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Abstract. In this paper, we introduce ∗−g−frames and study the operators associated with a give ∗−g−frames.
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1. Introduction and preliminaries

Frames for Hilbert spaces were introduced in 1952 by Duffin and Schaefer [8]. They ab-

stracted the fundamental notion of Gabor [13] to study signal processing. Many generalizations

of frames were introduced, e.g., frames of subspaces [2], Pseudo-frames [18], oblique frames

[6], G-frames [15], ∗ frames [1] in Hilbert spaces.

In 2000, Frank-Larson [11] introduced the notion of frames in Hilbert C*-modules as a gen-

eralization of frames in Hilbert spaces. Recentely, A. Khosravi and B. Khosravi [15] intro-

duced the g−frames theory in Hilbert C*-modules, and Alijani, and Dehghan [1] introduced
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the ∗−frames theories in Hilbert C*-modules. In this note, we introduce the ∗− g−frames

which are generalizations of g−frames in Hilbert C∗-modules.

The content of the present note is as follow: we continue this introductory section with

review of the definitions and basic properties of C∗-algebras, Hilbert C∗-modules, ∗−frame and

g-frames. In Section 2, we introduce ∗−g−frame and present examples of such ∗−g−frame.

Similar to the ordinary frames, g−frames and ∗−frames, we introduce the pre−∗−g−frame

transform and the ∗− g−frames operator. For information about Hilbert C∗-module, we refer

authors to [10, 14, 17] and about ∗−frame, g−frame we refer authors to [1, 15]. Our reference

for C∗-algebras as [7].

Let A be a unitary C∗-algebra and a ∈ A. The nonzero element a is called strictly nonzero

if zero does not belong σ(a), and a is said to be strictly positive if it is strictly nonzero and

positive. If a is positive, there is a positive element b ∈ A such that b2 = a. The relation ′ ≤′

given by

a≤ b if and only if b−a is positive defines a partial ordering in A. Let be a,b,c ∈ A, we have

(i) if a≤ b, then cac∗ ≤ cbc∗. And if c commutes with a and b, then ca≤ cb for 0≤ c.

(ii) 0≤ a≤ b implies ||a|| ≤ ||b||,ab≥ 0,a+b≥ 0, and at ≤ bt for t ∈ (0,1)

(iii) if 0≤ a≤ b and a,b invertible elements then 0≤ b−1 ≤ a−1.

Now, we are going to introduce some of elementary definitions and the basic properties of

Hilbert C∗−modules.

Definition 1.1. Let A be a C∗− algebra, a pre-Hilbert A-module is a left A-module X equipped

with a sesquilinear map 〈., .〉 : X×X → A satisfying

(1) 〈x,x〉 ≥ 0;〈x,x〉= 0 if and only if x = 0 for all x in X ,

(2) 〈αx+βy,z〉= α 〈x,z〉+β 〈y,z〉 for all x,y,z in X ,α,β in C,

(3) 〈x,y〉= 〈y,x〉∗ for all x,y in X ,

(4) 〈ax,y〉= a〈x,y〉 for all x,y in X , a in A.

The map 〈., .〉 is called an A-valued inner product of X , and for x∈ X , we define ||x||= ||〈x,x〉||
1
2

is a norm on X , where the latter norm denotes that in the C∗−algebra A . This norm makes X

into a left normed module over A. A pre-Hilbert module X is called a Hilbert A-module if it is

complete with respect to its norm. Examples of Hilbert C∗-modules are as follows:
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(I) Every Hilbert space is a Hilbert C∗-module.

(II) Every C∗-algebra A is a Hilbert A -module via 〈a,b〉= ab∗ (a,b ∈ A).

(III) Let {Yi, i ∈ I} be a sequence of A−modules and

⊕Yi = {x = (xi) : i ∈ Yi,∑i∈I 〈xi,xi〉 is norm convergent in A}. Then⊕Yi is a Hilbert A−modules

with A- valued inner product 〈(xi)i∈I,(yi)i∈I〉= ∑i∈I 〈xi,yi〉, point wise operations and the norm

defined by ||x||= || 〈x,x〉 || 12 .

Notice that the inner product structure of a C∗-algebra is essentially more complicated than

complex numbers. One may define an A -valued norm |.| by |x|= 〈x,x〉
1
2 . Clearly, ‖x‖= ‖|x|‖

for each x ∈ X .

It is known that |.| does not satisfy the triangle inequality in general. Throughout this paper I

and J be finite or countable index, sets, X and Y are countably or finitely generated Hilbert A-

modules and {(Yi) : i ∈ I} is a sequence of closed sub-modules of Y . For each i ∈ I,End∗(X ,Yi)

is the collection of all adjointable A-linear maps from X to Yi and End∗(X ,X) is denoted by

End∗(X).

Definition 1.2 [15] A sequence {Λi ∈ End∗(X ,Yi) : i ∈ I} is called g−frame in X with respect

to {Yi : i ∈ I} if there exist constant reel C,D > 0 such that for every x ∈ X ,

C 〈x,x〉 ≤∑
i∈I
〈Λi(x),Λi(x)〉 ≤ D〈x,x〉 ,∀x ∈ X . (1.1)

The elements C and D are called the lower and upper g− frame bounds respectively of {Λi, i ∈ I}

with respect to {Yi : i ∈ I}.

Definition 1.3. [1] A sequence {xi : i ∈ I} of X is called a ∗−frame for X if there exist two

strictly nonzero elements C,D in A such that for every x ∈ X ,

C 〈x,x〉C∗ ≤∑
i∈I
〈x,xi〉〈xi,x〉 ≤ D〈x,x〉D∗. (1.2)

The elements C and D are called the lower and upper ∗− frame bounds respectively.

Throughout the paper we need the following lemma.

Lemma 1.4. [17] Let X and Y two Hilbert A−modules and T ∈ End∗(X ,Y ). Then

(i) if T is injective and T has closed range, then the adjointable map T ∗T is invertible and

||(T ∗T )−1||−1 ≤ T ∗T ≤ ||T ||2.
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(ii) if T is surjective, then the adjointable map T T ∗ is invertible and ||(T T ∗)−1||−1 ≤ T T ∗ ≤

||T ||2.

2. Main results

Alijani and Dehghan in [1] introduced ∗-frames and A. Khosravi and B. Khosravi in [15] in-

troduced g-frames for Hilbert C∗-modules. Our next definition and example are generalizations

of (3.1) and (3.2) in [15].

Definition 2.1. A sequence {Λi ∈ End∗(X ,Yi) : i ∈ I} is called ∗− g−frame with respect to

{Yi : i ∈ I} if there exist C,D strictly nonzero of A such that for every x ∈ X ,

C 〈x,x〉C∗ ≤∑
i∈I
〈Λi(x),Λi(x)〉 ≤ D〈x,x〉D∗. (2.1)

The elements C and D are called the lower and upper ∗− g− frame bounds respectively in X

with respect to {Yi, i ∈ I}. Since A is not a partial ordered set, lower and upper ∗− g− frame

bounds may not have order and the optimal bounds may not exist.

If λ =C = D, then the ∗−g− frame is said to be a λ -tight ∗−g− frame and if C = D = 1A, it

is called a Parseval ∗−g− frame or a normalized ∗−g− frame. The ∗−g− frame is standard

if for every x ∈ X , the sum in (2.1) converges in norm.

Example 2.2. Let {xi, i ∈ I} be a ∗−frame of X with lower and upper, C and D, respectively.

For each i ∈ I, we define Txi : X → A, by Txi(x) = 〈x,xi〉 for all x ∈ X . As example in [15], Txi is

adjointable and T ∗xi
(a) = axi for each a ∈ A. And we have,

C 〈x,x〉C∗ ≤∑
i∈I
〈x,xi〉〈xi,x〉 ≤ D〈x,x〉D∗,∀x ∈ X .

Then

C 〈x,x〉C∗ ≤∑
i∈I
〈Txi(x),Txi(x)〉 ≤ D〈x,x〉D∗,

for all x ∈ X . So, {Txi, i ∈ I} is a ∗− g -frame with bounds C and D, respectively, in X with

respect to A.

Now we studies the corresponding operators of a ∗−g−frame.
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Theorem 2.3. Let {Λi ∈ End∗(X ,Yi) : i ∈ I} be ∗− g−frame with lower and upper, C and D,

respectively. The ∗−g−frame transform or pre −∗−g−frame operator T : X −→⊕Yi defined

by T (x) = (Λi(x))i∈I is injective, closed range adjointable A-module map and ||T || ≤ ||D||. The

adjointable T * is surjective and it given by: T ∗(y) = ∑i∈I Λ∗i (yi) where y = (yi)i∈I ∈ ⊕Yi.

Proof. Let x be a vector of X . We have

||T (x)||2 = || 〈(Λi(x))i∈I,(Λi(x))i∈I〉 ||, (2.2)

and by definition of the norm in ⊕Yi, we have

|| 〈(Λi(x))i∈I,(Λi(x))i∈I〉 ||= ||∑
i∈I
〈Λi(x),Λi(x)〉 ||

≤ ||D〈Λix,Λix〉D∗||

= ||D||2||x||2,

for all x ∈ X . Then

||T (x)||2 ≤ ||D||2||x||2, ∀x ∈ X . (2.3)

So T is well defined and ||T || ≤ ||D||. Thus Λi ∈ End∗(X ,Yi),T is a linear A-module map.

We now show that RT is closed. Let {T xn} be a sequence in the range of T such that

lim
n→∞

T xn = y.

The definition of ∗−g−frame concludes that

C 〈xn− xm,xn− xm〉C∗ ≤∑
i∈I
〈Λi(xn− xm),Λi(xn− xm)〉 ≤ D〈xn− xm,xn− xm〉D∗, (2.4),

which is equivalent to

C 〈xn− xm,xn− xm〉C∗ ≤ 〈T (xn− xm),T (xn− xm)〉 ≤ D〈xn− xm,xn− xm〉D∗.

Hence, we have

||C 〈xn− xm,xn− xm〉C∗|| ≤ ||T (xn− xm)||2.

Since

lim
n→∞

T (xn− xm) = 0; lim
n→∞

C 〈xn− xm,xn− xm〉C∗ = 0,
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we have

|| 〈xn− xm,xn− xm〉 || ≤ ||C−1||2||C 〈xn− xm,xn− xm〉C∗||.

Hence, there exists x ∈ X , such that limn→∞ xn = x,

||T (xn− x)||2 = || 〈(Λi(xn− x))i∈I,(Λi(xn− x))i∈I〉 ||

= ||∑〈Λi(xn− x),Λi(xn− x)〉 ||

≤ ||D||2||xn− x||.

Thus limn→∞ T xn = y, so range of T is closed.

We show that T is injective: Suppose that x ∈ X and T x = 0. We have

|| 〈x,x〉 ||= ||C−1C 〈x,x〉C∗(C∗)−1||

≤ ||C−1||2||C 〈x,x〉C∗||

≤ ||C−1||2||∑
i∈I
〈Λi(x),Λi(x)〉 ||

= ||C−1||2|| 〈(Λi(x))i∈I,(Λi(x))i∈I〉 ||

= ||C−1||2||T x||2.

Thus x = 0, and T is injective.

We determine T ∗: Let be x ∈ X and (yi) ∈ ⊕Yi. We have 〈T x,(yi)i∈I〉= 〈(Λi(x))i∈I,(yi)i∈I〉 .

And by definition of the norm in ⊕Yi, we have

〈(Λi(x))i∈I,(yi)i∈I〉= ∑
i∈I
〈Λix,yi〉 .

Then

〈T x,(yi)i∈I〉= ∑
i∈I
〈x,Λ∗i yi〉 .

So T ∗((yi)i∈I) = ∑i∈I Λ∗i yi. By injectivity of T , the operator T ∗ has closed range and X = RT ∗ .

This completes the proof.

Now we define ∗−g− frame operator and studies some of its properties.

Definition 2.4. Let {Λi ∈ End∗(X ,Vi) : i ∈ I} be a ∗ − g−frame with lower and upper ∗ −

g−frame, C and D. Then its ∗−g− frame operator S is defined by: S(x)=T ∗T (x)=∑i∈I Λ∗i Λi(x),

( ∀x ∈ X).
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Theorem 2.5. Let {Λi ∈ End∗(X ,Yi) : i ∈ I} be a ∗ − g−frame with lower and upper ∗ −

g−frame; C and D, respectively, and with The ∗− g− frame operator S. Then S, positive ,

invertible, adjointable and ||C−1||−2 ≤ ||S|| ≤ ||D||2.

Proof. By Lemma 1.4, and Theorem 2.3, S is invertible, positive and self-adjointable map.

The definition of ∗−g−frame and of the operator S, concludes that

〈Sx,x〉= ∑
i∈I
〈Λi(x)),Λi(x))〉 ≤ D〈x,x〉D∗

and

〈x,x〉 ≤C−1
∑
i∈I
〈Λi(x)),Λi(x))〉(C∗)−1,∀x ∈ X .

Then

||C−1||−2|||| 〈x,x〉 || ≤ || 〈Sx,x〉 || ≤ ||D||2|| 〈x,x〉 ||

for all x ∈ X . So

||C−1||−2 ≤ ||S|| ≤ ||D||2.

This completes the proof.

Now we gave a generalization for Theorem 3.3 in [15].

Theorem 2.6. Let for every i ∈ I,Λi ∈ End∗(X ,Yi) and
{

yi, j, j ∈ Ii
}

be a ∗-frame for Yi with

frame bounds Ci,Di, such there exist C,D strictly nonzero of A such that

CaC∗ ≤CiaC∗i and DiaD∗i ≤ DaD∗, (2.5)

for all positive a of A.

Then the following conditions are equivalent

(i)
{

Λ∗i (yi, j), j ∈ Ii
}

is a ∗-frame for X.

(ii) {Λi, i ∈ I} is a ∗−g-frame for X.

Proof. Let i ∈ I, since
{

yi, j, j ∈ Ii
}

is a ∗-frame for Yi with bounds Ci,Di, we have

Ci 〈Λix,Λix〉C∗i ≤ ∑
j∈Ii

〈
Λix,yi, j

〉〈
yi, j,Λix

〉
≤ Di 〈Λix,Λix〉D∗i , (2.6)

for all x ∈ X . So

Ci 〈Λix,Λix〉C∗i ≤ ∑
j∈Ii

〈
x,Λ∗i yi, j

〉〈
Λ
∗
i yi, j,x

〉
≤ Di 〈Λix,Λix〉D∗i ,∀x ∈ X . (2.7)
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And by using the conditions (2.5), we deduce

C 〈Λix,Λix〉C∗ ≤ ∑
j∈Ii

〈
x,Λ∗i yi, j

〉〈
Λ
∗
i yi, j,x

〉
≤ D〈Λix,Λix〉D∗,∀x ∈ X . (2.8)

Then
C∑

i
〈Λix,Λix〉C∗ ≤ ∑

i
∑
j∈Ii

〈
x,Λ∗i yi, j

〉〈
Λ
∗
i yi, j,x

〉
≤ D∑

i
〈Λix,Λix〉D∗,∀x ∈ X .

(2.9)

And, if we suppose the condition
{

Λ∗i (yi, j), j ∈ Ii
}

is a ∗-frame for X with frame bounds C
′
,D
′
,

we have

C
′ 〈x,x〉C

′∗ ≤∑
i

∑
j∈Ii

〈
x,Λ∗i yi, j

〉〈
Λ
∗
i yi, j,x

〉
≤ D

′ 〈x,x〉D
′∗,∀x ∈ X . (2.10)

So, by combining (2.9) and (2.10), we get

C∑
i
〈Λix,Λix〉C∗ ≤ D

′ 〈x,x〉D
′∗

and

C
′ 〈x,x〉C

′∗ ≤ D∑
i
〈Λix,Λix〉D∗,∀x ∈ X .

Then

D−1C
′ 〈x,x〉C

′∗(D∗)−1 ≤∑
i
〈Λix,Λix〉 ≤C−1D

′ 〈x,x〉(D
′∗)(C∗)−1,∀x ∈ X .

So (i)⇒ (ii). Next, we show the Converse. Similarly we have

C∑
i
〈Λix,Λix〉C∗ ≤∑

i
∑
j∈Ii

〈
x,Λ∗i yi, j

〉〈
Λ
∗
i yi, j,x

〉
≤≤ D∑〈Λix,Λix〉D∗,∀x ∈ X . (2.11)

If we suppose {Λi, i ∈ I} is a ∗−g− frame, with frame bounds C
′
,D
′
, so

D∑
i
〈Λix,Λix〉D∗ ≤ DD

′ 〈x,x〉D
′∗D∗

and

CC
′ 〈x,x〉C

′∗C∗ ≤C∑
i
〈Λix,Λix〉C∗,∀x ∈ X .

Then

CC
′ 〈x,x〉C

′∗C∗ ≤∑
i

∑
j∈Ii

〈
x,Λ∗i yi, j

〉〈
Λ
∗
i yi, j,x

〉
≤ DD

′ 〈x,x〉D
′∗D∗,∀x ∈ X .

This completes the proof.

The next result is analog to Corollary 3.4 in [15].



254 N.BOUNADER & S.KABBAJ

Corollary 2.7. Let for every i∈ I,Λi ∈End∗(X ,Yi) and
{

xi, j, j ∈ Ii
}

and be a Parseval ∗-frames

for Yi. Then we have

(i) {Λi, i ∈ I} is a ∗−g−frame (resp. ∗−g−Bessel sequence, tight ∗−g−frame) for X if only

if
{

Λ∗i xi, j, i ∈ I, j ∈ Ii
}

is a ∗−frames (resp. Bessel sequence, tight frame ) for X

(ii) The ∗−g- frame operator of {Λi, i ∈ I} is the ∗− frame operator of
{

Λ∗i xi, j, i ∈ I, j ∈ Ii
}

Proof. (i) Follow from the theorem 2.6.

(ii) Letting x ∈ X and y ∈ Y , we have

〈Λ∗i y,x〉= 〈y,Λix〉

= ∑
〈
y,xi, j

〉〈
xi, j,Λix

〉
= ∑

〈
y,xi, j

〉〈
Λ
∗
i xi, j,x

〉
= ∑

〈〈
y,xi, j

〉
Λ
∗
i xi, j,x

〉
.

Then Λ∗i y = ∑ j
〈
y,xi, j

〉
Λ∗i xi, j. So

∑
i

Λ
∗
i Λix = ∑

i
∑

j

〈
Λix,xi, j

〉
Λ
∗
i xi, j.

= ∑
i

∑
j

〈
x,Λ∗i xi, j

〉
Λ
∗
i xi, j.

Since, the ∗ frame operator of
{

Λ∗i xi, j, i ∈ I, j ∈ Ii
}

, is defined by: S
′
(x)=∑i ∑ j

〈
x,Λ∗i xi, j

〉
Λ∗i xi, j,

see [1]. Then the ∗−g- frame operator of {Λi, i ∈ I} is the ∗− frame operator of
{

Λ∗i xi, j, i ∈ I, j ∈ Ii
}

.

This completes the proof.

Now we gave a generalization of Theorem 3.5 in [15].

Theorem 2.8. Let {Λi ∈ End∗(X ,Yi) : i ∈ I} be a ∗ − g- frame with lower and upper ∗ −

g−frame; C and D, respectively and with The ∗− g- frame operator S, and M be a Hilbert

A−module and let T ∈ End∗(M,X) be invertible. Then {ΛiT ∈ End∗(M,Yi, i ∈ I}) is a ∗−

g−frame with ∗−g− frame operator T ∗ST with bounds ||T−1||−1C, ||T ||D.

Proof. We have

C 〈T x,T x〉C∗ ≤∑
i∈I
〈ΛiT x,ΛiT x〉 ≤ D〈T x,T x〉D∗, (2.12)
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for all x ∈ M. Using Lemma 1.4, we have ||(T T ∗)−1||−1 〈x,x〉 ≤ 〈T x,T x〉. for all x ∈ M. Or

||T−1||−2 ≤ ||(T T ∗)−1||−1. This implies

C||T−1||−2 〈x,x〉C∗ ≤C 〈T x,T x〉C∗. (2.13)

for all x ∈ M. And we know that 〈T x,T x〉 = 〈T ∗T x,x〉 ≤ ||T ∗T || 〈x,x〉. for all x ∈ M. This

implies that

D〈T x,T x〉D∗ ≤ D||T || 〈x,x〉(D||T ||)∗ (2.14)

for all x ∈M. Using (2.12), (2.13), (2.14) we have

||T−1||C 〈x,x〉 (||T−1||C)∗ ≤∑
i∈I
〈ΛiT x,ΛiT x〉 ≤ ||T ||D〈x,x〉(||T ||D)∗. (2.15)

for all x ∈ M. So {ΛiT ∈ End∗(M,Yi, i ∈ I}) is a ∗− g−frame with bounds ||T−1||C,D||T ||.

Moreover for every x ∈M, we have

T ∗ST (x) = T ∗∑
i∈I

Λ
∗
jΛ jT (x) = ∑

i∈I
T∗Λ∗jΛ jT (x) = ∑

i∈I
(Λ jT )∗Λ jT (x).

for all x ∈M. This completes the proof.

The next result is a generalization of Corollary 3.6 in [1].

Corollary 2.9. Let {Λi ∈ End∗(X ,Yi) : i ∈ I} be a ∗ − g- frame with lower and upper ∗ −

g−frame; C and D, respectively and with The ∗−g- frame operator S. Then {ΛiS−1 ∈End∗(X ,Yi) :

i ∈ I} is a ∗− g- frame with lower and upper ∗− g−frame; ||D||−2 and ||C−1||2, respectively,

∗−g- frame operator S−1 and for every x ∈ X ,x = ∑ΛiS−1Λ∗i = ∑(ΛiS−1)∗Λi

Proof. By taking M = X and T = S−1 in Theorem (2.8), it follow that {ΛiS−1 ∈ End∗(X ,Yi) :

i ∈ I} is a ∗−g- frame where the ∗−g- frame operator is S−1 and, we have

||S||−1 〈x,x〉 ≤
〈
S−1x,x

〉
= ∑

〈
ΛiS−1x,ΛiS−1x

〉
≤ ||S−1|| 〈x,x〉 ,∀x ∈ X .

Or, we have ||S−1|| ≤ ||C−1||2 and ||S|| ≤ ||D||2, so {ΛiS−1 ∈ End∗(X ,Yi) : i ∈ I} is a ∗− g-

frame with lower and upper ∗− g−frame; ||D||−2 and ||C−1||2,∀x ∈ X . Moreover since for

every i ∈ I,(ΛiS−1)∗ = S−1Λ∗i and for every x ∈ X ,x = S−1Sx = SS−1x, then x = ∑ΛiS−1Λ∗i x =

∑(ΛiS−1)∗Λix. This complete the proof.
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