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Abstract. The aim of this paper is to define some classes of analytic function spaces in the unit disc. The

boundedness of a certain integral-type operator acting between these classes is investigated.
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1. Introduction

Let D denote the open unit disk in the complex plane C and H(D) the space of all holomor-

phic functions on D. Throughout this paper φ denotes a nonconstant holomorphic self-map of

D and u a fixed analytic function on D. Associated with f ,g∈H(D), the integral-type operators

Jg and Ig are defined as follows:

Jg f (z) =
∫ z

0
f (ζ )g

′
(ζ )dζ and Ig f (z) =

∫ z

0
f
′
(ζ )g(ζ )dζ .
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The importance of the operators Jg and Ig comes from the fact that

Jg f + Ig f = Mg f − f (0)g(0),

where Mg is the multiplication operator defined by

Mg f (z) = g(z) f (z), f ∈ H(D), z ∈ D.

Boundedness and compactness of the operators Jg and Ig in one-dimensional, as well as their

n-dimensional extensions, acting on various function spaces were investigated intensively in

[1-4] and [6, 17, 40]. Let φ be a positive continuous function on [0,1), then φ is called a normal

function if there are three constants a,b, t0, where 0 < a < b and t0 ∈ [0,1), such that

φ(t)
(1− t2)a decreases f or t0 ≤ t ≤ 1 and lim

t→1−

φ(t)
(1− t2)a = 0,

φ(t)
(1− t2)b decreases f or t0 ≤ t ≤ 1 and lim

t→1−

φ(t)
(1− t2)b = ∞.

Now, we give the following definitions;

For a given reasonable function ω : (0,1]→ (0,∞) satisfying the condition ω(1−|z|)≈ωn(1−

|z|) ; n ≥ 0, for 0 < p < ∞ and a normal function φ , let H(p, p,ω,φ) denote the space of all

analytic functions f on the unit disk D such that

‖ f‖p,p,φ =

(∫ 1

0
Mp

p( f ,r)
ω(1− r)φ p(r)

(1− r)
rdr
)1/p

,

where the integral means Mp( f ,r) are defined by

Mp( f ,r) =
(

1
2π

∫ 2π

0
| f (reiθ )|pdθ

)1/p

, 0≤ r < 1.

For 1≤ p < ∞, H(p, p,ω,φ) equipped with the norm ‖ ·‖, is a Banach space. When 0 < p < 1,

‖ · ‖p,p,ω,φ is quipped on H(p, p,ω,φ), and H(p, p,ω,φ) is a Frechét space but not a Banach

space. If 0 < p < ∞, then H(p, p,ω,φ) is the weighted Bergman-type space

H(p, p,ω,φ) =

{
f ∈ H(D) :

∫
D
| f (z)|p ω(1−|z|)φ p(|z|)

(1−|z|)
dA(z)< ∞

}
,
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where dA(z) denotes the normalized Lebesgue area measure on the unit disk D with A(D)≡

1. Note that if φ(r) = (1− r)(α+1)/p, then H(p, p,ω,φ) is the weighted Bergman space Ap
α(D)

defined for 0 < p < ∞ and α >−1, as the space of all f ∈ H(D) such that

‖ f (z)‖p
Ap

α

=
∫
D
| f (z)|Pω(1−|z|)(1−|z|2)αdA(z)< ∞.

Now, we define the analytic weighted logarithmic Bloch-type space Bα

ω,logβ
(D) (where α > 0

and β ≥ 0) as follows:

Bα

ω,logβ ( f ) = sup
z∈D

(1−|z|)α

ω(1−|z|)

(
ln

eβ/α

1−|z|

)β

| f
′
(z)|< ∞.

We define the norm on Bα

ω,logβ
as follows:

‖ f‖Bα

ω,logβ
= | f (0)|+Bα

ω,logβ ( f ).

The little weighted logarithmic Bloch-type space consists of all f ∈Bα

ω,logβ
such that

lim
|z|→1−

(1−|z|)α

ω(1−|z|)

(
ln

eβ/α

1−|z|

)β

| f
′
(z)|= 0.

Remark 1.1 It should be remarked that when ω = 1, then we obtain the space Bα

logβ
as defined

in [38]. When ω = 1 and β = 0, then Bα

ω,logβ
becomes the α-Bloch space Bα , which appeared

in characterizing the multipliers of the Bloch space (see [5, 39]).

Remark 1.2 We recall that there are some recent articles used the weight function ω to define

and study some function spaces of analytic type (see [14, 15, 22, 23, 24, 25, 36, 37]).

Throughout this article, the letter C denotes a positive constant which may vary at each oc-

currence but is independent of the essential variables. We use the notation a ' b to denote the

comparability of the quantities a and b, i.e. the existence of two positive constants C1 and C2

satisfying C1a≤ b≤C2a.

Recall that a linear operator is said to be bounded if the image of a bounded set is a bounded

set, while a linear operator is compact if it takes bounded sets to sets with compact closure.

2. Boundedness Of Integral Operator
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In this section we characterize the boundedness of the integral-type operator Ig : Bα

ω,logβ
→

H(p, p,ω,φ). It is interesting to provide a function theoretic characterization of g, when g

induces a bounded or compact integral-type operator on various spaces. For this purpose, we

start this section by stating some lemmas that are used in the proofs of main results of this

article.

Lemma 2.1 There exist two functions f ,g∈Bα

ω,logβ
(D), (where α > 0 and β ≥ 0) such that for

each z ∈ D, we have

| f
′
(z)|+ |g

′
(z)| ≥ Cω(1−|z|)

(1−|z|)α lnβ eβ/α

1−|z|

,

for some positive constant C.

Proof. The proof is similar to the corresponding result in ([30, 37] with simple modifications so

it will be omitted.

Lemma 2.2 Let f ∈Bα

ω,logβ
, (where α > 0 and β ≥ 0), then

‖ ft‖ ≤C‖ f‖, where ft(z) = f (tz), 0 < t < 1.

Proof. The proof is much akin to the corresponding result in ([38]).

Lemma 2.3 Let 0 < p < ∞, α > 0, β ≥ 0. If f ∈ H(D), then

‖ f‖p
p,p,φ ' | f (0)|

p +
∫
D
| f
′
(z)|pω(1−|z|)(1−|z|2)p φ p(|z|)

(1−|z|)
dA(z).

Proof. The proof is similar to the corresponding result in ([29]) with simple modifications so it

will be omitted.

Theorem 2.1 Let g ∈ H(D), 0 < p < ∞, α > 0 and β ≥ 0. For a given reasonable function

ω : (0,1]→ (0,∞) assume that ω(1−|z|)≈ ωn(1−|z|) ; n ≥ 0. Then the following statements

are equivalent:

(a) Ig : Bα

ω,logβ
→ H(p, p,ω,φ) is bounded,

(b) Ig : Bα

ω,logβ ,0 → H(p, p,ω,φ) is bounded,
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(c) ∫
D

|g(z)|pω(1−|z|)φ p(|z|)(1−|z|)p(1−α)

(1−|z|)
(

ln(eβ/α/(1−|z|2))
)β p

dA(z)< ∞. (2.1)

Proof. (a)⇒ (b). This implication is clear.

(b)⇒ (c). Assume that Ig : Bα

ω,logβ ,0
→ H(p, p,ω,φ) is bounded. In view of Lemma 2.1 there

are h1,h2 ∈Bα

ω,logβ
such that

Cω(1−|z|)
(1−|z|2)α lnβ eβ/α

1−|z|2
≤ Cω(1−|z|)

(1−|z|)α lnβ eβ/α

1−|z|

≤C(|h
′
1|+ |h

′
2|).

Let {tn} ⊂ (0,1) be a sequence converging to 1, (h j)n = h j(tnz) for j = 1,2, then (h j)n ∈

Bα

ω,logβ ,0
, and Ig(h1)n, Ig(h2)n ∈ H(p, p,ω,φ), hence

ω(1−|tnz|)|g(z)tn|p

(1−|tnz|2)α p

(
lnβ eβ/α

1−|tnz|2

)p ≤ C|g(z)|p(|tnh
′
1(tnz)|p + |tnh

′
2(tnz)|p)

= C|g(z)|p
(
|((h1)n)

′
(z)|p + |((h2)n)

′
(z)|p

)
≤ C

(
|(Ig(h1)n)

′
(z)|p + |(Ig(h2)n)

′
(z)|p

)
.

From Lemmas 2.2 and 2.3, we have that∫
D

ω(1−|tnz|)|g(z)tn|p

(1−|tnz|2)α p

(
lnβ eβ/α

1−|tnz|2

)p (1−|z|2)p φ p(|z|)
1−|z|

dA(z)

≤ C
∫
D
|(Ig(h1)n)

′
(z)|p(1−|z|2)p φ p(|z|)

1−|z|
dA(z)

+ C
∫
D
|(Ig(h1)n)

′
(z)|p(1−|z|2)p φ p(|z|)

1−|z|
dA(z)

≤ C(‖Ig(h1)n‖p
p,p,φ +‖Ig(h2)n‖p

p,p,φ )

≤ C‖Ig‖p < ∞.

Thus by Fatou’s lemma, we obtain∫
D

|g(z)|pω(1−|z|)(
ln(eβ/α/(1−|z|2))

)β p

φ p(|z|)
1−|z|

dA(z)≤C,
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which proves condition (2.1). To prove (c)⇒ (a), we assume that

L =
∫
D

|g(z)|pω(1−|z|)(1−|z|)p(1−α)(
ln(eβ/α/(1−|z|2))

)β p

φ p(|z|)
1−|z|

dA(z)< ∞.

For each f ∈Bα

ω,logβ
, we have

∫
D
|(Ig f )

′
(z)|pω(1−|z|)(1−|z|2)p φ p(|z|)

1−|z|
dA(z)

=
∫
D
| f
′
(z)g(z)|pω(1−|z|)(1−|z|2)p φ p(|z|)

1−|z|
dA(z)

≤C‖ f‖p
Bα

ω,logβ

∫
D

|g(z)|pω2(1−|z|)(1−|z|)p(1−α)(
ln(eβ/α/(1−|z|))

)β p

φ p(|z|)
1−|z|

dA(z)

≤C‖ f‖p
Bα

ω,logβ

∫
D

|g(z)|pω(1−|z|)(1−|z|)p(1−α)(
ln(eβ/α/(1−|z|))

)β p

φ p(|z|)
1−|z|

dA(z)≤CL‖ f‖p
Bα

logβ

,

then Ig : Bα

logβ
→ H(p, p,ω,φ) is bounded.

Corollary 2.1 Let g ∈ H(D), 0 < p < ∞, α > 0 and β ≥ 0. For a given reasonable function

ω : (0,1]→ (0,∞) assume that ω(1−|z|)≈ ωn(1−|z|) ; n ≥ 0. Then the following statements

are equivalent:

(a) Ig : Bα
ω → H(p, p,ω,φ) is bounded,

(b) Ig : Bα
ω,0→ H(p, p,ω,φ) is bounded,

(c) ∫
D

|g(z)|pω(1−|z|)φ p(|z|)(1−|z|)p(1−α)

(1−|z|)
dA(z)< ∞. (2.2)

Proof. The proof follows by letting ln(eβ/α/(1−|z|2)) = 1 in Theorem 2.1.

When ω = 1, we can obtain the following result.

Corollary 2.2 Let g ∈ H(D), 0 < p < ∞, α > 0 and β ≥ 0. Then the following statements are

equivalent:

(a) Ig : Bα

logβ
→ H(p, p,φ) is bounded,

(b) Ig : Bα

logβ ,0 → H(p, p,φ) is bounded,
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(c) ∫
D

|g(z)|pφ p(|z|)(1−|z|)p(1−α)

(1−|z|)
(

ln(eβ/α/(1−|z|2))
)β p

dA(z)< ∞. (2.3)

Remark 2.1 It is still an open problem to study integral operators on some hyperbolic classes.

For more information on such classes, we refer to [13, 15, 20, 35].

Remark 2.2 It is still an open problem to study integral operators on some analytic, harmonic

and meromorphic classes which defined and studied in [8, 18, 19, 26].

Remark 2.3 It is still an open problem to study integral operators in quaternion function spaces.

For more details on some classes of quaternion function spaces, we refer to [7, 9, 10, 11, 12,

16, 21, 27, 28, 31, 32, 33] and others.

Remark 2.4 How one can investigate the order and type of weighted logarithmic Bloch func-

tions that defined in this paper? For some studies on the order and type in several function

spaces, we refer to [9, 34] and others.
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