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Abstract. Here we study the uniqueness of a representation of a homogeneous polynomial as a sum of a

small number of powers of linear forms (equivalently, a representation of a symmetric tensor as a sum of

powers) or (when it is not unique) describe all such additive decompositions. We require a linear upper

bound for the number of addenda with respect to the degree of the polynomial and, for some results,

assumptions like linearly general position.

Keywords: Waring problem; Polynomial decomposition; Symmetric tensor rank; Symmetric rank; Sym-

metric tensors.

2010 AMS Subject Classification: 15A21, 15A69, 14N15

1. Introduction

Let K be an algebraically closed base field with characteristic zero. For any finite

subset A of a projective space let 〈A〉 denote its linear span. Fix an integer m ≥ 1.

For any integer d ≥ 1 let νd : Pm → PN , N :=
(
m+d
m

)
− 1, denote the order d Veronese

embedding of Pm. Set Xm,d := νd(Pm). For any P ∈ PN the symmetric rank sr(P ) of

P is the minimal cardinality of a finite set S ⊂ Xm,d such that P ∈ 〈S〉. Up to a scalar

the point P represents a homogeneous degree d polynomial f ∈ K[x0, . . . , xm] and sr(P )
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is the minimal integer s such that f =
∑s

i=1 `
d
i with each `i ∈ K[x0, . . . , xm]1 a linear

form. Dually, f may be seen as a symmetric tensor τ and sr(P ) is the minimal number

of rank 1 symmetric tensors with τ as their sum. Similarly, a finite set S ⊂ PN such

that P ∈ 〈S〉 corresponds to a decomposition f =
∑

Q∈S `
d
Q, where `dQ is associated to

the unique O ∈ Pm such that Q = νd(O). There are many practical problems which

use the symmetric tensor rank and several general mathematical works on it ([10], [14],

[9], [4], [7], [13], [16], [15], [3], [8], [6] and references therein). If sr(P ) is very low, then

there is a unique set A ⊂ PN computing sr(P ), i.e. with P ∈ 〈A〉 and ](A) = sr(P )

([6], Theorem 1.2.6, [2], Theorem 2). In this paper we study a similar situation for larger

(but not very large) values of the symmetric rank. We ask for sets A, S ⊂ Pm such that

P ∈ 〈νd(A)〉 ∩ 〈νd(S)〉 and A 6= S. Without loss of generality we assume that A and

S are “ minimal ”, i.e. we assume P /∈ 〈A′〉 for any A′ ( A and P /∈ 〈S ′〉 for any

S ′ ( S. For any P ∈ PN let S(P ) denote the set of all B ⊂ Pm such that νd(B) computes

sr(P ), i.e., the set of all B ⊂ Pm such that ](B) = sr(P ) and P ∈ 〈νd(B)〉. Notice that

P /∈ 〈νd(B′)〉 for any B ∈ S(P ) and any B′ ( B. The set S(P ) is a constructible subset

of Pm. As usual for constructible sets dim(S(P )) denotes the maximal dimension of a

quasi-projective variety contained in S(P ). This integer is the maximal dimension of an

irreducible component of the Zariski closure of S(P ) in Pm.

Let E ⊂ Pr be a finite set. The set E is said to be in linearly general position if

dim(〈F 〉) = min{](F )− 1, r} for every F ⊆ E. We prove the following results.

Theorem 1.1. Fix integers d > m ≥ 2 and subsets S,A of Pm such that ](A) ≥ m + 1,

](S) ≥ m+ 1, ](S) + ](A) ≤ md+ 1 and both S and A are in linearly general position in

Pm. Then 〈νd(A)〉 ∩ 〈νd(S)〉 = 〈νd(A ∩ S)〉.

Theorem 1.2. Fix integers m ≥ 4 and d ≥ 2m + 1. Fix S ⊂ Pm such that ](S) ≤

(3d + 1)/2 and S is in linearly general position in Pm. Fix any P ∈ 〈νd(S)〉 such that

P /∈ 〈νd(S ′)〉 for any S ′ ( S. Then sr(P ) = ](S) and S(P ) = {S}.

Theorem 1.1 shows that 〈νd(A ∩ S)〉 is the set of all P ∈ PN which may be described

both as a sum over the points of νd(A) and as a sum over the points of νd(S), when ](A)

and ](S) are low. It obviously implies sr(P ) ≤ ](S∩A) for every P ∈ 〈A〉∩〈S〉. Theorem
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1.1 is sharp (see Example 2.7). Theorem 1.2 is a “ partial improvement ” of [2], Theorem

2 (it assumes less on ](S), but more on the shape of S).

To state our next result we introduce the following cases. Fix integers m ≥ 2 and

d ≥ 2. We fix P ∈ PN and assume the existence of finite sets A, S ⊂ Pm such that S 6= A,

P ∈ 〈νd(A)〉 ∩ 〈νd(S)〉, P /∈ 〈νd(A′)〉 for any A′ ( A and P /∈ 〈νd(S ′)〉 for any S ′ ( S.

(A) We say that (A, S, P ) is as in case A if there is a line D ⊂ Pm such that

]((A ∪ S) ∩ D) ≥ d + 2, ](A ∩ D) ≤ d + 1, ](S ∩ D) ≤ d + 1, A \ A ∩ D = S \ S ∩ D,

νd(A \ A ∩D) is linearly independent, and 〈νd(A \ A ∩D)〉 ∩ 〈νd(D)〉 = ∅.

(B) We say that (A, S, P ) is as in case B if ](A) + ](S) = 2d+ 2, A∩S = ∅ and there

are a plane U ⊆ Pm and a smooth conic C ⊂ U such that A ∪ S ⊂ C.

(C) We say that (A, S, P ) is as in case C if there are a plane U ⊆ Pm and lines

L1, L2 ⊂ U such that L1 6= L2, A ∪ S ⊂ L1 ∪ L2, L1 ∩ L2 /∈ A ∪ S, A ∩ S = ∅, and

]((A ∪ S) ∩ L1) = ]((A ∪ S) ∩ L2) = d+ 1.

Notice that in case A we assume neither A ∩ S ∩D = ∅ nor ](D ∩ (A ∪ S)) = d+ 2.

Proposition 1.3. Fix integers m ≥ 2 and d ≥ 3. Fix A, S ⊂ Pm such that ](A) + ](S) ≤

2d + 2. Assume the existence of P ∈ 〈νd(A)〉 ∩ 〈νd(S)〉 such that P /∈ 〈νd(A′)〉 for any

A′ ( A and P /∈ 〈νd(S ′)〉 for any S ′ ( S. Then:

(a) (A, S, P ) is either as in case A or as in case B or as in case C.

(b) If (A, S, P ) is either as in case B or as in case C, then {P} = 〈νd(A)〉 ∩ 〈νd(S)〉.

Part (b) of Proposition 1.3 shows that in cases B and C the pair (A, S) uniquely

determines P .

Proposition 1.4. Assume d ≥ 5 and fix a triple (A, S, P ) as in case A with respect to

the line D. Set E := A \ A ∩D. Assume ](A) + ](S) ≤ 2d+ 2.

(a) There is a unique P1 ∈ 〈νd(D ∩A)〉 ∩ 〈{P} ∪ νd(E)〉 and sr(P ) = sr(P1) + ](E).

Set Γ := {E t β}β∈S(P1). We have Γ ⊆ S(P ) and equality holds, unless ](A) = ](B) =

sr(P ) = d+ 1.

(b) Take another (Ã, S̃, P ) as in case A with respect to the same line D and with

](Ã) + ](S̃) ≤ 2d+ 2. Then ](Ã \ Ã ∩D) = ](E).
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(c) Take another (A, S, P ) as in case A with respect to some line D. If ](A)+ ](S) ≤

2d+ 2, ](A) + ](A) ≤ 2d+ 1 and 2 ≤ ](A ∩D) ≤ d, then D = D.

For an example which shows the necessity of some assumptions in part (c) of Proposition

1.4, see Example 3.6.

The integer sr(P1) appearing in Proposition 1.4 is also the symmetric rank of P1 with

respect to the rational normal curve νd(D) ([14], Proposition 3.1, or [15], Theorem 2.1).

Hence, knowing P1 one can use several known algorithms to compute the integer sr(P1)

([8], [15], Theorem 4.1, [3], §3).

Proposition 1.5. Assume d ≥ 3 and (A, S, P ) as in case B with respect to the smooth

conic C. Then:

(a) We have sr(P ) = min{](A), ](S)} and {P} = 〈νd(A)〉 ∩ 〈νd(S)〉.

(b) If ](A) 6= ](S), say ](A) < ](S), then A is the only element of S(P ).

(d) If ](A) = ](S) = d + 1, then S(P ) is one-dimensional, every B ∈ S(P ) is

contained in C and any two different elements of S(P ) are disjoint.

Proposition 1.6. Assume d ≥ 5 and fix (A, S, P ) as in case C with respect to the reducible

conic L1 ∪ L2. Set {Q} := L1 ∩ L2. We have {P} = 〈νd(A)〉 ∩ 〈νd(S)〉. Set Ai := A ∩ Li

and Si := S ∩ Li. Either sr(P ) is computed by A or by S or by A1 ∪ S2 ∪ {Q} or by

A2 ∪S1 ∪{Q}. If sr(P ) < min{](A), ](S)}, then S(P ) ⊆ {A1 ∪S2 ∪{Q}, A2 ∪S1 ∪{Q}}.

The existence of a curve as in (A), (B) or (C) (respectively a line, a smooth conic

and a reducible conic) would easily follow from the main result of [1]. In the range

](A) + ](S) < 3d the existence of a suitable curve follows from [11], Theorem 3.8. We will

use [11], Theorem 3.8, to shorten the proof. We prefer to present here a proof which not

use [1], but the main point of this paper is the analysis of the pairs (A, S) associated to

a given P and of the computation of sr(P ) (Propositions 1.4, 1.5, 1.6)..

2. The proofs of Theorems 1.1 and 1.2

Grassmann’s formula and the linear normality of Veronese varieties immediately give

the following lemma.
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Lemma 2.1. For all finite subsets A, S of Pm such that h1(Pm, IA(d)) = h1(Pm, IS(d)) =

0 we have

dim(〈νd(A)〉 ∩ 〈νd(S)〉) = dim(〈νd(A ∩ S)〉) + h1(Pm, IA∪S(d)).

Lemma 2.2. Fix finite subsets A, S of Pm such that h1(Pm, IA(d)) = h1(Pm, IS(d)) = 0

and a proper linear subspace M of Pm. Set F := (A∪S)\ (A∪S)∩M and E := (S∩A)\

(S∩A∩M). If h1(Pm, IF (d−1)) = 0, then 〈νd(A)〉∩〈νd(S)〉 is the linear span of 〈E〉 and

of 〈νd(A∩M)〉∩〈νd(S∩M)〉 and its dimension is ](E)+dim(〈νd(A∩M)〉∩〈νd(S∩M)〉).

Proof. Since E ⊆ A we have h1(Pm, IE(d)) = 0. Hence dim(〈νd(E)〉 = ](E)− 1. Take a

general hyperplane H of Pm containing M . Since A ∪ S is finite, we have (A ∪ S) ∩H =

(A ∪ S) ∩M . From the residual exact sequence

(1) 0→ IF (d− 1)→ IS∪A(d)→ I(S∪A)∩H(d)→ 0

we get h1(Pm, IS∪A(d)) = h1(H, I(S∪A)∩M(d)). Hence dim(〈νd(A)〉∩〈νd(S)〉)−dim(〈νd(A∩

A)〉) = dim(〈νd(S ∩M)〉 ∩ 〈νd(S ∩M)〉 − dim(〈νd(A ∩ S ∩M)〉) (Lemma 2.1). We have

S∩A = (S∩A∩M)tE. Since E ⊆ F and h1(Pm, IF (d−1)) = 0, the exact sequence (1)

also gives dim(〈νd(A)〉∩〈νd(S)〉) = ](E)+dim(〈νd(A∩M)〉∩〈νd(S∩M)〉) and that 〈νd(E)〉

and 〈νd(A ∩M)〉 ∩ 〈νd(S ∩M)〉 are supplementary linear subspaces of 〈νd(S)〉 ∩ 〈νd(S)〉.

This completes the proof.

We will often call (1) (or similar exact sequences) the Castelnuovo’s sequence. Let

Z ⊂ Pm be a zero-dimensional scheme. For any hyperplane H ⊂ Pm the residual scheme

ResH(Z) of Z with to H is the closed subscheme of Pm with IZ : IH as its ideal sheaf.

We have ResH(Z) ⊆ Z, deg(Z) = deg(ResH(Z)) + deg(Z ∩H) and for any t ∈ Z there is

a Castelnuovo’s sequence

0→ IResH(Z)
(t− 1)→ IZ(t)→ IZ∩H,H(t)→ 0.

If Z is reduced, i.e. if Z is a finite set, then ResH(Z) = Z \ Z ∩H.

Lemma 2.3. Fix integers m ≥ 2, d ≥ 3 and sets S,A ⊂ Pm such that h1(Pm, IA(d)) =

h1(Pm, IS(d)) = 0, ](A∪ S) ≤ 2d+ 1 and 〈νd(A)〉 ∩ 〈νd(S)〉 6= 〈νd(A∩ S)〉. Then there is
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a line D ⊂ Pm such that ]((A ∪ S) ∩D) ≥ d+ 2 and, taking E := (A ∩ S) \ (A ∩ S ∩D),

〈νd(E)〉 and 〈νd(A ∩D)〉 ∩ 〈νd(S ∩D)〉 are supplementary subspaces of 〈νd(A)〉 ∩ 〈νd(S)〉

and dim(νd(E)〉 = ](E)− 1.

Proof. Since h1(Pm, IA∪S(d)) > 0 (Lemma 2.1), there is a line D ⊂ Pm such that

](D ∩ (A ∪ S)) ≥ d + 2 ([3], Lemma 34). Set E := (A ∪ S) \ (A ∪ S) ∩ D. Since

](E) ≤ d− 1, we have h1(Pm, IE(d− 1)) = 0 ([3], Lemma 3.4). Hence 〈νd(A)〉 ∩ 〈νd(S)〉

is the linear span of 〈νd(E)〉 and of 〈νd(A ∩ D)〉 ∩ 〈νd(S ∩ D)〉 (Lemma 2.2). Since

h1(Pm, IE(d)) ≤ h1(Pm, IE(d− 1)) = 0, we have dim(νd(E)〉 = ](E)− 1. Use Lemma 2.2.

This completes the proof.

We need the following obvious lemma.

Lemma 2.4. Fix a linearly independent subset F ′ ⊂ Pr. Then the linear system |IF ′(2)|

has no base point outside F ′, i.e. h1(IF ′∪{P}(2)) = 0 for every P ∈ Pr \ F ′.

Lemma 2.5. Fix integers r ≥ 1 and t ≥ 3 and subsets E,F of Pr such that both E and

F are linearly independent. Then h1(IE∪F (t)) = 0.

Proof. If r = 1, then the lemma is true. Hence we may assume r ≥ 2 and use induction

on r. Enlarging if necessary E we may assume ](E) = r + 1. Let H be a hyperplane

spanned by r points of E. Set E ′ := E \ E ∩H and F ′ := F \ F ∩H. Since both E and

F are linearly independent, both E ∩H and F ∩H are linearly independent. Hence the

inductive assumption gives h1(H, I(E∪F )∩H(t)) = 0. Since ](E ′ ∪ F ′) ≤ ](F ′) + 1 and F ′

is linearly independent, it is sufficient to apply Lemma 2.4. This completes the proof.

Lemma 2.6. Fix a finite set E ⊂ Pr such that h1(IE(2)) > 0. Then there is a linear

subspace U ⊆ Pr such that ](E ∩ U) ≥ dim(U) + 3.

Proof. We use induction on r, the case r = 1 being obvious. Assume r ≥ 2. Let H ⊂ Pr

be a hyperplane such that ](E∩H) is maximal. First assume h1(H, IH∩E(2)) > 0. By the

inductive assumption there is a linear subspace U ⊆ H such that ](E ∩U) ≥ dim(U) + 2.

Now assume h1(H, IH∩E(2)) = 0. By the Castelnuovo’s sequence (1) with d = 2 and

E = A ∪ S we have h1(IE\E∩H(1)) > 0. Hence ](E \ E ∩H) ≥ 3. Since we took E with

](E ∩H) maximal and E is not contained in H, E ∩H spans H. Therefore ](E ∩H) ≥ r.

Hence ](E) ≥ r + 3. Hence we may take Pr as U . This completes the proof.
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Example.2.7. Let C ⊂ Pm be a rational normal curve. Fix finite subsets A, S of C such

that A 6= ∅, S 6= ∅, A ∩ S = ∅ and ](A) + ](B) = md+ 2. Since h0(C,OC(d)) = md+ 1,

h + 0(C, IA∪S(d)) = 0, and h1(C, IE(d)) = 0 for every E ⊂ C such that ](E) ≤ md + 1,

Lemma 2.1 gives that 〈νd(A)〉 ∩ 〈νd(A)〉 is a unique point, P , and 〈νd(A)〉 ∩ 〈νd(S ′)〉 =

〈νd(A′)〉 ∩ 〈νd(S)〉 for any A′ ( A and any S ′ ( S.

Proof of Theorem 1.1. Assume 〈νd(A)〉 ∩ 〈νd(S)〉 6= 〈νd(A ∩ S)〉. Since S and

A are in linearly general position in Pm and ](A) ≤ md + 1, ](S) ≤ md + 1, we have

h1(Pm, IA(d)) = h1(Pm, IS(d)) = 0 ([12], Theorem 3.2). Hence our assumption is equiv-

alent to h1(Pm, IA∪S(d)) > 0 (Lemma 2.1). ](A ∪ S) ≤ dm + 1, the set A ∪ S is not

in linearly general position ([12], Theorem 3.2). Set W0 := A ∪ S. Let M1 ⊂ Pm be

a hyperplane such that ](W0 ∩ M1) is maximal. Set W1 := W0 \ (W0 ∩ M1). Fix an

integer i ≥ 2 and assume to have defined the sets Wj and the hyperplane Mj ⊂ Pm

for all j < i. Let Mi ⊂ Pm be a hyperplane such that ](Mi ∩ Wi−1) is maximal. Set

Wi := Wi−1 \ (Wi−1 ∩Mi), wi := ](Wi) and bi = ](Mi ∩Wi−1). Hence w0 = ](A ∪ S),

wi−1 = wi + bi for all i > 0, and bi ≥ bj for all i ≥ j. Since h1(Pm, IA∪S(d)) > 0 (Lemma

2.1), there is an integer i ≥ 1 such that h1(Mi, IMi∩Wi−1
(d + 1 − i)) > 0. Call k the

minimal such integer. Notice that if bj ≤ m − 1, then bi = 0 for all i > j. Hence bi = 0

for all i > dw0/me. Hence bd+2 = 0 and bd+1 ≤ 1. Since h1(Pm, IE) = 0 if ](E) ≤ 1, we

have k ≤ d. Since both A and S are in linearly general position, then ](A ∩Mk) ≤ m,

](S ∩Mk) ≤ m and both A ∩Mk and S ∩Mk are linearly independent in Mk. Lemma

2.4 with r = m− 1, E = A ∩Mk and F = S ∩Mk gives k ≥ d− 1. Since A ∪ S is not in

linearly general position, we have b1 ≥ m + 1. Since bi ≥ m if bi+1 > 0, we have bi ≥ m

for 2 ≤ i ≤ k − 2. Hence ](A ∪ S) ≥ m + 1 + (k − 2)m + bk. Fix an integer i ≥ 1 such

that bi+1 > 0. Since Mi contains the maximal number of points of Wi−1, either Wi−1 is

in linearly general position in Pm or bi ≥ m + 1. If Wi−1 is in linearly general position

in Pm, then all its subsets Wj, j ≥ i, are in linearly general position in Pm. Hence either

Mk ∩Wk−1 is in linearly general position in Mk or bi ≥ m+ 1 for all i ∈ {1, . . . , k − 1}.

(a) Here we assume that Mk ∩ Wk−1 is in linearly general position in Mk. Since

h1(Mk, IWk−1∩Mk
(d + 1 − k)) > 0, we get bk ≥ (m − 1)(d + 1 − k) + 2 ([12], Theorem
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3.2). First assume k = d − 1. Since bd−1 ≥ 2m and bi ≥ bd−1 for all i ≤ d − 1, we get

](A∪ S) ≥ 2m(d− 1) > md+ 1, a contradiction. For k = d we get bd ≥ m+ 1 and hence

](A ∪ S) ≥ (m+ 1)d, a contradiction.

(b) In this step we assume that Mk ∩Wk−1 is not in linearly general position in Mk.

(b1) First assume k = d. Since Md∩Wd−1 is not in linearly general position, we have

bd ≥ 3. Hence ](A ∪ S) ≥ (m+ 1)(d− 1) + 3 > md+ 1 (since d > m).

(b2) Now assume k = d− 1. Hence h1(Md−1, IMd−1∩Wd−2
(2)) > 0. Applying Lemma

2.6 with r = m−1 and E = Md−1∩Wd−2 we get the linear subspace U ⊆Md−1 such that

]((A∪S)∩U) ≥ dim(U)+3. Since b1 is at least the maximal integer ](F ∩(A∪S)), where

F is a hyperplane containing U , we have b1 ≥ m+3. If there is linear subspace V such that

](V ∩W1) ≥ dim(V ) + 3, then b2 ≥ m+ 3 (or b3 = 0). If there is no such linear subspace

then we may take the hyperplanes so that Wd−1 has no linear subspace U as above. And

so on. Hence we get bi ≥ m+ 3 for 1 ≤ i ≤ d−2. Hence ](A∪S) ≥ (m+ 3)(d−2) + bd−1.

Since bd−1 ≥ 4 and d > m we get ](A ∪ S) ≥ md+ 2, a contradiction. �

Proof of Theorem 1.2. Take A ⊂ Pm such that νd(A) computes sr(P ). If sr(P ) =

](S), then assume A 6= S. It is sufficient to prove that these assumptions give a contra-

diction. We have ](A ∪ S) ≤ 3d + 1 with strict inequality if d is even. Set W := A ∪ S

and ρ0 := ](W ). We assumed P /∈ 〈νd(S ′)〉 for any S ′ ( S. Since νd(A) computes

sr(P ), then P /∈ 〈νd(A′)〉 for any A′ ( A. Hence h1(Pm, IW (d)) > 0 ([2], Lemma 1). If

](S) ≤ d + 1, then the statement is a particular case of [2], Theorem 2. Hence we may

assume ](S) ≥ d+ 2.

(a) Let H1 ⊂ Pm be a hyperplane such that ρ1 := ](W ∩ H1) is maximal. Set

W0 := W and W1 := W0 \ W0 ∩ H1. For every integer i ≥ 2 define inductively the

subsets Wi of W , the hyperplane Hi ⊂ Pm and the integer ρi in the following way. Fix an

integer i ≥ 2 and assume that Wi−1 is defined. Let Hi ⊂ Pm be any hyperplane such that

ρi := ](Wi−1 ∩Hi) is maximal. Set Wi := Wi−1 \Wi−1 ∩Hi. Hence Wi+1 ⊆ Wi for all i,

](Wi) = ρ0 −
∑i

h=1 ρh for all i ≥ 1. The maximality condition implies that the sequence

{ρi}i≥1 is non-increasing and ρ0 ≥
∑

i≥1 ρi. Hence Wi+1 = Wi ⇔ ρi = 0 ⇔ ρh = 0 for all

h ≥ i. Since Wi = Wi−1 \Wi−1 ∩Hi, for all integers t, i with i ≥ 1 we have the following
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exact sequence of sheaves (often called the Castelnuovo’s sequence)

(2) 0→ IWi
(t− 1)→ IWi−1

(t)→ IWi−1∩Hi,Hi
(t)→ 0

Since Wi = ∅ for all i� 0 (say for all i ≥ ρ0)) and h1(Pn, IW (d)) > 0, there is an integer

i ≥ 1 such that h1(Hi, IWi−1∩Hi,Hi
(d+ 1− i)) > 0. Call i0 the minimal such integer. Since

ρ0 ≤ 3d+ 1 and h1(Pm, IW (d)) > 0, W is not in linearly general position ([12], Theorem

3.2). Hence ρ1 ≥ m + 1. By the maximality of each ρi we get that either Wi−1 ∩ Hi

spans Hi (and hence ρi−1 ≥ m) or Wi−1 ⊂ Hi and hence ρj = 0 for all j ≥ i0. Since

](A ∪ S) ≤ 3d + 1 < m(d − 1), we have i0 ≤ d. Hence d + 1 − i0 > 0. By [3], Lemma

34, we have ρi0 ≥ d + 3 − i0 and equality holds if and only if Wi0−1 ∩ Hi is contained

in a line. Since the sequence {ρi}i≥1 is non-increasing, we get i0(d + 3 − i0) ≤ ρ0. Since

ρ0 ≤ 3d + 1 and the function t 7→ t(d + 3− t) is strictly increasing for t < (d + 3)/2 and

strictly decreasing for t > (d + 3)/2, we get that either i0 ∈ {1, 2, 3} or i0 ≥ d − 3 (for

t = 4 we need d ≥ 5).

(b) Here we assume i0 = 1 and ρ1 ≤ 2d + 1. There is a line L ⊂ H1 such that

](W ∩ L) ≥ d + 2 ([3], Lemma 34). Since S is in linearly general position, we have

](S∩L) ≤ 2. Hence ](A∩L) ≥ d. Set S ′ := S \L and A′ := A\S∩L. Since P ∈ 〈νd(A)〉

and P /∈ 〈A\L∩A〉, the set 〈{P}∪νd(A\A∩L)〉∩ 〈νd(A)〉 is a unique point; call P1 this

point. Since P ∈ 〈νd(A\A∩L)∪{P1}〉, P1 ∈ 〈νd(A∩L)〉, and A computes sr(P ), the set

νd(A∩L) computes sr(P1). Since νd(A∩L) ⊂ νd(L), then P1 ∈ 〈νd(L)〉 and A∩L computes

the symmetric rank of P1 with respect to the rational normal curve νd(L) ([14], Proposition

3.1, [15]). Hence ](A∩L) ≤ d ([8], [15], Theorem 4.1, [3], Theorem 34). Since we knew the

opposite inequality, we get ](A ∩ L) = d. Hence P1 has border rank 2 ([8], [15], Theorem

4.1, [3], Theorem 34). Hence there is a degree two 0-dimensional scheme Z ⊂ L such

that P1 ∈ 〈νd(Z)〉 ([6], Lemma 2.1.5, or [3], Proposition 11). Hence P ∈ 〈νd(Z ∪ (A′))〉.

Since ](A) ≤ ](S) ≤ 3d + 1, we get deg(Z ∪ A′) + ](S) ≤ 3d + 1 + 2 − d ≤ 2d + 3. If

deg(Z ∪ A′) + ](S) ≤ 2d + 1 (e.g., if ](A) + ](S) ≤ 3d − 1), then we may repeat the

proof of [2], Theorem 1, applied to Z := νd(Z ∪ A′) and to S := νd(S), and obtain a

contradiction, because no line contains at least d(d + 2)/2e points of S. Hence we could

assume ](A)+](S) ≥ 3d. First assume h1(IA′∪S′(d−1)) = 0. For a general hyperplane M
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containing L we have ResM(Z ∪A′ ∪S) = A′ ∪S ′. From the Castelnuovo’s sequence with

respect to M we get that 〈νd(Z ∪A′)〉∩ 〈νd(S)〉 is the linear span of 〈νd(Z)〉∩ 〈νd(S ∩L)〉

and of νd(A
′ ∩ S ′)〉. Since S ∩ L is reduced, either Zred ∈ S ∩ L or ](S ∩ L) ≥ d or

〈νd(Z)〉 ∩ 〈νd(S ∩L)〉 = ∅ ([8]). Since S is in linearly general position and d > 2, we have

](S ∩L) < d. Now assume Zred ⊂ S ∩L; we get 〈νd(Z)〉∩ 〈νd(S ∩L)〉 = {νd(Zred)}; hence

P ∈ 〈Zred ∪ S ′〉 with Zred ⊂ S; since P /∈ 〈νd(E)〉 for any E ( S, we get S ∩ L = Zred.

Hence ](A ∩ L) ≥ d + 1, a contradiction. Similarly, if 〈νd(Z)〉 ∩ 〈νd(S ∩ L)〉 = ∅ we get

P ∈ 〈νd(S ′)〉 and hence ](A ∩ L) ≥ d+ 2, a contradiction.

Now assume h1(IA′∪S′(d− 1)) > 0. Since ](A′ ∪ S ′) ≤ ](A ∪ S)− d− 2 ≤ 2(d− 1) + 1,

there is a line R ⊂ Pm such that ](R ∩ (A′ ∪ S ′)) ≥ d + 1. Since S ′ is in linearly general

position, we have ](S ′∩R) ≤ 2. Hence ](A′) ≥ d−1. Hence ](A) ≥ 2d−1, a contradiction.

(c) Here we assume i0 = 1 and ρ1 ≥ 2d + 2. Since S is in linearly general position,

we have ](S ∩ H1) ≤ m. Hence ](A ∩ H1) ≥ 2d + 2 − m. Since d ≥ 2m + 1, we have

2d+ 2−m > (3d+ 1)/2. Hence ](A) > (3d+ 1)/2, a contradiction.

(d) Here we assume i0 = 2. Hence ρ2 ≥ d + 1 ([3], Lemma 34). Since the sequence

{ρj}j≥1 is non-increasing and 2(2d − 1) > 3d + 1 ≥ ρ0, we get ρ2 ≤ 2d − 1. Hence

there is a line L1 ⊂ H2 such that ](W1 ∩ L1) ≥ d + 1. If ](S) ≥ 2m + 1, then ρ3 ≥

](S)− 2m > 0, because S is in linearly general position. Hence W1∩H2 spans H2. Hence

ρ2 ≥ deg(W1 ∩ L) + m − 2 ≥ m + d − 1. Since ρ1 ≥ ρ2 and ](S ∩H1) ≤ m, we also get

](A ∩ (H1 ∪H2)) ≥ 2d− 2, a contradiction. Now assume ](S) ≤ 2m. Since d > 2m, the

theorem in this case is a particular case of [2], Theorem 2.

(e) Here we assume i0 = 3. Since the sequence {ρj}j≥1 is non-increasing and 3(d+1) >

3d+ 1, we get that W2 ∩H3 is the union of d collinear points, say on a line L3, and hence

ρj = 0 for all j > 3. We get ρ0 = 3d + ε with ε ∈ {0, 1}, ρ1 = d + ε, ρ2 = d and ρ3 = d.

Instead of H1 we take a hyperplane M1 containing L3 and at least m− 2 other points of

W . Since m ≥ 4, we get a contradiction.

(f) Here we assume i0 ≥ d − 3. Recall that the sequence {ρi}i≥1 is non-increasing

and that ρi ≥ m if ρi+1 > 0. Since A ∪ S is not in linearly general position, we have

ρ1 ≥ m+ 1.
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(f1) If i0 ≥ d+ 1 we get ρ0 ≥ m+ 1 +m(d− 1) + 1, a contradiction.

(f2) Now assume i0 = d. Since h1(Hd, IWd
(1)) > 0, we get ρd ≥ 3. Hence ρ0 ≥

m+ 1 +m(d− 2) + 3. Since m ≥ 4, we get ρ0 > 3d+ 1, a contradiction.

(f3) Now assume i0 = d− 1. We have ρd−1 ≥ 4 and either ρd−1 ≥ 6 or Wd−2 ∩Hd−1

contains 4 collinear points ([3], Lemma 34). If ρd−1 ≥ 6 we get ρ0 ≥ (m+1)+(d−3)m+6;

we have (m + 1) + (d − 3)m + 6 ≥ 3d + 2 if and only if m ≥ 4 and (m − 3)d ≥ 2m − 5

(true under our assumptions d ≥ 2m + 1 and m ≥ 4). If ρd−1 ≤ 5, then Wd−2 ∩ Hd−1

contains 4 collinear points. Hence (as in step (b2) of the proof of Theorem 1.1) we easily

get ρi ≥ m+ 2 for all i ≤ d− 2. Hence ρ0 ≥ (m+ 2)(d− 2) + 4 ≥ 3d+ 2.

(f4) Now assume i0 = d− 2. We have ρd−2 ≥ 5 and either ρd−2 ≥ 8 or Wd−3 ∩Hd−2

contains 5 collinear points ([3], Lemma 34). If ρd−2 ≥ 8 we get ρ0 ≥ (m+1)+(d−4)m+8;

we have (m+ 1) + (d− 4)m+ 8 ≥ 3d+ 2 if and only if (m− 3)d ≥ 3m− 7 (true under our

assumptions m ≥ 4 and d ≥ 2m+ 1). If ρd−2 ≤ 7, then Wd−3 contains 5 collinear points.

As above we get ρi ≥ m + 3 for all i ≤ d − 3. Hence ρ0 ≥ 5 + (d − 2)(m + 3). We have

5 + (d− 2)(m+ 3) ≥ 3d+ 2 if and only if md− 2m ≥ 3 (true under our assumptions).

(f5) Now assume i0 = d− 3. We have ρd−3 ≥ 6 and either ρd−3 ≥ 10 or Wd−4 ∩Hd−3

contains 6 collinear points ([3], Lemma 34). If ρd−3 ≥ 10 we get ρ0 ≥ (m+1)+(d−5)m+10;

we have (m+1)+(d−5)m+10 ≥ 3d+2 if and only if (m−3)d ≥ 4m−9 (true under our

assumptions). If ρd−3 ≤ 9, then Wd−4 ∩ Hd−3 contains 6 collinear points. As above get

ρi ≥ m+4 for all i ≤ d−4. Hence ρ0 ≥ (m+4)(d−4)+6. We have (m+4)(d−4)+6 ≥ 3d+2

if and only if m(d− 4) ≥ 12− d (true under our assumptions). �

3. The proofs of Propositions 1.3, 1.4, 1.5, 1.6

Lemma 3.1. Fix an integer d > 0 and finite sets A, S ⊂ Pm, m ≥ 2, such that ](A) +

](S) ≤ 2d + 2 and there is a line D ⊂ Pm such that ]((A ∪ S) ∩ D) ≥ d + 2. Assume

〈νd(A)〉 ∩ 〈νd(S)〉 6= 〈νd(A ∩ S)〉 and the existence of P ∈ 〈νd(A)〉 ∩ 〈νd(S)〉 such that

P /∈ 〈νd(A′)〉 for any A′ ( A and P /∈ 〈νd(S ′)〉 for any S ′ ( S. Then A\A∩D = S\A∩D,

i.e., (A, S, P ) is as in case A.
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Proof. Since P /∈ 〈νd(E)〉 for any E ( A, the set νd(A) is linearly independent. For the

same reason νd(S) is linearly independent. Hence ](A∩D) ≤ d+ 1 and ](S ∩D) ≤ d+ 1.

Hence (S \S∩A)∩D 6= ∅. Set A′ := A\A∩D and S ′ := S \S∩D. Since ]((A∪S)∩D) ≥

d+ 2, we have ](A′ ∪ S ′) ≤ d. Hence h1(IA′∪S′(d− 1)) = 0. Hence νd(A
′ ∪ S ′) is linearly

independent. Let H ⊂ Pm be a general hyperplane containing D. Since A∪S is finite and

H is general, we have A′ = A\A∩H and S ′ = S \S∩H. Since (A∪S)∩H = (A∪S)∩D

and the restriction map H0(OPm(d)) → H0(D,OD(d)) is surjective, the Castelnuovo’s

sequence (1) with A′ ∪ S ′ instead of F gives h1(IA∪S(d)) = h1(D, I(A∪S)∩D(d)). Lemma

2.2 gives that 〈νd(A)〉 ∩ 〈νd(S)〉 is spanned by its supplementary subspaces 〈νd(A∩D)〉 ∩

〈νd(S ∩ D)〉 and 〈νd(A′ ∩ S ′)〉. Since P /∈ 〈νd(E)〉 for any E ( A, we get A′ ∩ S ′ = A′.

For the same reason we get A′ ∩ S ′ = S ′. Hence A′ = S ′. This completes the proof.

Lemma 3.2. Fix an integer d ≥ 2, a smooth conic C ⊂ Pm, m ≥ 2, and sets A, S ⊂ C

such that S ∩ A = ∅ and ](A) + ](S) = 2d + 2. Then 〈νd(A)〉 ∩ 〈νd(S)〉 is a single point

(call it P ), and P /∈ 〈νd(A′)〉 for any A′ ( A, P /∈ 〈νd(S ′)〉 for any S ′ ( S.

(i) If ](A) ≤ d, then sr(A) = ](A) and S(P ) = {A}.

(ii) If ](A) = d + 1, then sr(P ) = d + 1 and dim(S(d, P )) ≥ 1; if we assume d ≥ 5,

then dim(S(d, P )) = 1 and every B ∈ S(d, P ) is contained in C.

Proof. Since dim(〈νd(C)〉) = 2d and h1(IE(d)) = 0 for any E j C (use that C is

arithmetically normal), we get 〈νd(A)〉 ∩ 〈νd(S)〉 is a single point (call it P ), and P /∈

〈νd(A′)〉 for any A′ ( A, P /∈ 〈νd(S ′)〉 for any S ′ ( S.

(a) Assume ](A) ≤ d and the existence of B ∈ S(P ) such that B 6= A. Hence

h1(IA∪B(d)) > 0 ([2], Lemma 1). Since ](A) + ](B) ≤ 2d+ 1, there is a line D ⊂ Pm such

that ]((A∪B)∩D) ≥ d+2. Lemma 3.3 gives A\A∩D = B \B∩D. Since ](A∩D) ≤ 2,

we get ](B) ≥ ](B ∩D) + 1 ≥ d+ 1, a contradiction.

(b) Now assume ](A) = d + 1. As in step (a) we get a contradiction assuming

sr(P ) ≤ d. Hence sr(P ) = d + 1. Since νd(C) is a degree 2d rational normal curve in

〈νd(C)〉, it is well-known that the set of all E ⊂ C computing the symmetric rank of P

with respect to νd(C) is one-dimensional. Now assume d ≥ 5. Take any B ∈ S(P ) and

assume that B is not contained in C. By [14], Proposition 3.1, B spans a plane U ⊆ Pm
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and U is the plane spanned by C. Hence in order to obtain a contradiction we may assume

m = 2. Set W := B ∪ S. Since ](W ∩ C) ≤ 2d + 1, we have h1(C, IW∩C(d)) = 0. Hence

in order to obtain a contradiction it is sufficient to prove h1(U, IW\W∩C(d− 2)) = 0 (use

a Castelnuovo’s sequence and [2], Lemma 1). Since S ⊂ C, we have ](W \W ∩ C) ≤

d + 1 ≤ 2(d − 2) + 1. Hence if h1(U, IW\W∩C(d − 2)) > 0, then there is a line D ⊂ U

such that ](D ∩ B \ D ∩ B ∩ C) ≥ d. Since ](B) ≤ d + 1, we have h1(U, IB∩D(d)) = 0.

Since ](W ∩ C) ≤ d + 2 ≤ 2(d − 2) + 1, we have h1(C, I(W\D)∩C(d − 2)) = 0. Since

W \ W ∩ (C ∪ D)) is at most one point, we have h1(U, IW\(W∩C∪D)(d − 4)) = 0. A

Castelnuovo’s exact sequence gives h1(U, IW\W∩C(d− 2)) = 0. This completes the proof.

Proof of Proposition 1.5. By Lemma 3.2 it only remains to prove that if sr(P ) =

d + 1, B,B1 ∈ S(P ) and B 6= B1, then B ∩ B1 = ∅. Assume B ∩ B1 6= ∅. Hence

](B ∪ B1) ≤ 2d + 1. Since B ∪ B1 ⊂ C, we get h1(Pm, IB∪B1(d)) = 0, contradicting [2],

Lemma 1. �

Lemma 3.3. Fix A, S ⊂ Pm, m ≥ 2, such that ](A ∪ S) ≤ 2d + 2 and A ∪ S is not in

linearly general position in 〈A ∪ S〉. Assume the existence of P ∈ 〈νd(A)〉 ∩ 〈νd(S)〉 such

that P /∈ 〈νd(A′)〉 for any A′ ( A and P /∈ 〈νd(S ′)〉 for any S ′ ( S. Then (A, S, P ) is

either as in case A or as in case C.

Proof. First assume m = 2. We repeat the proof of Theorem 1.2. Set W0 := A ∪ S and

let L1 ⊂ P2 be any line such that ](W0 ∩L1) is maximal. Set W1 := W0 \L1 ∩W0. Define

inductively the line Li, i ≥ 1, as one of the lines such that bi := ](Li ∩Wi−1) is maximal

and set Wi := Wi−1 \ Li ∩Wi−1. Notice that if bi ≤ 1, then bj = 0 for all j > i. Since W0

is not in linearly general position, we have b1 ≥ 3. Hence bi = 0 for i ≥ d + 1, bd+1 ≤ 1

and bd+1 = 1 if and only if bi = 2 for 2 ≤ i ≤ d. Let k be the minimal integer i such that

h1(Li, IWi−1∩Li
(d+ 1− i)) > 0, i.e. such that bi ≥ d+ 3− i (k exists by [2], Lemma 1). If

k = 1, i.e. if b1 ≥ d+ 2, then (A, S, P ) is in case A by Lemma 3.1. Assume k ≥ 2. Since

bd+1 ≤ 1 and bi = 0 for all i ≥ d+2, we have k ≤ d. Hence ](W0) ≥ k(d+3−k) ≥ 2(d+1)

and the last equality holds if and only if k = 2. Assume k = 2. Hence b2 ≥ d + 1. Since

](A ∪ S) ≤ 2d+ 2, we get b1 = b2 = d+ 1 and b3 = 0. Hence W1 ⊂ L2. Since b2 = b1, we
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must have L2 ∩W1 = L2 ∩ (A ∪ S), i.e. L1 ∩ L2 /∈ (A ∪ S). Hence (A, S, P ) is as in case

C with respect to the reducible conic L1 ∪ L2.

Now assume m > 2. We repeat the same proof starting from a hyperplane H1 ⊂ Pm

such that ]((A ∪ S) ∩ H1) is maximal. If A ∪ S ⊂ H1, we conclude by induction on

m. Now assume (A ∪ S) ∩ H1 6= H1. Hence ]((A ∪ S) ∩ H1)) ≤ 2d + 1. First assume

h1(H1, I(A∪S)∩H1(d)) > 0. By [3], Lemma 34, we have ]((A ∪ S) ∩H1) ≥ d + 2 and there

is a line D ⊂ H1 such that D ∩ (A ∪ S) ≥ d+ 2. Lemma 3.1 gives that (A, S, P ) is as in

case A. Now assume h1(H1, I(A∪S)∩H1(d)) = 0. We continue as in the case m = 2 using

hyperplanes Hi instead of lines Li. Now the inequality bk ≥ d + 3 − k does not follow

from the cohomology of line bundles on Lk ∼= P1, but from [3], Lemma 34.This completes

the proof.

Lemma 3.4. Fix an integer d ≥ 2. Fix lines L1, L2 of P2 and set {Q} := L1 ∩ L2. Fix

sets A, S such that A ∩ S = ∅, Q /∈ (A ∪ S), A ∪ S ⊂ L1 ∪ L2, and ]((A ∪ S) ∩ L1) =

]((A∪S)∩L2) = d+1. Then 〈νd(A)〉∩〈νd(S)〉 is a single point (call it P ), and P /∈ 〈νd(A′)〉

for any A′ ( A, P /∈ 〈νd(S ′)〉 for any S ′ ( S.

Proof. Since L1 ∪ L2 is a reducible conic, we have dim(〈νd(L1 ∪ L2)〉) = 2d. Since

](A ∩ S) ∩ Li) ≥ d + 1, we have 〈νd(Li)〉 ⊂ 〈νd(A ∪ S)〉. Hence dim(〈νd(A ∪ S)〉) =

2d. Since A ∩ S = ∅ and ](A ∪ S) = 2d + 2, we get h1(P2, IA∪S(d)) = 1 and that

〈νd(A)〉 ∩ 〈νd(S)〉 is a single point (call it P ). Fix A′ ( A. Since ](A′ ∪ S) ≤ 2d + 1 and

no line contains at least d+ 2 points of A′ ∪S, [3], Lemma 34, gives h1(P2, IA′∪S(d)) = 0,

i.e. 〈νd(A′)〉 ∩ 〈νd(S)〉 = 〈νd(A′ ∩ S)〉 = ∅. Hence P /∈ 〈νd(A′)〉 for any A′ ( A. Similarly,

P /∈ 〈νd(S ′)〉 for any S ′ ( S. This completes the proof.

Notice that in the statement of Lemma 3.4 we allow the case S ⊂ Li, i.e., A ⊂ L2−i.

Proof of Proposition 1.3. By Lemma 3.3 to prove part (a) we may assume that

A ∪ S is in linearly general position in U := 〈A ∪ S〉. Since ](A ∪ S) < 3d and A ∪ S is

linearly independent in U , [11], theorem 3.8, gives the existence of a smooth plane conic

C such that ](C ∩ (A∪S)) ≥ 2d+ 2. Hence A∪S ⊂ C and A∩S = ∅. Hence (A, S, P ) is

as in case B. Part (b) in case C is true by Lemma 3.4. The proof of part (b) in case B is

similar, but easier, because any E ⊂ C with ](E) ≤ 2d−1 satisfies h1(Pm, IE(d)) = 0. �
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Lemma 3.5. Fix a line D ⊂ Pm, m ≥ 2, and a finite set B ⊂ Pm such that ](B\B∩D) ≤

d. Then 〈νd(B)〉 ∩ 〈νd(D)〉 = 〈νd(B ∩D)〉.

Proof. Fix a general hyperplane H ⊂ Pm containing D. Since B is finite and H is general,

we have B ∩H = B ∩D. Since ]((B \ B ∩D) ≤ d− 1, we have h1(IB\B∩D(d− 1)) = 0.

Hence a Castelnuovo’s sequence and linear algebra gives 〈νd(B \ B ∩D)〉 ∩ 〈νd(D)〉 = ∅.

Hence 〈νd(B)〉 ∩ 〈νd(D)〉 = 〈νd(B ∩D)〉. This completes the proof.

Proof of Proposition 1.4. Since P /∈ 〈νd(A′)〉 for any A′ ( A, νd(A) is linearly

independent. For the same reason νd(S) is linearly independent. Since (A, S, P ) is as

in case A with respect to the line D, we have E = S \ D ∩ S. Since P ∈ 〈νd(A)〉 and

P /∈ 〈νd(A′)〉 for any A′ ( A, the set 〈νd(E) ∪ {P}〉 ∩ 〈νd(A ∩ D)〉 is a single point and

we called it P1. Lemma 3.5 gives 〈νd(E)〉 ∩ 〈νd(D)〉 = ∅. Hence 〈νd(E) ∪ {P}〉 ∩ 〈νd(D)〉

is at most one point. Hence 〈νd(E) ∪ {P}〉 ∩ 〈νd(D)〉 = {P1}. Taking S instead of A we

get 〈νd(E) ∪ {P}〉 ∩ 〈νd(S ∩D)〉 = {P1}.

(i) In this step we check part (c). Assume D 6= D. Notice that D ∪D is contained

in a quadric hypersurface (even if m ≥ 3 and D ∩ D = ∅). Set G := A \ A ∩ D.

Using A, S, D, and G instead of A, S, D, and E, we get that 〈{P} ∪ G〉 ∩ 〈νd(D)〉

is a single point. Call it P3. Since ](E ∪ G) ≤ d − 1, we have h1(IE∪G(d − 2)) = 0.

Hence a Castelnuovo’s exact sequence and the fact that D ∪D is contained in a quadric

hypersurface give 〈νd(E∪G)〉∩〈νd(D∪D〉) = ∅. Hence 〈{P}∪νd(E∪G)〉∩〈νd(D∪D)〉)

is at most one point. Hence P3 = P1 and 〈{P}∪ νd(E ∪G)〉∩ 〈νd(D∪D〉) = {P1}. Hence

P1 ∈ 〈νd(D)〉 ∩ 〈νd(D〉). Since d ≥ 2, we have 〈νd(D)〉 ∩ 〈νd(D〉) = νd(D ∩ D). Hence

D ∩ D 6= ∅ and {P1} = νd(D ∩ D). Hence sr(P1) = 1. Recall that P1 ∈ 〈νd(A ∩ D)〉.

Since any d + 1 points of νd(D) are linearly independent, we get that either P1 ∈ A ∩D

or ](A∩D) ≥ d+ 1. Notice that if P1 ∈ νd(A∩D), then A∩D is the only point, Q′, such

that νd(Q
′) = P1, because P ∈ 〈{P1} ∪ νd(E)〉 and P /∈ 〈νd(A′)〉 for any A′ ( A. Hence

the assumption 2 ≤ ](A ∩D) ≤ d made in part (c) is not satisfied.

(ii) In this step we check part (a). Obviously, sr(P ) ≤ sr(P1) + ](E). Fix B ∈ S(P )

and B1 ∈ S(P1). By a parsimony lemma we have B1 ⊂ D ([14], Proposition 3.1, [15],
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theorem 2.1). Set M := E ∪ B1. We have P ∈ 〈νd(M)〉. Let M ′ be a minimal subset of

M such that P ∈ 〈M〉.

Claim: We have M ′ = M .

Proof of the Claim: Assume M ′ 6= M . Hence either there is E ′ ( E such that

P ∈ 〈νd(E ′ ∪ B1)〉 or there is B′ ( B1 such that P ∈ 〈νd(E ∪ B′)〉. First assume the

existence of E ′. Since B1 ⊂ D and P /∈ 〈νd(E)〉, we get 〈{P} ∪ νd(E ′)〉 ∩ 〈νd(D)〉 6= ∅.

Since {P1} = 〈{P} ∪ νd(E)〉 ∩ 〈νd(D)〉, we get 〈{P} ∪ νd(E ′)〉 ∩ 〈νd(D)〉 = {P1}. Since

P1 ∈ 〈νd(A ∩D)〉, we get P ∈ 〈νd(E ′ ∪ (A ∩D)〉. Since E ′ ∪ (A ∩D) ( E, we obtained a

contradiction. Now assume the existence of B′ ( B1 such that P ∈ 〈νd(E ∪ B′)〉. Since

〈{P} ∪ νd(E)〉 ∩ 〈νd(D)〉 = {P1}, we get P1 ∈ 〈νd(B′ ∪ E)〉. Taking B′ minimal and

applying [2], Lemma 1, to P1 we get h1(IE∪B1∪B(d)) > 0. Since E ∪ B1 ∪ B = E ∪ B

and ](E ∪ B) ≤ 2d + 1, there is a line T ⊂ Pm such that ](T ∩ (E ∪ B)) ≥ d + 2. Since

](E) ≤ d− 1 and B ⊂ D, we have T = D. Since D ∩ E = ∅ and ](B) < d + 2, we get a

contradiction.

Assume M 6= B. Since P /∈ 〈νd(M1)〉 for any M1 ( M by the Claim and B has

the same property, [2], Lemma 1, gives h1(IM∪B(d)) > 0. Since B1 ∈ S(P1) and P1 ∈

〈νd(A ∩ D)〉 ∩ 〈νd(A ∩ S)〉, we have ](M) ≤ min{](A), ](S)}. Since B ∈ S(P ) and

P ∈ 〈νd(M)〉, we have ](B) ≤ ](M). Hence ](M ∪B) ≤ 2d+ 2.

(ii.1) Here we assume ](M ∪ B) ≤ 2d + 1. Since h1(IM∪B(d)) > 0, there is a line

T ⊂ Pm such that ](T ∩(M ∪B)) ≥ d+2, νd(M ∪B \(M ∪B)∩T ) is linearly independent

and 〈νd(M ∪B \ (M ∪B)∩ T )〉 ∩ 〈νd(T )〉 = ∅. Lemma 3.1 gives M \M ∩ T = B \B ∩ T .

Hence ](B∩T ) ≤ ](M∩T ). Assume for the moment T = D. Since M \M∩T = B\B∩T ,

we get E ⊆ B, say B = E t B2 with ](B2) ≤ ](B1) and B2 ⊂ D. Since dim(〈νd(E ∪

D)〉) = d + ](E) and B2 ⊂ D, we have 〈νd(B)〉 ∩ 〈νd(D)〉 = 〈νd(B2)〉 (Grassmann’s

formula). Since P1 ∈ 〈νd(E) ∪ {P}〉, 〈νd(E) ∪ {P}〉 ⊆ 〈νd(B)〉 and P1 ∈ 〈νd(B)〉, we get

P1 ∈ 〈νd(B2)〉. Since ](B2) ≤ ](B1) = sr(P1), we get B2 ∈ S(P ). Hence B ∈ Γ. Now

assume T 6= D. Since (B,M,P ) is in case A with respect to the line T , step (i) gives a

contradiction, unless either B ∩ T is a single point or ](B ∩ T ) ≥ d + 1. First assume

](B ∩ T ) = 1. Hence ](M ∩ T ) ≥ d + 1. Since ](M ∩D ∩ T ) ≤ 1 and ](E) ≤ d, this is
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absurd. Now assume ](B ∩ T ) ≥ d + 1. Since ](B) ≤ ](M) ≤ min{](A), ](S)}, we get

](A) = ](S) = ](M) = ](B) = d + 1 and B ⊂ T . Hence P ∈ 〈νd(T )〉. Hence sr(P ) ≤ d

([8], [15], Theorem 4.1, or [3], §3). Hence ](B) ≤ d, a contradiction.

(ii.2) Here we assume ](B ∪M) = 2d+ 2. Since ](B) ≤ ](M) ≤ min{](A), ](S)}, we

have ](A) = ](S) = ](M) = ](B) = d + 1, and M ∩ B = ∅. Since ](M) = ](B), we get

M ∈ S(P ).

(iii) Now we check part (b). Set F := Ã\ Ã∩D. Since ](A) + ](S) ≤ 2d+ 2, we have

](E) ≤ d/2. Similarly we get ](F ) ≤ d/2. Hence ](E ∪ F ) ≤ d. We saw at the beginning

of the proof that 〈{P}∪νd(F )〉∩ 〈νd(D)〉 is a unique point. We call it P2. We saw in step

(ii) that sr(P ) = sr(P2)+ ](F ). Since ](E∪F ) ≤ d, Lemma 3.5 gives dim(〈νd(E∪F )〉) =

](E ∪ F ) and 〈νd(E ∪ F )〉 ∩ 〈νd(D)〉 = ∅. Hence 〈νd(E ∪ F ) ∪ {P}〉 ∩ 〈νd(D)〉 is at most

one point. Therefore P2 = P1. Hence ](F ) = ](E). �

Example 3.6. Fix integers m, d, e such that m ≥ 2, d ≥ 2 and 0 ≤ e ≤ d − 1. Fix a

line D ⊂ Pm, P1 ∈ D, S1 ⊂ D \ {P1} such that ](S1) = d + 1 and E ⊂ Pm such that

](E) = e (if e = 0 we just take P = P1). Set A := {P1} ∪ E and S = S1 ∪ E. Since

Obviously (A, S, P ) is as in case A with respect to the line D. Take a general line D ⊂ Pm

containing P1 and S1 ⊂ D \ {P1} with ](S1) = d + 1. We also assume S1 ∩ E = ∅. Set

A := A and S := E t S1. The triple (A, S, P ) is as in case A with respect to the line

D 6= D.

Lemma 3.7. Assume d ≥ 5. Take (A, S, P ) as in case C with respect to the lines L1

and L2. Assume S ⊂ L1. Set {Q} := L1 ∩ L2 and B := {Q} ∪ A1. Then sr(P ) =

min{](S), 2 + d− ](S)}. If ](S) < (d+ 2)/2, then S(P ) = {S}. If ](S) > (d+ 2)/2, then

S(P ) = {B}. If ](S) = (d+ 2)/2, then sr(P ) = ](S), S(P ) is one-dimensional and every

element of S(P ) is contained in L1.

Proof. Since S ⊂ L1, we have P ∈ 〈νd(L1)〉. By a parsimony lemma ([14], Proposition

3.1, or [5], Theorem 2.1, for a generalization of the non-symmetric one), every element

of S(P ) is contained in L1. Since ](A ∩ L2) = d + 1, we have 〈νd(A ∩ L2)〉 = 〈νd(L2)〉.

Since 〈νd(L1)〉 ∩ 〈νd(L2)〉 = {νd(Q)} and νd(A) is linearly independent, we get 〈νd(A)〉 ∩

〈νd(L1)〉 = 〈νd(B)〉. Hence P ∈ 〈νd(A)〉 ∩ 〈νd(B)〉. Since Q /∈ (A ∪ S), we have ](S) +
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](B) = d+2. Since any d+1 points of νd(L1) are linearly independent, all the statements

are obvious consequences of Sylvester’s theorem ([8], [15], Theorem 4.1, [3], Theorem 23).

This completes the proof.

Proof of Proposition 1.6. Assume sr(P ) < min{](A), ](S)} and fix P ∈ S(P ). Fix

any E ⊂ A∪B such that ](E) = 2d+1. Since ](E) ≤ 2d+1 and ](R∩E) ≤ d+1 for every

line R ⊂ Pm, then h1(IE(d)) = 0 ([3], Lemma 34). Hence dim(〈νd(A)〉 ∩ 〈νd(B)〉) ≤ 1 +

dim(〈A∩B〉) = 1−1. Hence 〈νd(A)〉∩ 〈νd(B)〉 = {P}. Assume sr(P ) < min{](A), ](B)}

and take B ∈ S(P ). Since P /∈ 〈νd(A′)〉 for any A′ ( A, we have B * A. Since

](A ∪ B) ≤ 2d + 1 and h1(IA∪B(d)) > 0 ([2], Lemma 1), there is a line D such that

](D ∩ (A ∪ B)) ≥ d + 2. Lemma 3.1 gives B \ B ∩D = A \ A ∩D. For the same reason

there is a line R such that B \B ∩R = S \ A ∩R.

(a) First assume R = D. Since A ∩ S = ∅ and A \A ∩D = B \B ∩D = S \ S ∩D,

we get A ∪ S ⊂ D, contradicting the assumption ]((A ∪ S) ∩ Li) = d+ 1 for all i.

(b) Now assume R 6= D and {L1, L2} 6= {D,R}. First assume D /∈ {L1, L2}.

Therefore ](D ∩ (L1 ∪ L2)) ≤ 2. Since A ⊂ L1 ∪ L2, we get ](A ∩ D) ≤ 2. Hence

](B ∩ D) ≥ d. Since ](B) < min{](A), ](S)} ≤ d + 1, we get ](A) = ](S) = d + 1,

sr(P ) = ](B) = d, and B = B ∩D, i.e. B ⊂ D. Assume for the moment R ∈ {L1, L2},

say R = L1. Since B ⊂ D, D 6= L1 and ]((B ∪ S) ∩ D) ≥ d + 2, we get S ⊂ L1. We

analyzed this case in Lemma 3.7. Now assume R /∈ {L1, L2}. Hence ](R∩ S) ≤ 2. Hence

](R ∩B) ≥ d > 1. Since B ⊂ D and R 6= D, we get a contradiction.

(c) Now assume R 6= D and {L1, L2} = {D,R}, say L1 = D and L2 = R. Set

Bi := B ∩ Li, i = 1, 2. Since A \ A ∩ D = B \ B ∩ D, we get A2 = B \ (B ∩ B1).

Hence B ⊂ L1 ∪ L2. Since S1 = S \ S ∩ R = B \ B2, we get that either B = S1 ∪ A2 or

B = S1 ∪ A2 ∪ {Q}. We have ](A1) + ](S1) = d+ 1. Since ](A1) + ](B1) ≥ d+ 2, we get

B = S1∪A2∪{Q}. Similarly, if L1 = R and L2 = D, then we get B = S2∪A1∪{Q}. �
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