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Abstract. This paper is devoted to polynomial isometries of Zp with coefficients in Qp. We reduce the study of

such a map to finite numbers of polynomial bijections and of polynomial isometries of Zp with coefficients in Zp,

which are well-known. These numbers do not depend on the degree of the polynomial but on its ”order”, which

we introduce here.
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1. Introduction

If a set is an integral domain with an absolute value, we can compare isometries and poly-

nomial maps. Isometries of Z, Q, R and C are simple. Several authors have studied non-

polynomial isometries and various types of maps in p-adic Analysis and Fractal Geometry (see

for example [1,2,4,5,7,8,9]). Bishop [3] proved that all polynomial isometries of Qp have degree

one and characterized them.

Polynomial isometries of Zp (with coefficients in Zp) are really more interesting ; for exam-

ple, almost any degree is possible, even with coefficients in Fp. They are classified relatively to
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corresponding polynomial bijections and irreducible polynomials on Fp (see [1,2] and section

3). Roughly, this criterium is about the behaviors of the polynomial and its derivative on Fp:

we say that the complexity is 0.

Now, let f be a polynomial isometry of Zp with coefficients in Qp. Recall that Zp is a

union of p disjoint balls. On each ball, f induces a map that preserves distances, and so we

naturally deduce new polynomial isometries of Zp. This process will be successful if we obtain

polynomials with coefficients in Zp after a finite number of steps. In section 4.3, we reformulate

f and define its order, which is the main tool to prove this result (section 4.5). Moreover, it gives

an evaluation of the complexity of f (which is the number of steps used to study f ); in particular,

we establish in section 4.9 that the complexity is, asymptotically, a logarithmic function of the

order. At the same time, we obtain the form of a polynomial isometry relative to its order and

its ”valuation” (which is defined in section 4.3).

This method is different from Anashin’s one [1] who uses interpolation series and reduces

the study of such an isometry to the study of a compatible and bijective function of Z/pKZ

where K is a logarithmic function of the degree of f . Our result is different too, since the order

and the complexity do not really depend on the degree: for a given order or complexity, the

degree of a Fp-polynomial isometry of Zp can be arbitrarily large.

2. Notations and definitions

• p is a prime integer and Fp = Z/pZ is the finite field of p elements.

• Zp is the ring of the p-adic integers a = (ān)n∈N = ā0 + pā1 + p2ā2 + . . ., where the integers

āi satisfy 0≤ āi ≤ p−1.

• Qp is the field of the p-adic numbers: Qp = Zp[
1
p ].

• The absolute value | . | is defined in Qp (and Zp) by:

|0 |= 0, and for any a 6= 0, |(āi)i∈Z |= p−k where k = Min{ i ∈ Z | āi 6= 0}.

This absolute value is ultrametric: |a+b | ≤Max(|a |, |b |), then Zp is the union of the disjoint

balls B<1(i) for 0≤ i≤ p−1.

•We define and use: X = xp− x, Y = X/p and Z = zp−1−1.
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• A S-polynomial is a polynomial with coefficients in the set S.

•We use Landau symbols O, o, and f ∼ g means f −g = o(g).

• For any x ∈ R there exists an unique integer n such that n ≤ x < n+1. We use n = bxc, and

dxe= n+1 if x > n, if not x = n = dxe.

For general properties in p-adic analysis, see for example [6,12].

3. Zp-polynomial isometries of Zp

Here is the main result about Zp-polynomial isometries of Zp (see [1,2]), the study of which

is reduced to the study of two Fp-polynomials on Fp.

Let f : x 7→ a0 + a1x+ . . .+ akxk, with ai ∈ Zp. Reducing the powers of x using xp = x and

replacing ai with ai mod p, we obtain a Fp-polynomial map f̂ on Fp with degree ≤ p−1. By

the same way, f̂ ′ is calculated.

Proposition 3.1. f is an isometry of Zp exactly when

(1) f̂ defines a bijection of Fp, and (2) f̂ ′ has no root in Fp.

Proof. If f is isometric, then we obtain (1) since | f (i)− f ( j) | = | f̂ (i)− f̂ ( j) |, and (2) since

| f (i+ pz)− f (i+ pz′) |= | p(z− z′) f̂ ′(i) |= |z− z′ |/p.

Conversely, if i 6= j, | f (i+ pz)− f ( j+ pz′) |= | f̂ (i)− f̂ ( j) |= 1, then f is an isometry. �

This criterium can be combined with some well-known results about permutational polyno-

mials (see [10,11]) and other properties, to obtain a lot of interesting results: for example, f

cannot be an isometry if the degree of f̂ is 2, 3 when −3 is a square, 4 if p 6= 7, q ≥ 2 if q

divides p−1...But for our purpose, we will only use the following

Corollary 3.1. There is no Fp-polynomial isometry of Zp with degree 2, 3 when p 6= 3, 4 when

p≥ 5, q when q≥ 2 and q divides p−1.

Proof. a) We use | f (x)− f (y) |= |x− y ||b1 +b2(x+ y) |, where f = b0 +b1x+b2x2 (b2 6= 0).

With x = 0 and y = p if b1 = 0, else x = 0 and y =−b1/b2 we obtain | f (x)− f (y) |< |x− y |.
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b) Without loss of generality, suppose f (x) = x+ a2x2 + a3x3 with p 6= 3 and a3 6= 0. The

absolute value of
f (y)− f (x)

y− x = h(x,y) = 1+ a2(x+ y)+ a3(x2 + xy+ y2) must be 1 for any

p-adic integers x 6= y. Using x = x′+ y′ and y =−x′+ y′, h(x,y) = 1+2a2.y′+a3(x′2 +3y′2).

- If p ≥ 5, since a3 and 3 are invertible, we can use the translation: x′′ = x′, y′′ = y′+
a2

3a3
,

and so h(x,y) = z+ a3(x′′2 + 3y′′2). Consider ε: t 7→ t2 and η : t 7→ − z
a3
− 3t2, defined in Fp.

The sets Im(ε) and Im(η) have the same cardinal (p+1)/2, hence the equation ε(x′′) = η(y′′)

admits at least one solution in Fp×Fp, and so h(α,β ) = 0 mod p for a suitable couple (α,β )

in F2
p. If α 6= β , f is not bijective. If α = β , | f (α)− f (α + p) |< 1

p and f is not isometric.

- If p = 2, we conclude easily since h(1,3) = 0 mod 2.

(- x 7→ a0± (x+ x3) are in fact the F3-polynomial isometries of Z3 of degree 3.)

c) If p≥ 5, the only normalized bijective Fp-polynomials of degree 4 are defined for p = 7 and

by f (x) = x4±3x (see [11]). But f̂ ′(x) =−3(x3±1), then f̂ ′(1) = 0 or f̂ ′(3) = 0.

d) There is no Fp-polynomial bijection of Fp with degree q ≥ 2 that divides p− 1, hence no

such isometry of Zp (see [11] or use Newton’s identities). �

Examples

a) x 7→ x+2x3 +4x6 is an isometry of Z5.

b) x 7→ a0 + ∑
i≥1

aixi is an isometry of Z2 exactly when

a1 = 1 mod 2 and ∑
i≥1

a2i+1 = ∑
i≥1

a2i = 0 mod 2.

4. Qp-polynomial isometries of Zp

4.1. Description

In this section, we tranform the expression of a Qp-polynomial f to introduce its order (sec-

tion 4.3), which is our main tool to reduce the study of f to bijections of Fp and Zp-polynomial

isometries of Zp. Separating the negative powers of p : f (x) = P0(x)+
1
p P1(x)+ . . .+ 1

pk
Pk(x)

where P1, P2, ...,Pk are Fp-polynomials, and P0 is a Zp-polynomial.

Since: ∀(x,y) ∈ Z2
p, | f (x)− f (y) | = |x− y |, we can consider that P0 is a Fp-polynomial

without loss of generality. Observe that terms with any degree may disappear with this first

reduction.
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Now, using successive Euclidean divisions of each Pi by X = xp− x:

f = f0,0 +X f1,0 +X2 f2,0 +X3 f3,0 + . . .+ 1
p( f0,1 +X f1,1 +X2 f2,1 +X3 f3,1 + . . .)

+ . . .+ 1
pk
( f0,k +X f1,k +X2 f2,k +X3 f3,k + . . .),

4.1

where fi, j are Fp-polynomials with degree less than p−1.

For the next sections, we need some properties of X , Y and Z.

4.2. Some properties of X = xp− x, Y = X/p and Z = zp−1−1

First, recall the following well-known result (see [7] for a proof):

Lemma 4.1. X = xp− x admits exactly p roots β0, β1, . . . βp−1 in Zp, with βi = i mod p.

Since the absolute value is ultrametric, we have: B<1(βi) = B<1(i). Hence we will use that

Zp =
⋃

0≤i≤p−1

B<1(βi) .

Eventually we need some developments of Y = X/p and Z:

Lemma 4.2. For any root β of X in Zp and z in Zp:

Y (β + pz) =−z+ pβ p−1z+ p2 p−1
2

β p−2z2 + p2( p
3

)
β p−3z3 + . . .+ pp−1zp

(with the convention β l = 0 if β = 0).

Proof. No difficulty, using β p = β . �

Using Z2 = zp−2X(z)−Z and zZ = X(z) = zp− z, we prove by induction:

Lemma 4.3. a) If p≥ 5 and 3≤ n≤ p−1:

Zn = zp−nXn−1− zp−n+1Xn−2 + . . .+(−1)nzp−2X +(−1)n+1Z.

b) If p = 3: Z3 = X2− zX +Z, and ∀n≥ 4, Zn = (−1)n(((n−3)Z−1)X2 + zX−Z)+X3(−).

c) If p = 2, Z3 = (Z−1)X +Z, Z4 = X2 +(1−2Z)X−Z, and

∀n≥ 5 : Zn = (−1)n+1(
(

n−3
2

)
Z− (n−3))X2 +((n−2)Z−1)X +Z)+X3(−).

d) More generally, for α ≥ 1, 2≤ β ≤ p−1 and using l̄ = l mod (p−1):

Zα p = Xα(p−1)+
α(p−1)−1

∑
j=1

a jz− jX j +(−1)α p+1Z,
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Zα p+1 = (Z−α)Xα(p−1)+
α(p−1)−1

∑
j=1

a jz− jX j +(−1)α p+2Z,

Zα p+β = zp−β Xα(p−1)+β−1 +
α(p−1)+β−2

∑
j=1

a jz− jX j +(−1)α p+β+1Z,

where a j = a′j +b′jZ, b′j = 0 if j does not divide p−1, a′j and b′j are in Fp.

4.3 Order and valuation

Let f be a Qp-polynomial isometry of Zp given by formula 4.1. Some terms can be easily

eliminated. Then we reformulate f and define its order.

∗ For any root β of X in Zp: f (β ) = f0,0(β )+
1
p f0,1(β )+ . . .+ 1

pk
f0,k(β ) ∈ Zp hence, for any

1≤ i≤ k, X divides the Fp-polynomial f0,i, the degree of which is less than p−1. Then f0,i = 0.

∗ For any root β of X in Zp and any z and z′ in Zp, by Taylor’s formula:

| f (β + pz)− f (β + pz′) |= 1
p |z− z′ |= 1

p |z− z′ || f ′(β )+ p(z+ z′)
f ′′(β )

2
+ . . . |.

Choosing z = pλ and z′ = 0 with λ large enough, we obtain:

| f ′(β ) |= 1 = | f ′0,0(β )− f1,0(β )− 1
p f1,1(β )− 1

p2
f1,2(β )− . . . 1

pk
f1,k(β ) |.

For the same reasons: f1,1 = f1,2 = . . .= f1,k = 0 and | f ′0,0− f1,0 |= 1.

∗ In the equation | f (β + pz)− f (β + pz′) |= 1
p |z−z′ |, observe the following term using Lemma

4.2: 1
p j

X j+2(β + pz) = 1
p j

(−1) j+2(pz) j+2 = 0 mod p2. Hence no term 1
p j

X l fl, j intervene in

this equation when l ≥ j+2, and we have the same conclusion with the condition f (Zp)⊂ Zp.

To sum up:

Proposition 4.2. Any Qp-polynomial isometry of Zp has the form :

f = f0,0 +X f1,0 +X2 f2,0 +X3 f3,0 + . . .+ pQ

+1
p(X

2 f2,1 +X3 f3,1 + . . .)+ ..+ 1
pk
(X2 f2,k +X3 f3,k +X4 f4,k + ..)+ ...

where fi, j are Fp-polynomials with degree less than p− 1, f ′0,0− f1,0 does not vanish on Fp,

and Q is a Zp-polynomial.

Moreover, there is no condition on fl, j when l− j ≥ 2.
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Hence we assume from now that fl, j = 0 if l− j ≥ 2, and that Q = 0. Then:

f = f0 +Xh1 +
1
pX2h2 +

1
p2

(X2 f2 +X3h3)+
1
p3

(X2 f2,3 +X3 f3 +X4h4)

+ . . .+ 1
pk
(X2 f2,k +X3 f3,k + . . .+Xk−1 fk−1,k +Xk fk +Xk+1hk+1)

4.2

or: f = f0 + p(Y h1 +Y 2h2 + ..)+ (Y 2 f2 +Y 3 f3 + ..)+ 1
p(Y

2 f2,3 +Y 3 f3,4 + ..)+ ... where we

use Fp-polynomials with degree less than p−1. Finally, we gather the terms with same powers

of Y modulo p−1:

f = f0 + p
p−1
∑
j=1

H j +
p−1
∑
j=1

Fj +
1
p

p−1
∑
j=1

Fj, j+1 + . . .+ 1
pr

p−1
∑
j=1

Fj, j+r 4.3

where, for 1≤ j ≤ p−1 and 1≤ l ≤ r:

H j = Y jh j +Y j+p−1h j+p−1 +Y j+2(p−1)h j+2(p−1)+ . . .

Fj = Y j f j(x)+Y j+p−1 f j+p−1 +Y j+2(p−1) f j+2(p−1)+ . . .

Fj, j+l = Y j f j, j+l +Y j+(p−1) f j+(p−1), j+l+(p−1)+ . . .,

with the former conditions : f1 = f1, j = 0 and | f ′0−h1 |= 1 on Fp.

Now we can define the order and the valuation of such a Qp-polynomial:

Definition 4.1. If the last term in formula 4.3 does not vanish, we say that the order of f is r.

If the last term in formula 4.2 does not vanish, we say that the valuation of f is k.

Then the order of a Qp-polynomial is−1 or a natural. It does not depend on its degree, which

can be as big as we wish (terms of expression 4.1 may miss in expression 4.3), and it does not

depend on the biggest absolute value of its coefficients for the same reason.

Also, the valuation k is the ”useful” biggest absolute value of its coefficients since extra terms
1

pk′
X l′ fl′,k′ such that l′ ≥ k′+2 may miss in formula 4.2.

4.4 Qp-polynomial isometries of order −1

In this section, f is a Qp-polynomial of order −1: f = f0 + p
p−1
∑
j=1

H j,

where H j = Y jh j +Y j+p−1h j+p−1 + . . ., f0 and hl are Fp-polynomials with degrees less than

p−1, and | f ′0−h1 |= 1 on Fp. Note that these conditions imply f (Zp)⊂ Zp.

First, suppose that f is isometric:
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- for any root βi of X , f (βi) = f0(βi) = f (i) mod p, then f0 induces a bijection of Fp;

- for any root β of X , the map f|β : z 7→ ( f (β + pz)− f (β ))/p is a Qp-polynomial isometry

of Zp. Using Lemma 4.2: H j(β + pz) = (−z+ pβ p−1z+ ...) j(h j(β )+ pzh′j(β )+ ...)+ ...

Interestingly, f|β is a Zp-polynomial : z 7→ f ′0(β )z +
k+1
∑
j=1

(−1) jh j(β )z j + p(...), hence is an

isometry if and only if conditions of Proposition 3.1 are satisfied.

Conversely, suppose that f0 induces a bijection of Fp and that each f|β is an isometry of Zp.

For any distinct roots β and β ′ of X in Zp and all z in Zp:

| f (β + pz)− f (β ′+ pz′) |= | p f|β (z)+( f0(β )− f0(β
′))− p f|β ′(z

′) |= 1.

Then, for any z and z′ in Zp, | f (z)− f (z′) |= |z− z′ |: f is an isometry of Zp. To sum up :

Proposition 4.3. Let f = f0 + p
p−1
∑
j=1

H j be a Qp-polynomial of order −1. Then f is isometric

exactly when:

(a) f0 is a bijection of Fp,

(b) for any root β of X, f|β : z 7→ f ′0(β )z+
k+1
∑
j=1

(−1) jh j(β )z j + p(...) satisfies properties (1)

and (2) of Proposition 3.1:

1) f̂|β : z 7→ f ′0(β )z+
p−1
∑
j=1

(−1) jz j(h j(β )+h j+p−1(β )+ . . .) is a bijection of Zp,

2) f̂ ′|β : z 7→ f ′0(β )−h1(β )+

p−1
∑
j=1

(−1) j+1z j(( j+1)h j+1(β )+( j+ p)h j+p(β )+( j+2p−1)h j+2p−1(β )+ . . .)

has no root in Fp.

Corollary 4.2. A Q2-polynomial f = f0 +X h1 +
X2

2
h2 + . . . of order −1 is an isometry of Z2

if, and only if:

(i) f0 is a bijection of Z2 (ii) f ′0 +h1 has no root in F2

(iii) h2 +h4 +h6 + . . .= 0 mod 2 (iv) h3 +h5 +h7 + . . .= 0 mod 2

Observe that the condition | f ′0−h1 |= 1 is included in (b)2) (using z = 0).

Eventually, we established that the study of f is equivalent to the study of one bijection of Fp

and (at most) p Zp-polynomial isometries of Zp. We say that the complexity of f is 1.
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Examples of Qp-polynomial isometries of Zp of order −1:

(i) x 7→ x+ x2 +2x3 + x4 + X2

2
+ X3

4
+ X4

8
+ X6

32
+ X7

64
+ X8

128
, (p = 2)

(ii) x 7→ x+ 2
9
(x3− x)3 = x+3.2Y 3, (p = 3)

(iii) x 7→ x+ 1
52

(3x4 +2x2 +2)(x5− x)3 + 1
55

(x2 +2)(x5− x)6, (p = 5).

4.5. The main tool

By the same arguments as in 4.4, we reduce the order of a Qp-polynomial step by step:

Proposition 4.4. For r ≥ 0, the study of a Qp-polynomial isometry of Zp of order r can be

reduced to the study of one bijection of Fp and at most p Qp-polynomial isometries of Zp of

order ≤ r−1 and valuation ≤ r+1.

Iterating the process, the study of a Qp-polynomial isometry of Zp of order r can be reduced

to the study of at most 1+ p+ . . .+ pr+1 bijections of Fp and pr+2 Zp-polynomial isometries

of Zp. This result will be improved in the next sections.

Proof: Let f = f0+ p
p−1
∑
j=1

H j +
p−1
∑
j=1

Fj +
1
p

p−1
∑
j=1

Fj, j+1+ . . .+ 1
pr

p−1
∑
j=1

Fj, j+r given by formula 4.3.

If f is an isometry of Zp, then f0 clearly induces a bijection of Fp and, for any root β of X in

Zp, f|β is an isometry of Zp.

Conversely, suppose that f0 is a bijection of Fp and that the maps f|β preserve distances

between points of Zp. Then f (β ) = f0(β ) belongs to Zp, and | f|β (z)− f|β (0) | = |z | proves

that f|β (z) belongs to Zp for any root β of X and z in Zp. Hence, | f (β + pz)− f (β ) | ≤ |z |/p

gives f (Zp)⊂ Zp. Eventually, as seen in section 4.4, we deduce that f is an isometry of Zp.

In order to conclude, we still have to evaluate G j(β + pz) where G j represents H j, Fj or

Fj, j+l , using Lemma 4.2. This is nearly the same calculation as in 4.4, in which gk represents

hk, fk, or any fk,k+l .

G j(β + pz) = Y j(β + pz)g j(β + pz)+Y j+p−1(β + pz)g j+p−1(β + pz)+ . . .

= (−z+ pβ
p−1z+ p2(−)+ . . .) j(g j(β )+ pzg′j(β )+ p2(−)+ . . .)

+(−z+ pβ
p−1z+ . . .) j+p−1(g j+p−1(β )+ pzg′j+p−1(β )+ . . .)+ . . .

= (−1) jz jg j(β )+(−1) j+p−1z j+p−1g j+p−1(β )+ . . .+ p(...)+ . . . .
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Using Fj, j+r and Fj, j+r−1, the last terms of the expression of f|β are:

1
pr+1

p−1
∑
j=1

(
Q0(z)+Q1(z)X(z)+Q2(z)X2(z)+ . . .

)
+ 1

pr

p−1
∑
j=1

(
R0(z)+R1(z)X(z)+R2(z)X2(z)+ . . .

)
+ 1

pr−1
(...)+ . . .

where Ql and Rl are Fp-polynomials with degrees less than p−1 (we used successive Euclidean

divisions by X in Fp). Thanks to Proposition 4.2, the factors of X0 and X1 vanish since r+1≥ 1,

then Q0 = Q1 = 0. Note that, if r ≥ 1, we have also: R0 = R1 = 0.

Let rewrite f|β using Y = X/p: its order is less than r−1. �

We see that f and f|β have the same degree and the same ”real” valuation (defined as the

biggest power of 1/p in the expression 4.1 of f ). The order is a better tool to elaborate a

process as Proposition 4.4 does and to evaluate the complexity of an isometry. For example, we

saw in section 4.4 that isometries of order −1 have complexity 1, while their ”real” valuations

and degrees can nearly be any integer. Moreover, if the ”useful” valuation of f is k, the valuation

of f|β is less than r+1, which is better linked to the order of f after the first reductions.

We study the links between valuation, order and complexity in section 4.9.

Example: x 7→ x+ 3
23

(x2− x)3 + 1
27

(x2− x)7 = x+(Y 3 +Y 7)+2Y 3 is a Q2-isometry of Z2 of

order 0. Indeed, x 7→ x is a bijection of F2, and f|0 = f|1 = z 7→ z+ z4 + z8 are Z2-polynomial

isometries of Z2.

We can now study Qp-polynomial isometries of Zp with bigger orders.

4.6. Qp-polynomial isometries of Zp of order 0

We have to go further in the calculations of the proof of Proposition 4.4.

Let G j be H j or Fj or any Fj, j+l: G j = Y jg j +Y j+p−1g j+p−1 + . . .

We define: G̃ j(x,y) = ∑
α≥0

yαg j+α(p−1)(x),

σ0(G j,β ) = G̃ j(β ,1) = (g j +g j+(p−1)+g j+2(p−1)+ . . .)(β ),

σ1(G j,β ) = ∂2G̃ j(β ,1) = (g j+(p−1)+2g j+2(p−1)+3g j+3(p−1)+ . . .)(β ), and so on:

σq(G j,β ) =
1
q !

∂
q
2 G̃ j(β ,1).

We omit β for simplicity when there is no ambiguity.
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Proposition 4.5. (p≥ 3) Let f = f0 + p
p−1
∑
j=1

H j +
p−1
∑
j=1

Fj be a Qp-polynomial of order 0. If f is

an isometry of Zp, we have (modulo p):

(i) σ0(Fj) = f j + f j+p−1 + f j+2(p−1)+ . . .= 0,

(ii) σ1(Fj) = f j+p−1 +2 f j+2(p−1)+3 f j+3(p−1)+ . . .= 0,

(iii) σ2(Fj) = f j+2(p−1)+3 f j+3(p−1)+6 f j+4(p−1)+ . . .= 0,

(iv) for l = (1),2: σ3(Fl)−σ4(Fl)+σ5(Fl)+ . . .= 0

= fl+3(p−1)+3 fl+4(p−1)+6 fl+5(p−1)+10 fl+6(p−1)+15 fl+7(p−1)+ . . . .

With these conditions, f is an isometry of Zp exactly when f0 is a bijection on Fp, f1 = 0 and

the following Zp-polynomials are isometries of Zp:

z 7→ f ′0(β )z+
k+1
∑
j=1

(−1) jh j(β )z j− (σ2(F1,β )−σ3(F1,β )+ . . .
1
)ZX(z)

+
p−1
∑
j=1

(−1) j(σ̄1
0 (Fj,β )z j + σ̄1

1 (Fj,β )z j−1X(z)).

Proof. In order to obtain f|β , we calculate:

Fj(β + pz) = (−z+ pβ
p−1z+ p2(..)) j( f j(β )+ pz f ′j(β )+ p2(...))

+(−z+ pβ
p−1z+ p2(..)) j+p−1( f j+p−1(β )+ pz f ′j+p−1(β )+ p2(...))+ . . .

= (−z) j( f j + zp−1 f j+p−1 + z2(p−1) f j+2(p−1)+ . . .)

−pβ
p−1(−z) j( j f j + zp−1( j+ p−1) f j+p−1 + z2(p−1)( j+2(p−1)) f j+2(p−1)+ . . .)

+p(−1) jz j+1( f ′j + zp−1 f ′j+p−1 + z2(p−1) f ′j+2(p−1)+ . . .)+ p2(...).

We will use Z and Lemma 4.3.

f j + zp−1 f j+p−1 + z2(p−1) f j+2(p−1)+ . . .= σ0(Fj)+σ1(Fj)Z +σ2(Fj)Z2 + . . .

With simplified notations:

z j(σ0 +σ1Z +σ2Z2 + . . .+σ jZ j +σ j+1Z j+1 + . . .)

= σ0z j +σ1z j−1X(z)+ . . .+σ jX j(z)+X j(z)(σ j+1Z +σ j+2Z2 + . . .),

and eventually:
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∗ F1(β + pz) =−σ0z−σ1X−X .(σ2Z +σ3Z2 + . . .)+ . . .

=−σ0z− (σ1 +(σ2−σ3 +σ4 + . . .)Z)X− (σ3−σ4 +σ5 + . . .)zp−2X2 +X3(...)+ ...

∗ F2(β + pz) = σ0z2 +σ1zX +X2(σ2 +σ3Z +σ4Z2 + . . .)+ . . .

= σ0z2 +σ1zX +(σ2 +(σ3−σ4 + . . .)Z)X2 +X3(...)+ ...

∗ Fj(β + pz) = (−1) j(σ0(Fj,β )z j +σ1(Fj,β )z j−1X +σ2(Fj,β )z j−2X2 +X3(...))+ ... for

3≤ j ≤ p−1.

Then: f|β (z)= f ′0(β )z+
1
p

p−1
∑
j=1

Fj(β + pz)+ ... is a Qp-polynomial isometry of order−1 because

of Proposition 4.2 (the coefficients of X0 and X1 vanish). The degrees of the polynomials are

less than p−1, hence we get (i)and (ii),

and σ2(F1)−σ3(F1)+σ4(F1)−σ5(F1)+ . . .= 0 mod p.

Moreover, there is no isometry of Zp of degree 2 (Corollary 3.1). To apply the same method

to f|β leads to such isometries if the former coefficient of X2 does not vanish modulo p. Then

(iii) and (iv) by the same arguments.

Note that j f j +( j+ p− 1) f j+p−1 + . . . = jσ0(Fj)−σ1(Fj) mod p and f ′j + f ′j+p−1 + . . . =

σ ′0(Fj) = 0 mod p. Finally the conclusion since the extra terms disappear modulo p in f|β .

For l = 1, equation (iv) can be deduced from (i)(ii)(iii) since f1 = 0. �

Proposition 4.6. (p = 2) Let f = f0 + 2H1 +F1 be a Q2-polynomial of order 0. If f is an

isometry of Z2, we have (modulo 2):

(i’) f2 + f4 + f6 + ...= 0, (ii’) f3 + f5 + f7 + ...= 0,

(iii’) f3 + f4 + f7 + f8 + f11 + f12 + ..= 0, (iv’) f5 + f6 + f9 + f10 + ..= 0.

With these conditions, f is an isometry exactly when f0 induces a bijection of F2, f1 = 0, and

the two following F2-polynomials are isometries of Z2:

z 7→ f ′0(β )z+
k+1
∑
j=1

(−1) jh j(β )z j− ( f3−2 f4 +3 f5−4 f6 + . . .)(β )
1
ZX(z)

−( f2− f3 + f4− . . .)(β )
1
z− ( f2−2 f3 +3 f4−4 f5 + . . .)(β )

1
X(z)
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Proof: Here p−1 = 1 is odd. We use Y (2z) =−z+2z2, Y (1+2z) = z+2z2, Lemma 4.3, and

we adapt the calculations of Proposition 4.5 by switching fi with (−1)i fi in F1(2z), or fi with

(−1)i−1 fi in F1(1+2z), to obtain (i’) to (iv’). Finally we conclude as in Proposition 4.5. �

Now we see that these necessary conditions may imply that the polynomials fi could vanish.

In other words, the order cannot be 0 if the useful valuation k is too small:

Corollary 4.3. There is no Qp-polynomial isometry of Zp with order r = 0 and valuation

k < 3p.

Proof. For such an isometry, if k < j + 3(p− 1) and j ≥ 2, there are at most three non-zero

terms in the expression of Fj = ∑
n≥0

Y j+n(p−1) f j+n(p−1). Then Fj = 0 because of (i), (ii) and (iii)

of Proposition 4.5.

For j = 1, we already know that f1 = 0, and we verify the same result considering

F1 =
3
∑

n=1
Y 1+n(p−1) f1+n(p−1): f1 = fp = f2p−1 = f3p−2 = 0.

Also, Proposition 4.5 (iv) gives F2 = 0 if F2 =
3
∑

n=0
Y 2+n(p−1) f2+n(p−1) has only four terms.

So the first possible non-zero term Fj in a polynomial isometry of order 0 is F3 if p≥ 5 and

k ≥ 3p, or F1 if p = 3 and k ≥ 9, or F1 if p = 2 and k ≥ 6 thanks to Proposition 4.6. �

Examples of Qp-polynomial isometries of Zp of order 0:

x 7→ x+ X2

2
+ X3

4
+ X3

8
+ X4

16
+ X5

32
+ X6

64
, (p = 2,k = 6)

x 7→ x+ X2

2
+3X3

8
+ X6

32
+ X7

128
, x 7→ x+ X3

8
+3 X7

128
, (p = 2,k = 7)

x 7→ x+ X3

32
+2X3

33
+ X9

39
, (p = 3,k = 9)

4.7. Qp-polynomial isometries of Zp of order 1

Again, we need to extend the calculations of Proposition 4.5. In particular, we will use that

no Zp-polynomial isometries of Zp with degree 3 exists if p 6= 3. For p = 3, we just adapt the

results of Proposition 4.5 switching fi with fi,i+1, as explained in the proof of Corollary 4.4.
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Proposition 4.7. (p 6= 3) Let f = f0 + p
p−1
∑
j=1

H j +
p−1
∑
j=1

Fj +
1
p

p−1
∑
j=1

Fj, j+1 be a Qp-polynomial of

order 1. If f is an isometry of Zp, then f0 is a bijection of Fp, f1 = f1,2 = 0, and we have the

following equalities modulo p if p≥ 5:

(i) σ0(Fj, j+1) = f j, j+1 + f j+p−1, j+p + . . .= 0,

(ii) σ1(Fj, j+1) = f j+p−1, j+p +2 f j+2(p−1), j+2p−1 + . . .= 0,

(iii) σ2(Fj, j+1) = f j+2(p−1), j+2p−1 +3 f j+3(p−1), j+3p−2 + . . .= 0,

(iv) σ3(Fj, j+1) = f j+3(p−1), j+3p−2 +4 f j+4(p−1), j+4p−3 + . . .= 0,

(v) for l = (1),2,3: σ4(Fl,l+1)−σ5(Fl,l+1)+σ6(Fl,l+1)+ . . .= 0

= fl+4(p−1),l+4p−3 +4 fl+5(p−1),l+5p−4 +10 fl+6(p−1),l+6p−5 + . . . .

For p = 2, we obtain equations (i’) to (iv’) of Proposition 4.6 switching fl with fl,l+1, and two

new equalities mod 2:

(v’) f6,7 + f10,11 + f14,15 + f18,19 + ...= 0, (vi’) f7,8 + f11,12 + f15,16 + f19,20 + ...= 0

Provided these conditions, f is an isometry exactly when the useful parts of f|β are Zp-polynomial

isometries of Zp.

Proof. In order to obtain f|β , let note G j = Fj, j+1 and gl = fl,l+1, and calculate Fj, j+1(β + pz).

Using Lemma 4.3, we obtain the coefficients of X0, X , X2 (as in Proposition 4.5), and finally

the coefficient of X3:

∗ for j = 1 and p≥ 5: zp−3(−σ4 +σ5−σ6 + . . .),

∗ for j = 1 and p= 2: σ ′5+σ ′6(Z−2)+σ ′7(−3Z+3)+σ ′8(6Z−4)+ . . .) and the same equations

with σ ′′l ,

∗ for j = 2 and p≥ 5: zp−2(σ4−σ5 +σ6−σ7 + . . .),

∗ for j = 3 and p≥ 5: σ3 +(σ4−σ5 +σ6−σ7 + . . .)Z,

∗ for j ≥ 4 and p≥ 5: σ3.

Now, for suitable polynomials, f|β is given by:

f|β (z) = f ′0(β )z+
1
p2

(
G1(β + pz)+G2(β + pz)+

p−1
∑
j=3

G j(β + pz)

)
+ . . .

= 1
p2

(Q0 +Q1X +Q2X2 +Q3X3 + . . .)+ 1
p(R0 +R1X +R2X2 + . . .)+S.
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So we obtain a Qp-polynomial isometry. Then Q0 = Q1 = R0 = R1 = 0 because of Proposition

4.2. Moreover, the valuation of f|β is smaller than 3p, then its order is −1 (Corollary 4.3),

hence Q2 = 0. Eventually, since no Zp-polynomial isometry of Zp with degree 3 exists (p 6= 3),

we obtain Q3 = 0 mod p considering ( f|β )|β ′ . Eventually the result.

For l = 1, (i) to (iv) and f1 = 0 give equation (v). �

Corollary 4.4. If p 6= 3, there is no Qp-polynomial isometry of Zp of order 1 and valuation

k ≤ 4p. There is no Q3-polynomial isometry of Z3 of order 1 and valuation k ≤ 9.

Proof. ∗ If p≥ 5, suppose that k < j+4(p−1) and j≥ 3: there are at most four non-zero terms

in the expression Fj, j+1 = ∑
n≥0

Y j+n(p−1) f j+n(p−1). Then Fj, j+1 = 0 because of Proposition 4.7

(i) to (iv).

For j = 1, f1,2 = 0 then fp,p+1 = f2p−1,2p = f3p−2,3p−1 = f4p−3,4p−2 = 0.

Proposition 4.7 (v) gives F2,3 =
4
∑

n=0
Y 2+n(p−1) f2+n(p−1) = 0 and F3,4 = 0.

So the first possible non-zero term Fj, j+1 should be F4,5 when k≥ 4p+1 (with f4+4(p−1),4p+1),

then k ≥ 4p+1.

If p = 2, equations (i’) to (vi’) give F1,2 =
6
∑

n=1
Y 1+n f1+n,2+n = 0, since the first non zero term

should be f8,9, then k ≥ 9.

If p = 3, we have the same results as in Proposition 4.5 switching fl with fl,l+1, otherwise

we obtain a polynomial isometry of order 0 and valuation 2 < 9 (if the coefficient of X2 does

not vanish), which would contradict Corollary 4.3. The first possible non-zero term should be

f9,10, so k ≥ 10. �

Examples of Qp-polynomial isometries of Zp of order 1:

∗ x 7→ x+ X2

2
+ X4

25
+ X6

26
+ X8

29
, (p = 2,k = 9)

∗ x 7→ x+ 8
33

X3 + 1
34

(2X3 +X5)+ 1
35

X5 + 2
37

X7 + 1
310

X9, (p = 3,k = 10)

4.8. Qp-polynomial isometries of Zp of order 2

Again, we extend the former calculations and use that no Zp-polynomial isometries of Zp

with degree 4 exists if p≥ 5.

Proposition 4.8. (p≥ 5) Let f be a Qp-polynomial of order 2:
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f = f0 + p
p−1
∑
j=1

H j +
p−1
∑
j=1

Fj +
1
p

p−1
∑
j=1

Fj, j+1 +
1
p2

p−1
∑
j=1

Fj, j+2.

If f is an isometry of Zp, then f0 is a bijection of Fp, f1 = f1,2 = f1,3 = 0, and we have the

following equalities modulo p:

(i) σ0(Fj, j+2) = σ1(Fj, j+2) = σ2(Fj, j+2) = σ3(Fj, j+2) = σ4(Fj, j+2) = 0,

(ii) for l = (1),2,3,4: σ5(Fl,l+2)−σ6(Fl,l+2)+σ7(Fl,l+2)+ ...= 0

= fl+5(p−1),l+5p−3)+5 fl+6(p−1),l+6p−4)+15 fl+7(p−1),l+7p−5)+ ...

Corollary 4.5. There is no Qp-polynomial isometry of Zp of order r = 2 and

valuation k ≤ 5p+1 if p≥ 5, k ≤ 13 if p = 3, k ≤ 9 if p = 2.

Proof. Same proof as for Corollary 4.4 when p 6= 3. If p = 3, the coefficients of X3 must vanish

modulo p, otherwise we obtain isometries with order 0 and valuation 3. We calculate it:

in F1,3: σ4−σ5 +σ6− . . .+Z(σ5−2σ6 +3σ7 + . . .)

= f9,11 +4 f11,13 + . . .+Z( f11,13 +5 f13,15 + . . .)

in F2,4: z(σ4−σ5 +σ6− . . .) = f10,12 +4 f12,14 + . . ..

Eventually, the first non zero term should be f12,14, hence k ≥ 14. �

In fact, laborious calculations show that there is no Q3-polynomial isometry of Z3 of order 2

and valuation k ≤ 16.

Examples of Qp-polynomial isometries of Zp of order 2:

x 7→ x+ 3X2

4
+ X4

26
+ X6

27
+ X8

210
, (p = 2,k = 10)

x 7→ 2x+ X2

3
+

X3 +2X4

33
+ X5

36
+

X6 +2X5

37
+ X7

38
+

2X7 +2X8

39
+ 2X10

310

+
2(X9 +X11)

311
+

X11 +X12 +X13

312
+

X11 +2X12 +X13

313
+ 1

314
(X13 +X14)

+
X13 +X14 +2X15 +X16

315
+ 2X15

316
+ X15

317
, (p = 3,k = 17)

4.9. Valuation, order, and complexity

Let us come back to the expression 4.2 of a Qp-polynomial isometry of Zp. Propositions 4.2

and 4.4 can be really improved: many terms vanish thanks to Corollaries 4.2 to 4.5. We estimate
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the complexity of Qp-polynomial isometries of any order, which permits simplifications of the

expressions of the corresponding isometries.

From now, r, k and λ are respectively the order, the valuation and the complexity of a Qp-

polynomial isometry f of Zp: the study of f is reduced to study if at most nb = 1+ p+ ...+ pλ−1

Fp-polynomials are bijections of Fp and ni = pλ Zp-polynomials are isometries of Zp.

We are going to define an increasing sequence (vn) by choosing the best possible values such

a way that: k ≤ vn implies r ≤ n. For example, using Corollary 4.5, we choose v1 = 5p+ 1 if

p≥ 5 and v1 = 4p+1 if p≤ 3.

First, we conclude for r ≤ p−3 and give the possible form of isometries.

Proposition 4.9. We assume that r ≤ p−3 (or r ≤ 1 if p≤ 3).

∗ If k < 3p, then r =−1, λ = 1 and f = f0 +Xh1 +
k
∑
j=1

1
p j

X j+1h j+1.

∗ If p 6= 3 and k ≤ 4p, or p = 3 and k ≤ 9, then r ≤ 0 (so v0 = 4p, or 9, and λ = 2), and

f = f0 +Xh1 +
1
pX2h2 +

k
∑
j=2

1
p j
(X j f j +X j+1h j+1).

∗ If p≥ 5 and k≤ 5p+1, (or p = 2 and k≤ 9, or p = 3 and k≤ 13), then r≤ 1 (so v1 = 5p+1,

or 4p+1 if p≤ 3), λ = 2 and

f = f0 +Xh1 +
1
pX2h2 +

1
p2

(X2 f2 +X3h3)+
k
∑
j=3

1
p j
(X j−1 f j−1, j +X j f j +X j+1h j+1).

∗ If p≥ 5 and k ≤ vn, then r ≤ n and λ = 2, where:

for n≤ p−5, vn = 4p+n(p+1) if n+3 divides p−1, else vn = 3p+n(p+1),

vp−4 = p2 + p−4, vp−3 = p2 + p−3, and

f = f0 +Xh1 +
1
pX2h2 +

1
p2

(X2 f2 +X3h3)+
1
p3

(X2 f2,3 +X3 f3 +X4h4)+ . . .

+ 1
pn+2

(X2 f2,n+2 +X3 f3,n+2 + . . .+Xn+2 fn+2 +Xn+3hn+3)

+ 1
pn+3

(X3 f3,n+3 +X4 f4,n+3 + . . .+Xn+3 fn+3 +Xn+4hn+4)+ . . .

+ 1
pk
(Xk−n fk−n,k +Xk−n+1 fk−n+1,k + . . .+Xk fk +Xk+1hk+1).

Proof. The first items are consequences of Corollaries 4.3 to 4.5.

Now, suppose p≥ 5 and r = 3, hence k ≥ v1 +1 = 5p+2.

Let f = f0 + p
p−1
∑
j=1

H j +
p−1
∑
j=1

Fj +
1
p

p−1
∑
j=1

Fj, j+1 +
1
p2

p−1
∑
j=1

Fj, j+2 +
1
p3

p−1
∑
j=1

Fj, j+3.

Then f|β = 1
p4

(Q0 +Q1X + . . .+Q5X5)+ 1
p3

(R0 + . . .+R4X4)+ . . .
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where Q0 = Q1 = R0 = R1 = 0 according to Proposition 4.2.

Since 4 < 3p, the order of f|β is −1, then Q2 = Q3 = Q4 = 0, which gives the equalities of

Proposition 4.8 relatively to Fp-polynomials fl,l+3. The first non zero term should be f5p,5p+3,

hence k ≥ 5p+ 3, except when 5 divides p− 1 (Corollary 3.1). In this last situation, Q5 = 0

and, using Lemma 4.3 a) and the coefficients of X5− j in Zn, we have σ0 = ... = σ5 = 0 and

σ6−σ5 +σ7− ...= 0 for j from (1) to 5, eventually k ≥ 6p+3.

Hence, v2 = 6p+2 if 5 divides p−1, otherwise v2 = 5p+2.

Suppose r = n+1≤ p−4: the valuation k′ of f|β satisfies k′ ≤ r+1 < 3p, hence the order of

f|β is−1. With similar notations, Q0 = . . .= Qn+2 = 0. By Lemma 4.3 a), σ0 = . . .= σn+2 = 0

and σn+3−σn+4 + . . . = 0 for j = (1) to n+2, plus Qn+3 = 0 if n+3 divides p−1. The first

non zero term should be fn+3+(n+3)(p−1),2n+4+(n+3)(p−1) with k≥ n(p+1)+3p+1 for the first

case (vn = 3p+n(p+1)); for the second one, k ≥ n(p+1)+4p+1 and vn = 4p+n(p+1).

In particular, vp−5 = p2− p, for p−2 does not divide p−1.

If r = p− 3, Corollary 3.1 gives Q0 = .. = Qp−1 = 0. The first non-zero term should be

f1+(p+1)(p−1),p−2+(p+1)(p−1), so k ≥ p2 + p−3.

If r = p− 2, we have the same equations (for example, x 7→ x+ xp is an isometry of degree

p). Hence k ≥ p2 + p−2 and vp−3 = p2 + p−3. �

Now, we estimate vn and the corresponding complexity for n≥ p−2.

We first need to solve equations Q0 = Q1 = . . . = QN = 0 for any natural N ≥ p, where the

first term of the expression of f|β is 1
pr+1

(Q0+Q1X + . . .). As seen for N = p−1 in Proposition

4.9, we have to calculate the coefficient of XN in f|β , which is the coefficient of XN− j in Fj, j+r.

The notation σl + ... means σl +a2σl+1+a3σl+3+ . . . for suitable ai and σl = σl(Fj, j+r). By

induction and using Lemma 4.3 e), we obtain:

Lemma 4.4. Equations Q0 = Q1 = . . .= QN = 0 imply:

∗ if α(p−1)< N < (α +1)(p−1),

for all 1≤ j ≤ p−1: σ0 = σ1 = . . .= σN+α−1 = 0 = σN+α + ...,

for all (1)≤ j ≤ N−α(p−1): σN+α+1 + ...= 0,

∗ If N = α(p−1), for all 1≤ j ≤ p−1: σ0 = ...= σN+α−1 = 0 = σN+α + ...
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Then the first non-zero term of such an isometry of order r should be

fu+(N+α+1)(p−1),u+(N+α+1)(p−1)+r (for the first case and u = N−α(p−1)+1) or

f1+(N+α+1)(p−1),1+(N+α)(p−1)+r (for the second case since f1 = 0).

Hence its valuation satisfies: k ≥ (N + 1)p+ r. This is the main tool we use to build (vn),

which improves formula 4.2 for bigger values of the order, and gives an asymptotic evaluation

of the complexity:

Proposition 4.10. To study if a Qp-polynomial of order r is an isometry of Zp can be reduced

to study if at most nb Fp-polynomials are bijections of Fp and ni Zp-polynomials are isometries

of Zp, where nb ≤ (1+ p)(1+ r
3
), ni ≤ p2 + r

3
(p2− 1), and where the complexity satisfies :

λ ∼
r→+∞

logp(r).

Proof. ∗We proved in Proposition 4.9 that vp−3 = p2 + p−3. The same method gives similar

results as long as the order of f|β satisfies r′≤−1, where its valuation is k′= r+1 and r′≤ r−1

(Proposition 4.2). This happens as long as p− 1 ≤ r ≤ 3p− 2 since k′ < 3p and so r′ = −1.

Then Q0 = ..= Qr+1 = 0 and k ≥ (r+2)p+ r as seen after Lemma 4.4.

So, if A2 = p−2≤ r < 3p−2 = A3, vr = (p+1)r+3p and λ = 2.

∗ Let define V2 on [A2,A3[ by V2(r) = (p + 1)r + 3p. Let suppose that q ≥ 4, Aq−1 < Aq,

Vq−1(r) = vr = αq−1r+βq−1 for r in [Aq−1,Aq[ where the complexity λ is q−1. To build Aq+1

and Vq on [Aq,Aq+1[ on which λ = q, we consider f of order r = γ + 1, with Aq ≤ γ < Aq+1

and such that the order r′ of f|β satisfies r′ < Aq, and so k′ = r+ 1 ≤ Vq−1(Aq− 1): then we

choose Aq+1 =Vq−1(Aq−1)−1. Then, k′ = r+1≥Vq−1(r′−1)+1 = αq−1(r′−1)+βq−1+1

when r′ ≥ Aq−1, and: Q0 = Q1 = . . .= QN = 0 where r+1−N = b
r+αq−1−βq−1

αq−1
c+1. Then

k ≥ (N + 1)p+ r as seen after Lemma 4.4 and finally we can choose Vq(γ) = αqγ +βq where

αq = (1− 1
αq−1

)p+1 and βq = (1+
βq−1−1

αq−1
)p.

By induction, we built (Aq)q≥3 and v such that Aq ≤ r < Aq+1 implies vr = αqr+βq with the

former formulae.

∗ αq =
1− pq

1− pq−1
∼ p and βq = (q+1)

pq−1(1− p)

1− pq−1
∼ q(p−1).

Now we estimate Aq = αq−2(Aq−1−1)+βq−2−1, using
Aq

1− pq−2
−

Aq−1

1− pq−3
:
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Aq = (1− pq−2)

(
3p−2
1− p

+
q
∑

k=4

(1− p)kpk−3−2+2pk−2

(1− pk−3)(1− pk−2)

)
∼ Lpq with L > 0, which gives the

estimation of λ since: r ∈ [An,An+1[⇒ λ = n.

Finally, we estimate pλ using Aλ ≤ r, nb = 1+ p+ . . .+ pλ−1 and ni = pλ . �
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