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Abstract. In this paper, we investigate relations between L-upper (lower, join meet, meet join) approximation
operators and Alexandrov L-topologies. We give their examples by various L-fuzzy relations.
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1. Introduction

Héjek [2] introduced a complete residuated lattice which is an algebraic structure for many
valued logic. Pawlak [7,8] introduced rough set theory as a formal tool to deal with imprecision
and uncertainty in data analysis. Radzikowska [9] developed fuzzy rough sets in complete resid-
uated lattice. Bélohlavek [1] investigated information systems and decision rules in complete
residuated lattices. Zhang [4,5] introduced Alexandrov L-topologies induced by fuzzy rough

sets. Kim [3,4] investigate relations between lower approximation operators as a generalization
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of fuzzy rough set and Alexandrov L-topologies. Algebraic structures of fuzzy rough sets are
developed in many directions [3,9,10].

In this paper, we investigate relations between L-upper (lower, join meet, meet join) approx-
imation operators and Alexandrov L-topologies. We give their examples by various L-fuzzy

relations.
2. Preliminaries

Definition 2.1. [1,2] An algebra (L, A, V,®, —, L, T) is called a complete residuated lattice if
it satisfies the following conditions:

(Cl) L =(L,<,V,A, L, T) is a complete lattice with the greatest element T and the least
element | ;

(C2) (L,®, T) is a commutative monoid;

CHzoy<ziffxe <y — zforx,y,z € L.

In this paper, we assume (L, A, V, ®, —,* 1, T) is a complete residuated lattice with the law
of double negation;i.e. 2** = z. Fora € L, A, T, € L, (a = A)(z) = a = A(z), (¢ ®
A)(z) =a® A(x) and T,(x) =T, T,(y) = L, otherwise.

Lemma 2.2. [1,2] For each z, v, 2, x;, y; € L, we have the following properties.
MHIfy<z,(z0y) <(zo0z2),r—y<z—zandz -z <y—
@)z = (Nier i) = Nier (@ = v3)-
3) Vierzi) = v = Nier(@: = ).
@ Nier vi = Vierv)" and Vi cr vl = (Aier i)™
O)(zoy)—mz=x—=(y—2)=y— (z— 2).
6)x Oy =(v—y")"
Nzxo(r—y) <uy.
B (r—=y)oy—z2) <zr—-=z
D(x—y) =2(xr—2)>2y—zand(x = 2) = (y = 2) >y — .

1) x0y—=>202z2>y— 2.
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Definition 2.3. [3,4] (1) Amap H : LX — L% is called an L-upper approximation operator iff
it satisfies the following conditions

(HI) A < H(A),

H2)H(a® A) = a © H(A) where a(z) = aforall x € X,

(H3) H(V o, A)) = Vo, H(A),

(2) Amap J : L* — L% is called an L-lower approximation operator iff it satisfies the
following conditions

I J(4) < 4,

) J(a— A)=a— J(A),

J3) J(/\ie] Aj) = /\ie[ J(Ai)-

(3) Amap K : LX — L¥ is called an L-join meet approximation operator iff it satisfies the
following conditions

(KD K(A) < A,

K2 K(a® A) =a— K(A),

(K3) K(Vie[ A) = /\ie] K(A)).

4) Amap M : LX — LX is called an L-meet join approximation operator iff it satisfies the
following conditions

(M1) A* < M(A),

M2)M(a — A) = a© M(A),

(M3) M(/\ie] Ai) - Vie[ M(Az)
Definition 2.4. [4,5] A subset 7 C L* is called an Alexandrov L-topology if it satisfies:

(T1) Lx, Tx € Twhere Tx(z) =T and Lx(z) = L forz € X.

(T)If Ay eTfori €I, \/,cp Ais Nier Ai €7

(M3 ao®Aerforalla € Land A € 7.

(T4d) o - Aerforalla € Land A € 7.

Theorem 2.5. [4] (1) 7 is an Alexandrov topology on X iff 7, = {A* € LX | A € 7} isan
Alexandrov topology on X.

(2) If H is an L-upper approximation operator, then 74 = {A € L* | H(A) = A} is an
Alexandrov topology on X.
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(3) If J is an L-lower approximation operator, then 73 = {4 € L* | J(A) = A} is an
Alexandrov topology on X.

(4) If K is an L-join meet approximation operator, then 7x = {A € L* | K(A) = A*} isan
Alexandrov topology on X.

(5) If M is an L-meet join operator, then 7y = {4 € LX | M(A) = A*} is an Alexandrov

topology on X.

3. L-approximation operators and Alexandrov L-topologies

Theorem 3.1. Let H : LX — LX be an L-upper approximation operator. Then the following
properties hold.
(1) For A € L, H(A)(y) = V e x(A(z) © H(T,)(y)).
(2) Define Ji(B) = \/{A | H(A) < B}. Then Jy : L — L™ with
Ju(B)(x) = N\ (H(T.)(y) = B(y))
yeX

is an L-lower approximation operator such that (H, Jy) is a residuated connection;i.e.,
H(A) < B iff A<Jy(B).

Moreover, Tq = T3,,.
() IFH(H(A)) = H(A) for A € L*, then Jg(Ju(A)) = Jg(A) for A € LY such that
TH = T3, With

= {H(A) = \/ (A(z) 0 H(T,)) | A € L*},

zeX

7o = (Iu(A) (@) = N\ H(T)(y) = Aly) | A € LYY,

yeX

@) IFH(H*(A)) = H*(A) for A € L%, then H(H(A)) = H(A) such that

= {H(4) = /\ (A@x) = H(T,)) | A € L*} = (mm)..

zeX

(5) Define J,(A) = H(A*)*. Then J, : L~ — L~ with

J.(B)(@) = /\ (H(T,)(z) = B(y))

yeX
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is an L-lower approximation operator. Moreover, Ty, = (Ta )«

6) If H(H(A)) = H(A) for A € L*, then J,(J,(A)) = J,(A) for A € L such that
73, = (T0)« = (T3, ). with

75 ={J3(4) = N\ (H(T,) = A(y)) | A€ L*}.
yeX
(D IFH(H*(A)) = H*(A) for A € L%, then J,(J*(A)) = J*(A) such that
75, ={J:(4) = \/ (H(T,) 0 A*(y) | A € L¥} = (3,)..
yeX
(8) Define My (A) = H(A*). Then My : L — LX with
Mp(4) = \/ (H(T,) © A"(y))
yeX

is an L-meet join approximation operator.

9) IFH(H(A)) = H(A) for A € L¥, then Mg(M3(A)) = M3 (A) for A € LX such that
™y = (TH)« with

™y = {Mp(4) = /\ (H(T,) = A(y) | A€ L¥}.
yeX
(10) FH(H*(A)) = H*(A) for A € LY, then My(Mpg(A)) = M (A) such that
™y = {(Mu(4) = \/ (H(T,) © A"(y)) | A € L} = (ra,)-.
yeX
(11) Define Ky (A) = (H(A))*. Then Ky : L — L™ with
Ku(A)(y) = /\ (Alx) = H (T.) (1))

zeX

is an L-join meet approximation operator. Moreover, Tk, = TH.
(12) IFH(H(A)) = H(A) for A € L%, then Ky (K3(A)) = Ky (A) for A € LY such that
Tk, = (TH)« With

iy = {Ku(A)(y) = \/ (A@x) 0 H(T,)(y) | A€ L¥}.

zeX

(13) IFH(H*(A)) = H*(A) for A € L%, then Ky (Ky(A)) = K3 (A) such that

e = {Ku(A)(y) = /\ (Alx) » H(T,) () | A € LY} = (r,)-

zeX
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(14) Define M ;,,(A) = (Jg(A))*. Then My, : L* — LX with

My, (A)(y) = \/ (A*(2) © H(T,)(2))

rzeX

is an L-meet join approximation operator. Moreover, Ty sy = TH-
(15) If H(H(A)) = H(A) for A € L¥, then M;,, (M, (A)) = M,,,(A) for A € L™ such
that T, = (Ta)« with

™y, = (M5, (A)y) = N BE(T,)(2) - A()) | Ae L¥}.

zeX

(16) If T (I35 (A)) = I3 (A) for A € L™, then M, (M, (A)) = M, (A) such that

™, = {My, (A)(y) = !((A*(x) OH(T,)(2)) | A€ LY} = (rvy,)
(17) Define K j,,(A) = I (A*). Then K, : L* — LX with
Ky (A)(y) = Q( (A(z) — H(T,)(z))
is an L-join meet approximation operator. Moreover, T, == (Ti)+-
(18) If H(H(A)) = H(A) for A € LY, then K,/ (K3, (A)) = K, (A) for A € L* such
that i, = (T )« with
Tk, = (K7, (A)(y) = \E{((H(Ty)(w) © A(2)) | A€ L7},
(19) If T (J5,(A)) = T (A) for A € L, then K 5,,(K 5,,) = K% (A) such that
7K, = (K (y) = /§((A(w) — H'(T,)(2)) | A€ LY} = (7k,,, )

(20) (K, , Kg) is a Galois connection;i.e,
A<K,,(B) iff B<Kpg(A).

Moreover, T, = (TKJH)*.

(21) (Mg, M,,,) is a dual Galois connectioni.e,
M, (A) < B iff Mu(B) < A.

Moreover, vy, = T3y, )
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Proof. (1) Since A = \/,_(A(z) ® T,), by (H2) and (H3), H(A)(y) = V, 4 (A(x) ©
H(T.)(y))-

(2) Since H(A)(y) = Ve x(A(x) ©H(T,)(y)) < B(y) iff A(z) < H(T.)(y) = B(y), we

have

Ju(B)(z) = /\ (H(T.)(y) = B(y)):

yey

(J1) Since H(J 4 (B)) < B, we have J(B) < H(Jy(B)) < B.
(J2)Since H(a®Jy(a — B)) = a®H((Jg(a — B)) < a®(a — B) < B, by the definition
of Jy,thena ® Jy(a — B) < Jy(B)). We have

Ju(a— B) < a— Ju(B)).

Since a« © H(a — Jy(B)) = H(a ® (a — Ju(B))) < H(Jy(B)) < B, then H(a —
Ju(B)) < a — B. By the definition of J, we have

(J3) By the definition of J, since Jy(A) < Jy(B) for B < A, we have
Iu(\ A) < N\ Tu(4).
i€l i€l
Since H(A,; . Ju(4:)) < H(Ju(4;)) < A;, then H(A, . Ju(Ai)) < Ajer Ai- Thus
Iu(\ A) = N\ Tu(4).
i€l i€l

Thus J : L* — L% is an L-lower approximation operator. By the definition of J;, we have
A<Jy(B) iff B<H(A).

Since A < Jy(A)iff A < H(A), we have 73,, = mq.
(3) Let H(H(A)) = H(A) for A € LX. Since H(B) < J(A) iff H(H(B)) = H(B) < A

from the definition of Jz, we have
Ju(Iu(4)) =V{B|H(B) <Ju(4)}
= V{B |H(H(B)) = H(B) < A}
=Ju(A).
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(4)LetH*(A) € . Since HH*(A)) = H*(A), H(H(A)) = H(H*(H*(A))) = (H(H*(A)))* =
H(A). Hence H(A) € mq;i.e. H*(A) € (tu).. Thus, 7y C (71 )«

Let A € (mi)«. Then A* = H(A*). Since H(A) = HH*(A*)) = H*(A*) = A, then
A €€ 1g. Thus, (ty). C TH.

(5) (1) Since A* < H(A*), J,(A) = H(A")* < A.

(J2)
Ji(a—A) =(H((aa - A)")* = (H(a ® A*))*
= (@« ©H(A"))* = a — H(A")*
=a — Js(A).
J3)

JS(/\ieF Ai) = (H(/\ier Az)*>* = (H(\/ieF A:))*
= (Vier H(A7))" = Njer (H(A7))"
= /\iEF JS(AZ')'

Hence J, is an L-lower approximation operator such that

Moreover, 73, = (7). from:
A=TJ,(A) iff A=H(A")" iff A* = H(A").
(6) Let H(H(A)) = H(A) for A € LX. Then

J:(Js(4))  =H(J(A)) = (HH(A)))"
=H*(A4*) = J,(4).
Hence 75, = {J,(4) = \,cx(H(T,) = A(y)) | A€ L*}.

(7) Let H(H*(A)) = H*(A) for A € L. Then

J:(J{(4)) = H*(Js(A)) = (H(H"(A")))"
= (H*(A")" = J3(A).

S

Hence 75, = {J{(A) = V,ex (H(T,) © A*(y)) | A € L},
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By a similar method in (4), 75, = (3.)..

(8) Tt is similarly proved as (4).

(9) If H(H(A)) = H(A) for A € L, then M (M, (A)) = My (A)

My (M} (A)) = Mpy(H*(A%)) = H(H(A*))
— H(A*) = My(A).
(10) T FI(H*(A)) = H*(A) for A € L%, then My (My(A)) = M (A)
My (Mpy(A4)) =H(MJ(A)) = HH"(A"))
= H"(A") = M (A).
Since My (M (A)) = M (A),
My (M} (4)) =My (Mp(Mp(A)))
= M} (Mp(A)) = My (A).

Hence 7at, — {Mu(A) | A € LX} = (ra, )-.

(11), (12), (13) and (14) are similarly proved as (5), (9), (10) and (5), respectively.

(15) IFH(H(A)) = H(A) for A € L, then 35 (J5(A)) = J51(A). Thus, M., (M (A)) =
M., (A)

My, (M3, (A)) =M, (Ir(A))
= (Ju(Ju(A))* = (Ju(A)" =My, (A).
Since H(A) = Aff Iy (A) = Aiff My, (A) = A%, 7, = (1), with
™y, = {M7, (A) () = N\ H(T,)(z) = A(x)) | A e L¥}.

zeX

(16) If J (5, (A)) = T3 (A) for A € LX, then M, (M, (A)) = M, (A)

M, (Mo, (A)) =My, (J5(A)) = T3 (T5(A))
= Ju(A) = M3, (A).
(17), (18) and (19) are similarly proved as (14), (15) and (16), respectively.
(20) (K,,, Kg) is a Galois connection; i.e,

A<K,, (B) iff A<Jy(BY)

iff H(A) < B* iff B<H*(A) =Ky(A)
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Moreover, since A* < Ky (A) iff A < K, (A%), 7k, = (TKJH)*.

(21) (Mpy,M,,,) is a dual Galois connection; i.e,

M,, (A) < B iff Jy(A) > B

iff H(B*) < A iff My(B) < A.

Since M, (A*) < A iff My(A) < A%, 7, = (T, )

Definition 3.2. [3,4] Let X be a set. A function R : X x X — L is called:
(R1) reflexive if R(x,z) =T forall z € X.
(R2) symmetric if R(x,y) = R(y,z) forall z,y € X.
(R3) transitive if R(z,y) ® R(y,z) < R(z, z), forall z,y, z € X.
(R4) Euclidean if R(z,z) ® R(y, z) < R(x,y), forall z,y, z € X.
If R satisfies (R1) and (R3), R is called an L-fuzzy preorder.
If R satisfies (R1), (R2) and (R3), R is called an L-fuzzy equivalence relation.

Let R € L**X be an L-fuzzy relation. Define operators as follows

Hr(A)(y) = V,ex(Al2) © R(z,y)),
Jr(A)Y) = NApex(Bl(z,y) = A(2)),
Kr(A) (@) = Apex(Alz) = R(z,y))
Mg(A)(Y) = Vaex(A"(2) © R(z,y)).

Example 3.3. Let R be a reflexive L-fuzzy relation. Define Hy : LX — L as follows:
Hy(A)(y) = \/ (A2) © R(z,y)).
zeX

(1) (H1) Hr(A)(y) > A(y) © R(y,y) = A(y). Hg satisfies the conditions (H1) and (H2).
Hence Hp, is an L-upper approximation operator.

(2) Define Jy,(B) = V{A | Hr(A) < B}. Since Hr(A)(y) < B(y) iff A(x)
Nyex(R(z,y) = B(y)), then

IN

Jun(B)(@) = N (R(z,y) = B(y)) = In-1(B)(=).

yeX
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By Theorem 3.1(2), J g, = Jg-1 is an L-lower approximation operator such that (Hg, J ) is

a residuated connection; i.e.,
Hp(A) < B iff A<Jy,(B).

Moreover, 73 = THp-

(3) If R is an L-fuzzy preorder, then R~! is an L-fuzzy preorder. Since

Hr(Hr(A))(2) vex (Hr(A)(y) © Ry, 2))

(

vex (Vaex (A(x) © R(z,y)) © Ry, 2))
(
(

vex (A7) © Ve x (R(z,9) © R(y, 2)))

=V
V
V
V 7) © R(z, 2)) = Hp(A)(2).

(
A(

rzeX
By Theorem 3.1(3), J 1, (J i, (A)) = I, (A). By Theorem 3.1(3), 73, = Tr,, with

Toy = T1 = 1Ir1(A) = [\ (R(=,2) = A(2)) | A € LY},

zeX

i, = {Hp(4) = \/ (A(x) © R(z,-)) | A€ L*}.

zeX

(4) Let R be a reflexive and Euclidean L-fuzzy relation. Since (R(z,y) — A(z)) ® R(y, 2) ®
R(z,2) < (R(z,y) — A(z)) © R(z,y) < A(z), then (R(z,y) — A(z)) © R(y,2) <

R(z,z) — A(x). Thus, Hr(H};(A)) = H},(A) from:

Hr(HR(A))(2) = V,ex(HR(A)(Y) © Ry, 2))
Vyex (Npex (B(z,y) = Ax)) © R(y, 2))
Neex (B(z,2) = Az)) = H(A)(2).

By Theorem 3.1(4), Hr(Hg(A)) = Hg(A) for A € LX. Thus, 15, = (Ta,). with

IN

= {Hp(4) = /\ (R(z,~) = A(x)) = Jr(4) | A € L*}.

zeX
(5) Define J,(A) = Hg(A*)*. By Theorem 3.1(5), J, = J is an L-lower approximation
operator such that
=(\ A(@)© R(z,9)" = )\ (R(z,y) = Ax)).
zeX zeX

Moreover, 73, = (Tap )« = (TJHR )
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(6) If R is an L-fuzzy preorder, then Hp(Hg(A)) = Hg(A) for A € L. By Theorem
3.1(6), then J,(J,(A)) = J,(A) for A € LX such that 73, = (T, )« = (T3u,, )« with

.= {JA4) = N\ (R(y,—) = Aly)) | A € L*}.

yeX

(7) If R is a reflexive and Euclidean L-fuzzy relation, then Hy(H7},(A)) = Hj,(A) for A €
LX. By Theorem 3.1(7), J,(J*(A)) = J*(A) such that

7. = {31(4) = \/ (B(y, —) © A"(y)) = Mg(A) | A € L*} = (1,)..

yeX

(8) Define My, (A) = Hg(A*). Then My, : L* — LX with

My (A)(y) = \ (Rlz,y) © A*(x)) = Ma(y)

zeX
is an L-meet join approximation operator. Moreover, T, = (Trp )«

(9) R is an L-fuzzy preorder, then Hgr(Hg(A)) = Hg(A) for A € LX. By Theorem 3.1(9),
M, (Mj;,,(A)) = My, (A) for A € L¥ such that g, = (7a, )« With

™My, = (Mir, (4) =\ (R(z, —) = A(2)) = Jr(4) | A € L¥}.

rzeX
(10) If R is a reflexive and Euclidean L-fuzzy relation, then Hp(H},(A)) = Hj(A) for
A € L*. By Theorem 3.1(10), My, (Mp, (A)) = Mj;, (A) such that

™, = (M (A) = \/ (R(z, =) © A*(2)) | A € LX)} = (mvy, )

zeX
(11) Define Ky, (A) = (Hg(A))*. Then Ky, : L* — LX with
Ky (A)y) = N\ (Alz) = R'(2,9)) = Kp-(4)(y)
zeX
is an L-join meet approximation operator. Moreover, Tk, . = TH-
(12) If R is an L-fuzzy preorder, then Hr(Hg(A)) = Hy(A) for A € L. By Theorem
3.1(12), Kp,, (K, (A)) = Kp,, (A) for A € LY such that 7, = 7a1,, with

Tk, = 1K, (4) = \/ (Al2) © R(z, -)) | A € L¥}.

zeX



L-APPROXIMATION OPERATORS AND ALEXANDROV L-TOPOLOGIES 47

(13) If R is a reflexive and Euclidean L-fuzzy relation, then Hiz(H%(A)) = Hj(A) for
A € L. By Theorem 3.1(13), K, (K, (A)) = Kj;, (A) such that

Tk, = (Km(4) = N\ (Al2) = R (2,-)) | A € LY} = (1, )

zeX

(14) Define M s, (A) = (Ju,(A))*. Then M, : LY — L* with

My, (A)(y) = \/ (A"(2) © R(y, ) = Mp-1(A)(y)

zeX
is an L-join meet approximation operator. Moreover, v, , = T, = T,
(15) If R is an L-fuzzy preorder, then Hp(Hg(A)) = Hy(A) for A € L*. By Theorem
3.1(15), Mp-1 (M7}, (A)) = Mg-1(A) for A € L¥ such that nyg,_, = 7, = 75,_, With

™, = M- (A)(y) = /\ (R(y,2) — A(z)) | A€ L¥Y.

veX

(16) Let R~! be a reflexive and Euclidean L-fuzzy relation. Since (R(y,z) — A(z)) ®
R(z,y) ©R(z,2) < R(y,x) — A(z)) ©® R(y,z) < A(z), then (R(y, x) — A(z)) © R(z,y) <
R(z,x) — A(x). Thus,

Mp-1(Mp-1(A))(2) = V,ex(Mr-1(A)(y) © B(z,9))
Vyex (Neex (B(y, 2) = A(2)) © R(z,9))
Nae

x(B(z,x) = A(x)) = Mp-1(A)(2).

IN

By M1), My-1(Mp-1(A)) = M5_.(A) such that

™, = {(Mp-1(4) = \/ (A7(2) © R(—,2)) | A € LY} = (m, )

zeX

(17) Define K 5, (A) = Jp,,(A*). Then K, : LX — L¥ is an L-join meet approximation

operator as follows:

K, (D W) = Naex
= Nae (A
—Kp

Moreover, Tk Jiy = (Tap )«
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(18) If R is an L-fuzzy preorder, then Hp(Hg(A)) = Hy(A) for A € L*. By Theorem
3.1(18), KJHR(K}HR(A)) =Ky, (A)for A€ L¥ such that Tk, = (TH). With

7, = K5, (D) = \/ (Ry,2) © A(x)) = Hp1(A)(y) | A€ L¥}.

zeX

(19) Let R be a reflexive and Euclidean L-fuzzy relation. Since R(z,y) ® R(z,x) < R(y, x)
iff R(z,y) < R(z,x) = R(y,x) iff R(z,z) ® R*(y,x) < R*(z,y), we have

R(z,2) © A(z) © (A(x) = R*(y,2)) < R(z,2) © B (y,2) < R*(2,y).

Thus,
Kp-1-(Kp-1:(A4))(2) = N\jex(Kr-1-(A)(y) = R*(2,9))
= Nyex(Nsex(A(z) = R*(y,2)) = R*(2,9))
> Vyex(R(z,2) © A(z)) = Kg-1-(A)(2).
Moreover,

7, = (Ko, () = N\ (Al@) = Ry, 2)") | A€ L} = (1x,, )-.

zeX

(20) (KJHR = Kg-1+, Ky, = Kg-) is a Galois connection;i.e,
A <Ky, (B) iff B<Kpy,(A).

Moreover, Tk, = (Tk JHR)*.

21) (My, = Mg, M, = Mpg-1) is a dual Galois connection;i.e,
M, (A) < B iff My, (B) < A,
Moreover, Tn,,, = (73 - )s
g 1R
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