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Abstract. In this paper, we analyze the dynamical complexity of a spatial predator-prey system. We get the

critical line of Hopf and Turing bifurcation in a spatial domain. Based on the mathematical analysis, we obtain the

condition of the emergence of spatial patterns through diffusion instability, i.e., Turing pattern. The obtain results

show that this system has rich dynamics, these patterns shows that it is useful the reaction-diffusion model to reveal

the spatial dynamics in the real model.
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1. Introduction

Ecological systems are characterized by the interaction between different species and their

natural environment. One of the important types of interaction, which effects population dynam-

ics of all species is predation. Thus predator-prey models have been in the focus of ecological

science since the early days of this discipline [1]. In the past, investigations have revealed that

spatial inhomogeneities like the inhomogeneous distribution of nutrients as well as interactions

on spatial scales, which are essentially based on the assumption that the motion of individuals
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of given population is random and isotropic, i.e., without any preferred direction, can have an

important impact on the dynamics of ecological populations [2, 3, 4, 5]

There has been a large group of papers on stationary spatial pattern in predator-prey system.

These arise via diffusion driven instability and rely on significant differences between predator

and prey diffusion coefficients [6, 7, 8]. In addition to that, the effect of equal diffusion coeffi-

cients of spatial models had also been well investigated [9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

However, to the best of our knowledge, there is little work on the dynamical behavior of both

migration and diffusion in the predator-prey model. As a result,in the present paper, we are

aim to study the dynamical complexity of a spatial predator-prey system. More specifically, the

present paper is main to investigate the spatial patterns.

The paper is organized as follows. In Section 2, we obtain a spatial predator-prey model, and

interpret the biological meaning of these parameters of the model. In Section 3, we analyze

the spatial model. With respect to these parameters, we derive the mathematical expression for

the Hopf bifurcation and Turing bifurcation critical line. Based on these conditions performing

a series of simulations. In Section 4, by performing a series of simulations, we illustrate the

emergence of Turing patterns. Finally, some conclusions are given.

2. Analysis for the model

Since the traditional predator-prey model with Michaelis-Menten-type functional response

received great attention among theoretical and mathematical biologists [19, 20], we will focus

our attention here on the following model:

(1)

dU
dτ

= RU(1−U
K
)− AUV

V +AHU
,

dV
dτ

=
AUV

V +AHU
−DV.

where U and V stand for prey and predator density, respectively. All parameters are positive

constants, and R stands for maximal growth rate of the prey, K for carrying capacity, A for

capture rate, H for handling time, B for conversion efficiency, and D for predator death rate.
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Following Wang [21], with the next scaling

u =
AHU
BK

, v =
AHU
B2K

, r =
RH
B

,

d =
HD
B

, s =
AH
B

, t =
Bτ

H
,

we arrive at the following equations containing dimensionless quantities:

(2)

du
dt

= ru(1− u
s
)− suv

v+ su
,

dv
dt

=
suv

v+ su
−dv.

When combined with spatial factor, diffusion and migration terms, the original spatially extend-

ed model is written as the following system

(3)

∂u
∂ t

= ru(1− u
s
)− suv

v+ su
+D1∇

2u,

∂v
∂ t

=
suv

v+ su
−dv+D2∇

2v.

where ∇2 = ∂ 2

∂x2 or ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 is the usual Laplacian operator in the one or two-dimensional

space. The diffusion coefficients are denoted by by D1 and D2, respectively. Here, ∇ = ∂

∂x or

∇ = ∂

∂y and c1 and c2 are the migration coefficients.

The model (0.3) needs to be analyzed with the inatial populations

u(0)> 0, v(0)> 0.

We also assume that no external input is imposed from outside. Hence, the boundary conditions

are taken as

∂u
∂n

∣∣∣∣
(x,y)

=
∂u
∂n

∣∣∣∣
(x,y)

= 0,(4)

where (x,y) ∈ ∂Ω and Ω is the spatial domain.

We firstly find the steady state as follows:

(i) E0 = (u,0), which is corresponding to extinction of the predator;
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(ii) interior equilibrium point E∗(u∗,v∗), which is corresponding to coexistence of prey and

predator and

u∗ =
s[r+(d−1)s]

r
,

v∗ =
s(1−d)u∗

d
.

The condition to ensure the coexistence of steady state is feasible for 1− r
s < d < 1. From

the biological point of view, we are interested to study the stability behavior of the interior

equilibrium point E∗. The jacobian corresponding to this equilibrium point is that

J =

 a11 a12

a21 a22


We obtain that the eigenvalue is the root of the following equation:

λ
2 +α(k2)λ +β (k2) = 0,(5)

where

(6)
α(k2) = (D1 +D2)k2− (a11 +a22),

β (k2) = a11a22−a12a21− (a11D2−a22D1)k+D1D2k4.

Therefore, the solution of (0.5) for k > 0 reduces to

λ (k2) =
−α(k2)±

√
(α(k2)2)−4β (k2)

2
.(7)

In the following, we will give the expressions of the two bifurcation critical line.

The onset of Hopf instability corresponds to the case, when a pair of imaginary eigenvalues

cross the real axis from the negative to the positive side. And this situation occurs only when

the diffusion vanishes.Mathematically speaking, the Hopf bifurcation occurs when

Im(λk) 6= 0, Re(λk) = 0 at k = 0.(8)

Then we can get the critical value of the transition, Hopf bifurcation parameter-s, equal to

sH =
−r−d +d2

−1+d2 .(9)
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Mathematically speaking, the Turing bifurcation occurs when

Im(λk) = 0, Re(λk) 6= 0 at k = kT 6= 0.(10)

and the wave number

k2
T =

√
a11a22−a12a21

D1D2
.(11)

We can obtain the critical value of bifurcation parameter s equals

sT =
d(d2−1)D1− r(d +1)D2 +2d(−dD1 +D1 +

√
P)

(d−1)(d +1)2D2
,(12)

where

P = 2d2D2
1−dD2

1−d3D2
1− rd2D1D2 + rD1D2.

Now, let us discuss the bifurcations represented by these formulas in the parameter space

spanned by the parameters s and d which can be seen from Figure 1.

FIGURE 1. (Color online) Bifurcation diagram for the system (2.3). We set the

parameter values are r = 0.6,D1 = 0.1,D2 = 1.6.

The lower part of the displayed parameter space (where is marked by I) corresponds to sys-

tems with homogeneous equilibria, which is unconditionally stable. If this region is left via a

bifurcation (Hopf or Turing), the qualitative behavior of such equilibria changes. Domain II is

pure Turing instabilities, which can be destabilized by a homogeneous perturbation. In domain

III, both Hopf and Turing instabilities can be found.
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FIGURE 2. (Color online) Bifurcation diagram for the system (2.3). We set the

parameter values are r = 0.6,d = 0.5,D1 = 0.1,D2 = 1.6. And the value of s are

that (a) : s = 0.85;(b) : s = 0.95;(c) : s = 1.0.

In order to see the effects of the cross-diffusion, we plot the dispersion relation corresponding

to several values of one parameter while keeping the others fixed in Figure 2. Here, we set

r = 0.6,d = 0.5,D1 = 0.1,D2 = 1.6. It can be seen from Figure 2 that when s is increased,

Turing modes Re(λ > 0) can be available.

3. Pattern Structures

In practice, the continuous problem defined by the reaction-diffusion system in two-dimensional

space is solved in a discrete domain with M×N latticesites. The spacing between the lattice

points is defined by the lattice constant4h. For4h−→ 0 the differences approach the deriva-

tives. The time evolution is also discrete, i.e., the time goes in step of4t. In the present paper,

we set 4h = 1, 4t = 0.05, and M = N = 200. Note that when 4h, 4t are further decreased,

the dynamics does not change any more.

Figure 3 shows the evolution of the spatial patterns of infected population with small random

perturbation of the stationary solution u∗ and v∗. And the values of the parameters are that

r = 0.6,d = 0.5,D1 = 0.1,D2 = 1.6, and s = 0.95. After irregular transient pattern, we can see
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that the regular spotted patterns with the same radius prevail over the whole domain finally, and

the dynamics of the system does not undergo any further changes.

Figure 4, the values of the parameters are that r = 0.6,d = 0.5,D1 = 0.1,D2 = 1.6, and

s = 1.0. We can see that the regular stripe patterns prevail over the whole domain at last, and

the dynamics of the system does not undergo any further changes.

FIGURE 3. (Color online) Snapshots of the time evolution of the prey at differ-

ent instants with r = 0.6,d = 0.5,D1 = 0.1,D2 = 1.6 and s = 0.95, which are in

the Turing space. (A): 0 iteration; (B): 3000 iteration; (C): 20000 iteration; (D):

150000 iteration.

4. Discussions

Epidemic mathematical models have become important tools to study the transmission dy-

namics of infectious diseases in host populations. There have been lots of works on the stability

of endemic equilibrium for some epidemic models. In this paper, by combining qualitative and

bifurcation analysis we have studied the global behavior of an epidemic model with constant
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FIGURE 4. (Color online) Snapshots of the time evolution of the prey at differ-

ent instants with r = 0.6,d = 0.5,D1 = 0.1,D2 = 1.6 and s = 1.0, which are in

the Turing space. (A): 0 iteration; (B): 3000 iteration; (C): 20000 iteration; (D):

150000 iteration.

immigrant and nonlinear incident rate. From the analysis, we have found that there exist some

values of the model such that the model can undergo a series of bifurcations, such as Hopf b-

ifurcation and Turing bifurcation. Furthermore, our analysis and numerical simulations reveal

that typical spatial dynamics involves the formation of isolated groups, i.e. spotted or striped

groups.

Although more work is needed, in principle, it seems that diffusion is able to generate many

different kinds of spatiotemporal patterns. For such reasons, we can predict that diffusion can be

considered as an important mechanism for the appearance of complex spatiotemporal dynamics

in ecology models.
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