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Abstract. The purpose of this paper is to introduce a new hybrid projection algorithm for finding a

commom element of the set of common fixed points of three relatively quasi-nonexpansive mappings and

the set of solutions of a generalized equilibrium problem in Banach space. Our results improve and extend

the corresponding results announced by many others.
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1. Introduction

Let E be a real Banach space with the dual space of E∗ and let 〈·, ·〉 be the generalized

duality pairing between E and E∗. Let C be a nonempty closed convex subset of E. We

denote the sets of nonnegative integers and real numbers by N and R respectively. Let

A : C → E∗ be a nonlinear mapping and f : C×C → R be a bifunction. The generalized
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equilibrium problem is to find u ∈ C, such that

f(u, y) + 〈Au, y − u〉 ≥ 0,∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GEP .

Whenever A ≡ 0, problem (1.1) is equivalent to finding u ∈ C, such that

f(u, y) ≥ 0,∀y ∈ C. (1.2)

The set of its solutions is denoted by EP.

Whenever f ≡ 0, problem (1.1) is equivalent to finding u ∈ C, such that

〈Au, y − u〉 ≥ 0,∀y ∈ C. (1.3)

The set of its solutions is denoted by V I(C,A).

We recall some definitions and results which will be needed in this paper. A mapping

T : C → C is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖,∀x, y ∈ C. Denote by

F (T ) the set of fixed points of T , that is F (T ) = {x ∈ C : Tx = x}. A mapping

A : C → E∗ is called α− inverse-strongly monotone, if there exits an α > 0, such that

〈Ax−Ay, x−y〉 ≥ α‖Ax−Ay‖2,∀x, y ∈ C. It is easy to see that if A is α− inverse-strongly

monotone mapping, then it is 1
α

-Lipschitzian, i.e. ‖Ax− Ay‖ ≤ 1
α
‖x− y‖, ∀x, y ∈ C.

The mapping J : E → 2E
∗

defined by Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈

E is called the normalized duality mapping. It is well-known that if E∗ is uniformly

smooth, then J is uniformly norm-to-norm continuous on bounded subsets of E. We also

defined the function φ as following

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E. (1.4)

Following Alber[1], the generalized projection ΠC from E onto C is defined by

ΠC(x) = argminy∈Cφ(y, x), ∀x ∈ E.

It is clear that in Hilbert space H, (1.4) reduces to φ(x, y) = ‖x−y‖2 and ΠC is the metric

projection of H onto C.
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Very recently, Takhashi and Zembayashi[2] proposed the following iteration for a rela-

tively nonexpansive mapping:

x0 = x ∈ C, C0 = C,

yn = J−1(αnJxn + (1− αn)JSxn),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Hn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},

Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wnx0,

(1.5)

and proved that the sequence {xn} converges strongly to ΠF (S)∩EPx0.

In 2008,Qin et al.[3] introduced the following iterative for two closed relatively quasi-

nonexpansive mappings in Banach space:

x0 ∈ E, C1 = C,

yn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},

xn+1 = ΠCn+1x0,

(1.6)

and proved that the sequence {xn} converges strongly to ΠF (T )∩F (S)∩EPx0.

In 2009, K.Wattanawitoon and P.Kuman[4] introduced the following iterative for two

closed relatively quasi-nonexpansive mappings in Banach space:

x0 ∈ E, C1 = C,

yn = J−1(δnJxn + (1− δn)Jzn),

zn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jzn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},

xn+1 = ΠCn+1x0,

(1.7)

and proved that the sequence {xn} converges strongly to ΠF (T )∩F (S)∩EPx0.

In 2010, S.S. Chang[5]introduced the following iterative for two relatively nonexpansive
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mappings in Banach space:

x0 ∈ E, C1 = C,

yn = J−1(βnJxn + (1− βn)JSzn),

zn = J−1(αnJxn + (1− αn)JTxn),

un ∈ C such that f(un, y) + 〈Aun, y − un〉+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Hn = {v ∈ C : φ(v, un) ≤ βnφ(v, xn) + (1− βn)φ(v, zn) ≤ φ(v, xn)},

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wnx0,

(1.8)

and proved that the sequence {xn} converges strongly to ΠF (T )∩F (S)∩GEPx0.

In this paper, motivated by K.Wattanawitoon and P.Kuman[4], we modified iterations

of (1.7) to obtain strong convergence theorems for fixed point problems and generalized

equilibrium problems of three relatively quasi-nonexpansive mappings in Banach spaces.

2. Preliminaries

Let C be a nonempty closed convex subset of E, and let T be a mapping from C into

itself. A point p in C is said to be an asymptotic fixed point of T if C contains a sequence

{xn} which converges weakly to p such that limn→∞‖xn − Txn‖ = 0. The set of asymp-

totic fixed points of T will be denoted by F̃ (T ). A mapping T from C into itself is said

to be relatively nonexpansive if F̃ (T ) = F (T ) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and

p ∈ F (T ). T is said to be φ− nonexpansive, if φ(Tx, Ty) ≤ φ(x, y) for x, y ∈ C. T is said

to be relatively quasi-nonexpansive if F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and

p ∈ F (T ).

Remark2.1 The class of relatively quasi-nonexpansive is more general than the class of

relatively nonexpansive mapping which requires the strong restriction: F̃ (T ) = F (T ).

Lemma2.2(Kamimura and Takahashi[9]) Let E be a uniformly convex and smooth Ba-

nach space and let {xn} and {yn} be two sequences of E. If φ(xn, yn)→ 0 and either {xn}

or {yn} is bounded, then ‖xn − yn‖ → 0.

Lemma2.3(Alber[1]) Let C be a nonempty closed convex subset of a smooth Banach
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space E and x ∈ E. Then x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0,∀y ∈ C.

Lemma2.4(Alber[1]) Let E be a reflexive, strictly convex subset of a smooth Banach

space and let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(x, y), ∀y ∈ C.

Lemma2.5(Qin et al.[3]) Let E be a uniformly convex and smooth Banach space, let C

be a closed convex subset of E, and let T be a closed and relatively quasi-φ-nonexpansive

mapping from C into itself. Then F (T ) is a closed convex subset of C.

Lemma 2.6(Cho et al.[10]) Let E be a uniformly convex Banach space and Br(0) be

a closed ball of E. Then there exists a continuous strictly increasing convex function

g : [0,+∞)→ [0,+∞) with g(0) = 0 such that

‖λx+ µy + γz‖2 ≤ λ‖x‖2 + µ‖y‖2 + γ‖z‖2 − λµg(‖x− y‖),

for all x, y, z ∈ Br(0) and λ, µ, γ ∈ [0, 1] with λ+ µ+ γ = 1.

Lemma 2.7(Kamimura and Takahashi[9]) Let E be a uniformly convex and smooth

Banach space and let r > 0. Then there exists a strictly increasing, continuous and

convex function g : [0, 2r] → R such that g(0) = 0 and g(‖x − y‖) ≤ φ(x, y) for all

x, y ∈ Br.

For solving the generalized equilibrium problem, let us assume a bifunction f satisfied

the following conditions

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0forallx, y ∈ C;

(A3) for all x, y, z ∈ C, limsupt↓0f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

Lemma2.8 (Blum and Oetti [11])Let C be a closed convex subset of a smooth, strictly

convex and reflexive Banach space E, let f : C × C → R be a bifunction satisfying

(A1)-(A4),and let r > 0 and x ∈ E, then there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (2.4)
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Lemma2.9(Takahashi and Zembayashi [2]) Let C be a nonempty closed convex subset of

a uniformly smooth, strictly convex and reflexive Banach space E, and let f : C×C → R

be a bifunction satisfying (A1)-(A4), for r > 0 and x ∈ E, define a mapping Tr : E → C

as follows

Tr(x) = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0,∀y ∈ C}.

for all x ∈ E. Then

(i)Tr is single-valued;

(ii)Tr is a firmly nonexpansive-type mapping,i.e.,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉, ∀x, y ∈ E;

(iii)F (Tr) = F̃ (Tr) = EP ;

(iv)EP is a closed convex subset of C.

Lemma2.10(Takahashi and Zembayashi [2]) Let C be a nonempty closed convex subset

of a smooth, strictly convex and reflexive Banach space E, let f : C × C → R be a

bifunction satisfying (A1)-(A4), and r > 0. Then for x ∈ E and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Lemma2.11(S.S.Chang[5]) Let E be a smooth, strictly convex and reflexive Banach space

and C be a nonempty closed convex of E. Let A : C → E∗ be an α−inverse-strongly

monotone mapping, let f be a function from C × C → R satisfying (A1)-(A4), and let

r > 0. Then the following statements hold.

(I)for x ∈ E, there exists u ∈ C such that

f(u, y) + 〈Au, y − u〉+
1

r
〈y − u, Ju− Jx〉 ≥ 0,∀y ∈ C;

(II)if E is additionally uniformly smooth and Kr : E → C is defined as

Kr(x) = {u ∈ C : f(u, y) + 〈Au, y − u〉+
1

r
〈y − u, Ju− Jx〉 ≥ 0,∀y ∈ C},

then the mapping Kr has the following properties

(i)Kr is single-valued.
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(ii)Kr is a firmly nonexpansive-type mapping, i.e.,

〈Krx−Kry, JKrx− JKry〉 ≤ 〈Krx−Kry, Jx− Jy〉, ∀x, y ∈ E,

(iii)F (Kr) = F̃ (Kr) = GEP,

(iv)GEP is a closed convex subset of C,

(v)φ(q,Krx) + φ(Krx, x) ≤ φ(q, x),∀q ∈ F (Kr).

3. Main results

Theorem3.1 Let C be a nonempty and closed convex subset of a uniformly convex

and uniformly smooth Banach space E. Let A : C → E∗ be an α− inverse-strong

monotone mapping and let f be a bifunction from C × C → R satisfying (A1)-(A4),

let T, S,R : C → C be three closed relatively quasi-nonexpansive mappings such that

F := F (T ) ∩ F (S) ∩ F (R) ∩ GEP 6= ∅. {xn}, {yn}, {zn} and {un} are the sequences

generated by the following,



x0 ∈ E, C1 = C, x1 = ΠC1x0,

yn = J−1(δnJxn + (1− δn)JRzn),

zn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f(un, y) + 〈Aun, y − un〉+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ δnφ(z, xn) + (1− δn)φ(z, zn) ≤ φ(z, xn)},

xn+1 = ΠCn+1x0.

(3.1)

Suppose that {αn}, {βn}, {γn}and{δn} are sequences in [0,1] satisfying the restrictions,

(a)αn + βn + γn = 1;

(b)limn→∞αnβn > 0, limn→∞αnγn > 0, limn→∞δn(1− δn) > 0;

(c){rn} ⊂ [a,∞) for some a > 0.

Then {xn}and {un} converge strongly to z ∈ F ,where z = ΠFx0.
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Proof. We split the proof into six steps.

Step1. We show that Cn is closed and convex for all n ≥ 0. It is obvious that C1 = C is

closed and convex. Suppose that Ck is closed and convex for some k ∈ N . For z ∈ Ck,

one obtains that

φ(z, uk) ≤ δkφ(z, xk) + (1− δk)φ(z, zk),

is equivalent to

2〈z, (1− δk)Jzk + δkJxk − Juk〉 ≤ (1− δk)‖zk‖2 − ‖uk‖2 + δk‖xk‖2,

and

δkφ(z, xk) + (1− δk)φ(z, zk) ≤ φ(z, xk),

is equivalent to

2〈z, Jxk − Jzk〉 ≤ ‖xk‖2 − ‖zk‖2.

It implies that Ck+1 is closed and convex. Then, for all n ≥ 0, Cn is closed and convex.

This show that ΠCn+1x0 is well defined. Notice that un = Krnyn for all n ≥ 1.

Step 2. Let us show that F ⊂ Cn for each n ≥ 0.

F ⊂ C1 = C is obvious, suppose F ⊂ Ck for some k ∈ N , then for any w ∈ F ⊂ Ck, one

has,

φ(w, zk) = φ(w, J−1(αkJxk + βkJTxk + γkJSxk))

= ‖w‖2 − 2αk〈w, Jxk〉 − 2βk〈w, JTxk〉 − 2γk〈w, JSxk〉+ ‖αkJxk + βkJTxk + γkJSxk‖2

≤ ‖w‖2 − 2αk〈w, Jxk〉 − 2βk〈w, JTxk〉 − 2γk〈w, JSxk〉

+αk‖Jxk‖2 + βk‖JTxk‖2 + γk‖JSxk‖2

= αkφ(w, xk) + βkφ(w, Txk) + γkφ(w, Sxk)

≤ φ(w, xk),

(3.2)
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and

φ(w, uk) = φ(w,Krkyk)

≤ φ(w, yk)

= φ(w, J−1(δkJxk + (1− δk)JRzk))

≤ ‖w‖2 − 2δk〈w, Jxk〉 − 2(1− δk)〈w, JRzk〉+ δk‖xk‖2 + (1− δk)‖Rzk‖2

= δkφ(w, xk) + (1− δk)φ(w,Rzk)

≤ δkφ(w, xk) + (1− δk)φ(w, zk)

≤ δkφ(w, xk) + (1− δk)φ(w, xk)

= φ(w, xk),

(3.3)

that is w ∈ Ck+1. This implies that F ⊂ Cn for all n ≥ 0.

Step 3. We claim that {xn} is bounded, and limn→∞‖xn+1 − xn‖ = 0. Indeed, by the

definition of xn = ΠCnx0, from Lemma2.4 it follows that for each w ∈ F and each n ≥ 1,we

obtain

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(w, x0)− φ(w,ΠCnx0) ≤ φ(w, x0).

This implies that {φ(xn, x0)} is bounded, and so {xn}, {un}, {zn}, {Txn}, {Sxn}, {Rzn}

are all bounded. Furthermore, noticing that xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂

Cn, we get φ(xn, x0) ≤ φ(xn+1, x0), for all n ≥ 0. Thus, φ(xn, x0) is nondecreasing, so the

limit of φ(xn, x0) exists, from Lemma 2.4 we have

φ(xn+1, xn) = φ(xn+1,ΠCnx0) ≤ φ(xn+1, x0)− φ(ΠCnx0, x0) = φ(xn+1, x0)− φ(xn, x0),

which leads to limn→∞φ(xn+1, xn) = 0, it follows that limn→∞‖xn+1 − xn‖ = 0.

Step 4. We will prove that {xn} is a cauchy sequence.

By the construction of Cn, one has that Cm ⊂ Cn and xm = ΠCmx0 ∈ Cn for any positive

integer m ≥ n. It follows that,

φ(xm, xn) = φ(xm,Πcnx0) ≤ φ(xm, x0)− φ(Πcnx0, x0) = φ(xm, x0)− φ(xn, x0),

letting m,n→∞, one has φ(xm, xn)→ 0, it follows limn→∞‖xm − xn‖ = 0. Hence {xn}

is a Cauchy sequence. We can assume that xn → p ∈ C, as n→∞.
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Step 5. We claim that p ∈ F.

In fact, for xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, from the definition of Cn+1 we conclude that

φ(xn+1, un) ≤ φ(xn+1, xn),

and

φ(xn+1, zn) ≤ φ(xn+1, xn).

It follows that φ(xn+1, un)→ 0 and φ(xn+1, zn)→ 0. One has

limn→∞‖xn+1 − xn‖ = limn→∞‖xn+1 − un‖ = limn→∞‖xn+1 − zn‖ = 0, (3.4)

and so

limn→∞‖xn − un‖ = limn→∞‖xn − zn‖ = limn→∞‖un − zn‖ = 0 (3.5).

Since E is uniformly smooth, and J is uniformly norm-norm continuous on bounded sets,

we have

limn→∞‖Jxn − Jun‖ = limn→∞‖Jxn − Jzn‖ = 0. (3.6)

Let r = supn≥0{‖xn‖, ‖Txn‖, ‖Sxn‖, ‖Rzn‖}. From Lemma 2.9 and Lemma2.6, one has

φ(w, zn) = φ(w, J−1(αnJxn + βnJTxn + γnJSxn))

= ‖w‖2 − 2αn〈w, Jxn〉 − 2βn〈w, JTxn〉 − 2γn〈w, JSxn〉+ ‖αnJxn + βnJTxn + γnJSxn‖2

≤ ‖w‖2 − 2αn〈w, Jxn〉 − 2βn〈w, JTxn〉 − 2γn〈w, JSxn〉+ αn‖Jxn‖2 + βn‖JTxn‖2

+γn‖JSxn‖2 − αnβng(‖JTxn − Jxn‖)

= αnφ(w, xn) + βnφ(w, Txn) + γnφ(w, Sxn)− αnβng(‖JTxn − Jxn‖)

≤ φ(w, xn)− αnβng(‖JTxn − Jxn‖).
(3.7)

Then

αnβng(‖JTxn − Jxn‖) ≤ φ(w, xn)− φ(w, zn). (3.8)

On the other hand,we have

φ(w, xn)− φ(w, zn) = ‖xn‖2 − ‖zn‖2 − 2〈w, Jxn − Jzn〉

= (‖xn‖ − ‖zn‖)(‖xn‖+ ‖zn‖)− 2〈w, Jxn − Jzn〉

≤ (‖xn − zn‖)(‖xn‖+ ‖zn‖) + 2‖w‖‖Jxn − Jzn‖.

(3.9)
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It follows from (3.5)and(3.6),we have

limn→∞[φ(w, xn)− φ(w, zn)] = 0, (3.10)

hence,

limn→∞g(‖JTxn − Jxn‖) = 0.

From the property of g that

limn→∞‖JTxn − Jxn‖ = 0.

Since J−1 is also uniformly norm-norm continuous on bounded sets, we see that

limn→∞‖Txn − xn‖ = 0. (3.11)

Similarly,

limn→∞‖Sxn − xn‖ = 0. (3.12)

From Lemma 2.6, one also has

φ(w, yn) = φ(w, J−1(δnJxn + (1− δn)JRzn)

= ‖w‖2 − 2〈w, δnJxn + (1− δn)JRzn〉+ ‖δnJxn + (1− δn)JRzn‖2

≤ ‖w‖2 − 2δn〈w, Jxn〉 − 2(1− δn)〈w, JRzn〉+ δn‖xn‖2 + (1− δn)‖Rzn‖2

−δn(1− δn)g(‖JRzn − Jxn‖)

= δnφ(w, xn) + (1− δn)φ(w,Rzn)− δn(1− δn)g(‖JRzn − Jxn‖)

≤ δnφ(w, xn) + (1− δn)φ(w, zn)− δn(1− δn)g(‖JRzn − Jxn‖)

≤ φ(w, xn)− δn(1− δn)g(‖JRzn − Jxn‖).
(3.13)

Hence

δn(1− δn)g[‖JRzn − Jxn‖] ≤ φ(w, xn)− φ(w, yn). (3.14)

On the other hand,we get

φ(w, xn)− φ(w, yn) = ‖xn‖2 − ‖yn‖2 − 2〈w, Jxn − Jyn〉

= (‖xn‖ − ‖yn‖)(‖xn‖+ ‖yn‖)− 2〈w, Jxn − Jyn〉

≤ (‖xn − yn‖)(‖xn‖+ ‖yn‖) + 2‖w‖‖Jxn − Jyn‖.

(3.15)
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From Lemma2.8, we have

φ(un, yn) = φ(Krnyn, yn)

≤ φ(w, yn)− φ(w,Krnyn)

≤ φ(w, xn)− φ(w, un)

≤ ‖xn‖2 − ‖un‖2 − 2〈w, Jxn − Jun〉

≤ (‖xn − un‖)(‖xn‖+ ‖un‖) + 2‖w‖‖Jxn − Jun‖.

(3.16)

Hence

limn→∞φ(un, yn) = 0,

and so,

limn→∞‖un − yn‖ = 0. (3.17)

Combining with (3.5), we conclude that

limn→∞‖xn − yn‖ = 0, limn→∞‖Jxn − Jyn‖ = 0. (3.18)

It follows from (3.14),(3.15),(3.18), we obtain

g(‖JRzn − Jxn‖)→ 0, n→∞.

and so,

limn→∞‖Rzn − xn‖ = 0.

Noticing (3.5), we have

limn→∞‖Rzn − zn‖ = 0. (3.19)

From the closedness of S, T and R, we get p ∈ F . Next, we show p ∈ GEP = F (Kr).

Since J is uniformly norm-to-norm continuous on bounded subsets of E, from (3.17) we

have limn→∞‖Jun − Jyn‖ = 0. From rn ≥ a > 0, then

limn→∞
‖Jun − Jyn‖

rn
= 0. (3.20)

Let F (u, y) = f(u, y) + 〈Au, y − u〉, for un = Krnyn, we have

F (un, y) +
1

rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C.
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Therefore,

‖y − un‖
‖Jun − Jyn‖

rn
≥ 1

rn
〈y − un, Jun − Jyn〉 ≥ −F (un, y) ≥ F (y, un).

By taking the limit as n→∞ in the above inequality and from (A4) and (3.21),one has

F (y, p) ≤ 0,∀y ∈ C,

For all 0 < t < 1 and y ∈ C,define yt = ty+ (1− t)p. Noticing that y, p ∈ C, then yt ∈ C,

which yields that F (yt, p) ≤ 0. From (A1) and (A4) that

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, p) ≤ tF (yt, y).

That is

F (yt, y) ≥ 0.

Let t ↓ 0, we obtain F (p, y) ≥ 0,∀y ∈ C. This implies that p ∈ GEP. This shows that

p ∈ F.

Step 6. We prove p = ΠFx0.

In fact, by Lemma2.5,

〈xn − z, Jx0 − Jxn〉 ≥ 0,∀z ∈ Cn.

Since F ⊂ Cn for all n ≥ 1, we arrive at

〈xn − w, Jx0 − Jxn〉 ≥ 0,∀w ∈ F.

By taking the limit in the above inequality, one has

〈p− w, Jx0 − Jp〉 ≥ 0,∀w ∈ F.

At this point, in view of Lemma 2.3, we can get p = ΠFx0. This completes the proof of

theorem3.1.

Putting A = 0 in Theorem3.1, we can get,

Corollary 3.2 Let C be a nonempty and closed convex subset of a uniformly convex and

uniformly smooth Banach space E. Let f be a bifunction from C × C → R satisfying

(A1)-(A4) and let T, S,R : C → C be three closed relatively quasi-nonexpansive mappings
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such that F := F (T ) ∩ F (S) ∩ F (R) ∩ EP 6= ∅. Let {xn}, {yn}, {zn} and {un} be the

sequences generated by the following:

x0 ∈ E, C1 = C, x1 = ΠC1x0,

yn = J−1(δnJxn + (1− δn)JRzn),

zn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ δnφ(z, xn) + (1− δn)φ(z, zn) ≤ φ(z, xn)},

xn+1 = ΠCn+1x0.

(3.21)

Suppose that {αn}, {βn}, {γn}and{δn} are sequences in [0,1] satisfying the restrictions:

(a)αn + βn + γn = 1;

(b)limn→∞αnβn > 0, limn→∞αnγn > 0, limn→∞δn(1− δn) > 0;

(c){rn} ⊂ [a,∞) for some a > 0.

Then {xn}and {un} converge strongly to z ∈ F ,where z = ΠFx0.

Putting f = 0 in Theorem3.1, we can obtain,

Corollary 3.3 Let C be a nonempty and closed convex subset of a uniformly convex and

uniformly smooth Banach space E. Let A : C → E∗ be an α− inverse- strong monotone

mapping and let T, S,R : C → C be three closed relatively quasi-nonexpansive mappings

such that F := F (T ) ∩ F (S) ∩ F (R) ∩ V I(C,A) 6= ∅. Let {xn}, {yn}, {zn} and {un} be

the sequences generated by the following:

x0 ∈ E, C1 = C, x1 = ΠC1x0,

yn = J−1(δnJxn + (1− δn)JRzn),

zn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that 〈Aun, y − un〉+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ δnφ(z, xn) + (1− δn)φ(z, zn) ≤ φ(z, xn)},

xn+1 = ΠCn+1x0.

(3.22)

Suppose that {αn}, {βn}, {γn}and{δn} are sequences in [0,1] satisfying the restrictions:

(a)αn + βn + γn = 1;

(b)limn→∞αnβn > 0, limn→∞αnγn > 0, limn→∞δn(1− δn) > 0;

(c){rn} ⊂ [a,∞) for some a > 0.
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Then {xn}and {un} converge strongly to z ∈ F ,where z = ΠFx0.

Corollary 3.4 Let C be a nonempty and closed convex subset of a uniformly convex and

uniformly smooth Banach space E. Let f be a bifunction from C × C → R satisfying

(A1)-(A4) and let R : C → C be a closed relatively quasi-nonexpansive mapping such

that F := F (R) ∩ EP 6= ∅. Let {xn} be the sequences generated by the following:

x0 ∈ E, C1 = C, x1 = ΠC1x0,

yn = J−1(δnJxn + (1− δn)JRxn),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},

xn+1 = ΠCn+1x0.

(3.23)

Suppose that δn are asequences in [0,1] satisfying the restrictions:

(a)limn→∞δn(1− δn) > 0;

(b){rn} ⊂ [a,∞) for some a > 0.

Then {xn}and {un} converge strongly to z ∈ F ,where z = ΠFx0.

Corollary 3.5 Let C be a nonempty and closed convex subset of a uniformly convex and

uniformly smooth Banach space E. Let f be a bifunction from C × C → R satisfying

(A1)-(A4) and let T, S : C → C be two closed relatively quasi-nonexpansive mappings

such that F := F (T ) ∩ F (S) ∩ EP 6= ∅. Let {xn} and {un} be the sequences generated

by the following:

x0 ∈ E, C1 = C, x1 = ΠC1x0,

yn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},

xn+1 = ΠCn+1x0.

(3.24)

Suppose that {αn}, {βn}and{γn} are three sequences in [0,1] satisfying the restrictions:

(a)αn + βn + γn = 1;

(b)limn→∞αnβn > 0, limn→∞αnγn > 0,

(c){rn} ⊂ [a,∞) for some a > 0.

Then {xn}and {un} converge strongly to z ∈ F ,where z = ΠFx0.
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Corollary 3.6 Let C be a nonempty and closed convex subset of a uniformly convex and

uniformly smooth Banach space E. Let f be a bifunction from C × C → R satisfying

(A1)-(A4) and let T, S : C → C be two closed relatively quasi-nonexpansive mappings

such that F := F (T ) ∩ F (S) ∩ EP 6= ∅. Let {xn}, {yn}, {zn} and {un} be the sequences

generated by the following:

x0 ∈ E, C1 = C, x1 = ΠC1x0,

yn = J−1(δnJxn + (1− δn)Jzn),

zn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},

xn+1 = ΠCn+1x0.

(3.25)

Suppose that {αn}, {βn}, {γn} and{δn} are sequences in [0,1] satisfying the restrictions:

(a)αn + βn + γn = 1;

(b)limn→∞αnβn > 0, limn→∞αnγn > 0, limn→∞δn(1− δn) > 0;

(c){rn} ⊂ [a,∞) for some a > 0.

Then {xn}and {un} converge strongly to z ∈ F ,where z = ΠFx0.

Corollary 3.7 Let C be a nonempty and closed convex subset of a uniformly convex

and uniformly smooth Banach space E. Let A : C → E∗ be an α− inverse-strong

monotone mapping and f be a bifunction from C × C → R satisfying (A1)-(A4) and

let T,R : C → C be two closed relatively quasi-nonexpansive mappings such that F :=

F (T ) ∩ F (R) ∩ GEP 6= ∅. Let {xn}, {yn}, {zn} and {un} be the sequences generated by

the following:

x0 ∈ E, C1 = C, x1 = ΠC1x0,

yn = J−1(δnJxn + (1− δn)JRzn),

zn = J−1(αnJxn + (1− αn)JTxn),

un ∈ C such that f(un, y) + 〈Aun, y − un〉+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ δnφ(z, xn) + (1− δn)φ(z, zn) ≤ φ(z, xn)},

xn+1 = ΠCn+1x0.

(3.26)
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Suppose that {αn} and {δn} are two sequences in [0,1] satisfying the restrictions:

(a)limn→∞αn(1− αn) > 0, limn→∞δn(1− δn) > 0;

(b){rn} ⊂ [a,∞) for some a > 0.

Then {xn}and {un} converge strongly to z ∈ F ,where z = ΠFx0.

Remark 3.8 From Corollary 3.4,3.5,3.6 and Corollary 3.7, we see Theorem 3.1 improve

and extend the recent ones announced by W.Takahashi and K.Zembayyashi[2], Qin et

al.[3],K.Wattanawitoon and P.Kumam [4] and S.S.Chang[5].
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