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Abstract. In this paper, the new iterative method is used to solve the Cauchy problem. Some examples are given to 

elucidate the solution procedure and reliability of the obtained results. The new iterative method algorithm leads to 

exact solutions in the present study. 
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1.  Introduction 

In 2006, Daftardar-Gejji and Jafari [1] proposed a new technique for solving linear and nonlinear 

functional equations via new iterative method (NIM). This method has proven useful for solving 

a variety of linear and nonlinear equations such as algebraic equations, integral equations, 

ordinary and partial differential equations and systems of equations of integer and fractional 

order as well and the obtained results are of surprising accuracy (sometimes exact solutions can 

be obtained), the method can be easily understood by non-mathematical students and applied to 

various nonlinear problems. NIM is simple to understand and easy to implement using computer 

packages and yields better results Adomian decomposition method (ADM) [2], homotopy 

perturbation method [3], variational iteration method [4]. 

The main property of the method is its flexibility and ability to solve nonlinear equations 

accurately and conveniently, for example, in [5, 6,7] applied the method to various nonlinear 

systems partial differential equations, and concluded that the NIM is a reliable analytical tool for 

solving linear and nonlinear. 
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Recently, [8, 9, 10, 11] summarized various NIM algorithms for various nonlinear equations 

including fractional differential equation. Though much achievement has been achieved, 

application of the NIM to Cauchy problems has not yet been dealt with. In this paper, we use the 

NIM to discuss the first-order partial differential equation in the form [12]: 

0,),(),(),(),(  tRxxtxutxatxu xt  ,           (1.1) 

with the initial condition 

.),()0,( Rxxxu               (1.2) 

when atxa ),(  a is a constant and 0)( x . Eq.(1.1) is a linear equation called the transport 

equation which can describe many interesting phenomena such as the spread of AIDS, the 

moving of wind. When ),(),( txutxa  , the equation is called the inviscid Burgers' equation 

arising in one dimensional stream of particles or fluid having zero viscosity. 

 

2. Basic idea of NIM 

To describe the idea of the NIM, consider the following general functional equation [1]: 

)),(()()( xuNxfxu                   (2.1) 

where N is a nonlinear operator from a Banach space B→B and f is a known function. We are 

looking for a solution u of (2.1) having the series form 
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The nonlinear operator N can be decomposed as follows 
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From Eqs. (2.2) and (2.3), Eq. (2.1) is equivalent to 

.)(
1

1

00

0

0

 










 








































i

i

j

j

i

j

j

i

i uNuNuNfu             (2.4) 

We define the recurrence relation: 

,0 fu              (2.5a) 

),( 01 uNu              (2.5b) 

.,...3,2,1),...()...( 110101   nuuuNuuuNu nnn        (2.5c) 
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Then: 

,,...3,2,1,)...()...( 1011   nuuuNuu nn  
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If N is a contraction, that is 

)()( yNxN  ≤ ,10,  kyxk  

then: 

)...()...( 110101   nnn uuuNuuuNu            (2.7) 

≤ nuk ≤ …≤ ,...,2,1,00 nuk n
 

and the series 


0i

iu  absolutely and uniformly converges to a solution of (2.1) [13], which is 

unique, in view of the Banach fixed point theorem [14]. The n-term approximate solution of (2.1) 

and (2.2) is given by 




1

0

n

i

iu . 

 

2.1 Reliable algorithm 

After the above presentation of the NIM, we introduce a reliable algorithm for solving nonlinear 

partial differential equations using the NIM. Consider the following nonlinear partial differential 

equation of arbitrary order: 

,),,(),(),( NntxBuuAtxuDn

t                                 (2.8a)  

with the initial conditions 
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where A is a nonlinear function of u and  u (partial derivatives of u with respect to x and t) and 

B is the source function. In view of the integral operators, the initial value problem (2.8a) and 

(2.8b) is equivalent to the following integral equation 
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and 

,)( AIuN n

t             (2.11) 

where n

tI  t is an integral operator of n fold. We get the solution of (2.9) by employing the 

algorithm (2.5). 

 

2.2   Convergence analysis of the NIM 

Now, we introduce the condition of convergence of the NIM, which is proposed by Daftardar-

Gejji and Jafari in (2006) [1], also called (DJM) [15]. From (2.3), the nonlinear operator N is 

decomposed as follows [15]: 
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is a solution of the general functional equation (2.1). Also, the recurrence relation (2.5) becomes 
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Using Taylor series expansion for niGi ,...,2,1,  , we have 
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In general: 
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In the following theorem we state and prove the condition of convergence of the method. 

 

Theorem 2.1 If N is )(C  in a neighborhood of 0u  and 
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Thus, the series 


1n

nG  is dominated by the convergent series
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For more details, see [15]. 

 

3. Numerical Applications 

Example 1. 

 Consider the transport equation [12, 16] 

,0,,0),(),(  tRxtxautxu xt                       (3.1a) 

with the initial condition 

.,)0,( 2 Rxxxu               (3.1b) 

From (2.5a) and (2.10), we have 

.),( 2

0 xtxu   

Therefore, from (2.9), the initial value problem (3.1) is equivalent to the following integral 

equation: 

 xt auIxtxu  2),( . 

Taking 

 xt auIuN )( . 

Therefore, from (2.5), we can obtain easily the following first few components of the new 

iterative solution for the equation (3.1): 

2

0 ),( xtxu  , 
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3,0),(  ntxun , 

which in closed form gives exact solution 
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Example 2.  
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Consider the nonlinear Cauchy problem [17]                                                                               

0,,0),(),(  tRxtxxutxu xt ,            (3.2a) 

with the initial condition 

.,)0,( 2 Rxxxu               (3.2b) 

From (2.5a) and (2.10), we have 

.),( 2

0 xtxu   

Therefore, from (2.9), the initial value problem (3.2) is equivalent to the following integral 

equation: 

 xt xuIxtxu  2),( . 

Taking 

 xt xuIuN )( . 

Therefore, from (2.5), we can obtain easily the following first few components of the new 

iterative solution for the equation (3.2): 
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which in closed form gives exact solution 

 

...
!5

)2(

!4

)2(

!3

)2(

!2

)2(
21),(),( 22

5432
2

0

t

i

i ex
tttt

txtxutxu 












 . 

Example 3 

Consider the following non-homogeneous Cauchy problem [17] 

    ,0,,),(),(  tRxxtxutxu xt                                         (3.3a) 

with the initial condition 

.,)0,( Rxexu x               (3.3b) 

From (2.5a) and (2.10), we have 
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.),(0 xtetxu x   

Therefore, from (2.9), the initial value problem (3.3) is equivalent to the following integral 

equation: 

 xt

x uIxtetxu ),( . 

Taking 

 xt uIuN )( . 

Therefore, from (2.5), we can obtain easily the following first few components of the new 

iterative solution for the equation (3.3): 
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which in closed form gives exact solution 
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Example 4 

Consider the inviscid Burgers' equation [16, 17]                                                                          

0,,0),(),(),(  tRxtxutxutxu xt ,      (3.4a) 

with the initial condition 

.,)0,( Rxxxu               (3.4b)  

From (2.5a) and (2.10), we have 

.),(0 xtxu   

Therefore, from (2.9), the initial value problem (3.4) is equivalent to the following integral 

equation: 

 xt uuIxtxu ),( . 



 834                                   MOHAMED. A. RAMADAN AND MOHAMED. S. Al-LUHAIBI 

Taking 

 xt uuIuN )( . 

Therefore, from (2.5), we can obtain easily the following first few components of the new 

iterative solution for the equation (3.4): 
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which in closed form gives exact solution 
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4. Conclusion 

In this paper, the NIM was successfully applied to solve the Cauchy problems with initial 

conditions. The fact that the NIM solves nonlinear problems without using Adomian's 

polynomials or He's polynomials is a clear advantage of this technique. The results show that the 

NIM is powerful and efficient technique in finding exact and approximate solutions for nonlinear 

differential equations. 
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