVIS epidemic system. Consequently, system (1) 

is solved numerically, for different sets of parameters and different sets of initial conditions. 

It is observed that, for the following set of parameters, system (1) is solved for different sets 
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of initial values and then the trajectories of system (1) as a function of time are drawn in Fig 

(1). 

 

1 2 3 4 5

6 7 8

250, 60, 0.0002, 0.15, 0.18,

0.12, 0.2, 0.00003, 0

A A A A A

A A A p

    

   
                                                 (17) 

 

 

Fig(1):Phase plot of system (1) starting from different initial points for data given in Eq.(17) 

;blue color for S, green color for V, and red color for I . 

 

Clearly Fig.(1) shows the convergent of system (1) to the globally asymptotically stable 

(1450,1450,0)  which confirm our analytic results .However ,for the following set of 

parameters  

1 2 3 4 5

6 7 8

200, 50, 0.2, 0.15, 0.25,

0.12, 0.2, 0.3, 0.4

A A A A A

A A A p

    

   
                                                          (18)   

The trajectories of system(1) starting from different sets of initial data are drawn in Fig(2)                                      
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Fig(2):Phase plot of system (1) starting from different initial points for data given in Eq.(18) 

 

Similarly, Fig(2) shows the approaching of system(1) to the endemic equilibrium point 

(764.7,268.3,633.6)E  ,and study the effect of varying the rate of infected immigrant 

individuals on the dynamics of system (1) shows in  the following table  

 

Table (1): The effect of varying the rate of infection immigrant individuals  

Parameters kept  

fixed 

Parameter  Dynamical behavior of  the system (1) 

 

 

As given in 

Eq. (18) 

0.5p   

 

 

0.7p   

 

0.9p   

 

The system (1) approaches  asymptotically to 

(758.8,266.3,641.6)  

 

The system (1) approaches  asymptotically to 

(747,262.1,657.6) 

The system (1) approaches  asymptotically  to  

(735.2,258,673.5)  

 

 

And the trajectories of system(1) as given in table (1)  are drawn in Fig(3)(a-c)   
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Fig(3) Time series of the solutions of system(1) : (a) for p=0.5 (b) for p=0.7 (c) for p=0.9 

 

According to Fig(3) ,as the fraction of infected immigrant individuals increases (through 

increasing p  ) the trajectory of system(1) approaches asymptotically to the endemic 

equilibrium point .In fact as p increases it is observed that the number of susceptible and 

vaccinated individuals decreases but the number of infective individuals increases . 

Now the effect of varying the vaccination converge rate, the number of individuals who lose 

vaccine immunity and return to susceptible (failure in vaccine) are discuss in Tables (2),(3).  

Table (2): The effect of varying the vaccination converge rate 

Parameters kept  

fixed 

Parameter  Dynamical behavior of  the system (1) 

 

 

As given in 

Eq. (18) 

7 0.2A   

 

 

7 0.35A   

 

7 0.55A   

 

The system (1) approaches  asymptotically to 

(764.7,268.3,633.6)  

 

The system (1) approaches  asymptotically to 

(627.9,385.6,653.2) 

The system (1) approaches  asymptotically  to  

(507,489.2,670.4)  
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Table (3): The effect of varying the number of individuals who lose vaccine immunity and 

return to susceptible. 

Parameters kept  

fixed 

Parameter  Dynamical behavior of  the system (1) 

 

 

As given in 

Eq. (18) 

6 0.2A   

 

6 0.3A   

 

6 0.35A   

 

The system (1) approaches  asymptotically to 

(793.1,244,629.6)  

The system (1) approaches  asymptotically to 

(822.9,219.2,625.4) 

The system (1) approaches  asymptotically  to  

(834.4,208.6,623.7) 

 

And the trajectories of system(1) as given in Table (2),(3)  are drawn in Fig(4),(5)(a-c)   

 

Fig(4) Time series of the solutions of system(1):a) for 
7

0.2A   (b) for 35.07 A  (c) for 

55.07 A  
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Fig(5)Time series of the solutions of system(1):(a) for 0.26A   (b) for 3.06 A  (c) for 

35.06 A  

From Fig(4) ,as the rate of vaccination coverage increases the  endemic equilibrium point of 

system(1) still coexists and table but the number of susceptible decrease whereas  the number 

of infective individuals and vaccinated individuals increases . 

Finally in the Table (4) shows that increases the value of recover rate causes increasing in  

,S V  and decreasing in I  but the system(1) in this cases still approaches to endemic 

equilibrium point   

 

Table (4): The effect of varying the value of recover rate  

Parameters kept  

fixed 

Parameter  Dynamical behavior of  the system (1) 

 

 

As given in 

Eq. (18) 

5 0.35A   

 

5 0.4A   

 

5 0.5A   

 

The system (1) approaches  asymptotically to 

(829.3,291,546.3)  

The system (1) approaches  asymptotically to 

(855.4,300.1,511.1) 

The system (1) approaches  asymptotically  to  

(898.6,315.3,452.8)  
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And the trajectories of system(1) as given in table (4) is  drawn in fig(6)(a-c)   

 

Fig(6)Time series of the solutions of system(1) : (a) for 0.355A   (b) for 0.45A   (c) for 

0.55A   

 

5.Discussion and Conclusions  

       In this paper, a mathematical model of SVIS epidemic model with immigrants has been 

studied and analyzed. The existence, uniqueness and boundedness of the solutions of system 

(1) have been investigated. The local and global dynamical behaviors of the model, in 

addition, have  been studied analytically .The basin of attraction  ,  of each equilibrium 

point has been found. Finally, according to the numerical simulation for the set of data that 

given in Eq.(17),(18)  and some different initial conditions in  ,  showed that E , E  are 

globally asymptotically stable for different value of 5 6, ,p A A  and 7A   
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