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GLOBAL ERROR CONTROL IN A LOTKA-VOLTERRA SYSTEM

USING THE RKQ ALGORITHM
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Abstract. We use explicit, implicit and symplectic versions of Euler’s method to solve a Lotka-Volterra

system. We implement local error control via local extrapolation, and we use the RKQ algorithm, which

provides global error control. We find that local extrapolation, although providing acceptable control of

local error, does not control global error. However, RKQ achieves both local and global error control in

a stepwise manner. A symplectic form of Euler’s method preserves the first integral of the system if the

stepsize is fixed, but not if an explicit method is used in the local extrapolation mode. However, the

explicit form of RKQ does preserve the first integral, because it is able to control global error.
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1. Introduction

Lotka-Volterra systems are used to model predator-prey type populations, where the

populations of two rival species rise and fall in relation to each other. These systems are

often used as examples in discussions of numerical methods for initial-value problems [1,

∗Corresponding author

E-mail address: jprentice@uj.ac.za (J.S.C. Prentice)

Received January 23, 2012

413

Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 2, 413-424

ISSN: 1927-5307



414 J.S.C. PRENTICE

2]. In this paper, we consider

(1) u′ = u (v − 1) , v′ = v(2− u)

as a typical case, and seek the solution using variants of Euler’s method, as in [1]. It

should be noted that (1) has a periodic solution, so that it is not necessary to integrate

over more than a few periods to understand the solution. However, (1) has the more

general form

u′ = Auv +Bu, v′ = Cuv +Dv

where the coefficients A,B,C and D may be time dependent. For example, they may

represent seasonal parameters of the ecosystem in which the populations u and v exist.

Consequently, it is appropriate to actually consider the long-time integration of such a

system. We will not engage in population modelling here; rather, we will use the periodic

system (1) as a simulation of a particular feature that we wish to study. This feature

is the accumulation of global error over long intervals of integration, and how we could

remedy such a problem by means of the RKQ algorithm.

Furthermore, we will restrict our work to results obtained using Euler’s method, since

this is the method used in [1], but we will make mention of the use of higher-order methods.

2. Preliminaries

We refer to an explicit Runge-Kutta method of order r as RKr. Implicit and symplectic

methods carry a prefix of I or S.

2.1 Euler’s methods

We use the explicit Euler method (RK1)

yn+1 = yn + hf (tn, yn)

which gives, for (1),



 un+1

vn+1



 =



 un

vn



+ h



 un (vn − 1)

vn (2− un)



 ,
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and the implicit Euler method (IRK1)

yn+1 = yn + hf (tn, yn+1)

which gives


 un+1

vn+1



 =



 un

vn



+ h



 un+1 (vn+1 − 1)

vn+1 (2− un+1)



 .

This is a 2 × 2 nonlinear system which can be solved using Newton’s method or some

variant thereof [3].

We will also consider the symplectic Euler method (SRK1) for this problem



 un+1

vn+1



 =



 un

vn



+ h



 un (vn+1 − 1)

vn+1 (2− un)





=




hunvn

hun−2h+1
− hun + un

vn

hun−2h+1



 .

2.2 The RKrvQz algorithm

In this algorithm, we apply local extrapolation using two RK methods, RKr and RKv

(r < v) to control local error (we will use the symbol LE(RKr,RKv) to denote this

process), but we also apply local extrapolation with RKr and RKz (r, v � z) . This en-

ables us to determine both local error in the RKr solution, and the global error that

is propagated from the previous node and, hence, the total global error at the node of

interest. If this global error exceeds the desired tolerance, we quench the RKr and RKv

solutions — this simply involves replacing them with the RKz solution, which is assumed

to be much more accurate. We then proceed to the next node. This algorithm can provide

in situ control of the global error — the global error is kept within the desired tolerance

as the RK computation proceeds - provided that the RKz solution is suitably accurate.

The reader is referred to our previous work for a more detailed discussion of RKQ [4, 5,

6].

3. Calculations
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We solve (1) with the initial condition


 u0

v0



 =



 2.725

1





as in [1]; we define t0 ≡ 0 and integrate up to t = 100. The solution is periodic with period

T ∼ 4.5. The trajectory (u, v) forms a closed curve in the first quadrant in phase space.

Broadly speaking, u oscillates between 1.4 and 2.8, and v oscillates between 0.6 and 1.54.

Since these solutions are of order unity, we apply absolute error control only (as opposed

to relative error control).

We use LE(RK1,RK2) and RK12Q8, where RK2 is the second-order (explicit) Trapez-

ium method, and RK8 is due to Fehlberg [7, 8]. In other words, we find a solution with

local error control only, and then a solution where global error has been controlled via

RKQ. We impose a tolerance of 10−2 on both local and global error. In Figures 1 and 2 we

show the local error and global error for LE(RK1,RK2) and the global error for RK12Q8.

Next, we consider LE(IRK1,RK2) and IRK12Q8, also with a tolerance of δ = 10−2.

Note that we use the implicit Euler and the explicit RK2 in this calculation. Errors are

shown in Figures 3 and 4.

We also consider the use of SRK1. Since (1) possesses the first integral

I (u, v) = 2 lnu− u+ ln v + v

we expect that SRK1 will preserve I (u, v) . We will show that LE(SRK1,RK2) does not

preserve I (u, v) (although SRK1 does), but that SRK12Q8 does, via global error control.

3. Discussion

We see in Figures 1 and 2 that the local error in each component is bounded over the

interval of integration; indeed, its magnitude never exceeds 0.0099 for either component,

clearly less than the tolerance of δ = 10−2. On the other hand, the global error exhibits

an increasing trend, attaining maximum magnitudes of 0.125 for v, and 0.182 for u.

Obviously, controlling the local error has not resulted in an acceptably small global error.

Also in these figures we see that the global error in each component, using RK12Q8, is
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clearly bounded - maximum magnitudes are 0.0099 and 0.0089 for u and v, respectively.

RK12Q8 has certainly kept the global errors within the desired tolerance. We remind the

reader that RK12Q8 also achieves local error control, in addition to global error control.

Similar results are obtained for LE(IRK1,RK2) and IRK12Q8 (see Figures 3 and 4). For

LE(IRK1,RK2) the maximal local errors are 0.01 and 0.008 in u and v, and the maximal

global errors are 0.27 and 0.18 in u and v, respectively. For IRK12Q8, the maximal global

errors are 0.0098 and 0.0086 in u and v, respectively. Again, the RKQ algorithm has been

successful.

In Figure 5 we plot I (u, v) for three cases: LE(SRK1,RK2), SRK12Q8 and SRK1.

The SRK1 computation has a fixed stepsize (h = 0.1) with no error control at all. We

find that I (u, v) oscillates about its expected value of −1.72006 for both SRK1 and

SRK12Q8, with the latter showing oscillations of smaller amplitude. On the other hand,

the LE(SRK1,RK2) solution shows a general drift in I (u, v) - we believe this is due to the

use of the explicit (nonsymplectic) method RK2 as part of the error control device, which

serves to destroy the symplecticity of the SRK1 solution. Nevertheless, it is, in fact, the

RKQ algorithm that provides the best result here - for this solution the first integral is

qualitatively similar to that for SRK1, but with smaller variation. The mean value of

I (u, v) for SRK1 is −1.718, while the mean value for SRK1Q8 is −1.7202.We can obtain

some understanding of why RKQ would be capable of reproducing a ‘well-behaved’ first

integral: assuming global errors ∆u and ∆v in u and v, we find

I (u+∆u, v +∆v) = 2 ln (u+∆u)− u+∆u+ ln (v +∆v) + v +∆v

≈ 2 ln u− u+ ln v + v

+

(
∆u

u
−∆u+

∆v

v
+∆v

)
(2)

after appropriate Taylor expansions and ignoring higher-order terms. The term in paren-

theses in (2) is an error term and is clearly proportional to the global errors ∆u and ∆v.

Given the ranges of u and v we have

∣∣∣∣
∆u

u
−∆u+

∆v

v
+∆v

∣∣∣∣ �
∣∣∣∣∆u

(
1

1.4
+ 1

)∣∣∣∣+
∣∣∣∣∆v

(
1

0.6
+ 1

)∣∣∣∣ � 4.4δ.
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Hence, if δ is small, the oscillations in I (u, v) will also be small.

Lastly, in Figure 6 we show the estimated global error in the RK8 solution. Clearly,

since the error is so small, the RK8 solution is a good estimator of global error in the

Euler solutions. This error was estimated using the relationship between local and global

errors

∆n+1 = εn+1 + αn∆n.

The reader is referred to [4, 8] for further information regarding this equation, including

the definition of symbols.

Since our objective here has been simply to illustrate the nature of the RKQ algorithm,

with respect to Euler’s method, we have chosen a moderate tolerance of 10−2. A stricter

tolerance could have been imposed; this would simply have led to smaller stepsizes but

the essential results would have been unchanged. We would still have found RKQ to

provide good global error control, while LE would not have done so. This said, strict

tolerances are better implemented using higher-order methods, which are more efficient.

Such algorithms would be RK34Q8 or RK45Q8, for example (in the latter, the RK45

component could be Fehlberg’s embedded method [9, 10]). In fact, we can state that we

have solved (1) using RK45Q8 subject to δ = 10−8. A good example of the use of RK34Q8

has been given in [11].

3. Conclusion

We have used variants of Euler’s method to solve a Lotka-Volterra system. We have

obtained solutions by imposing local error control (via local extrapolation) only, and by

imposing both local and global error control (via the RKQ algorithm). Our results clearly

show that local extrapolation, although providing acceptable control of local error, does

not control global error. By contrast, RKQ achieves both local and global error control in

a stepwise manner (as the Runge-Kutta integration proceeds). Solutions obtained using

a symplectic form of Euler’s method preserve the first integral if the stepsize is fixed, but

do not if an explicit method is used in the local extrapolation mode. However, the explicit

form of RKQ does preserve the first integral, due to its control of global error. This work
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F����� 1. Global error (top), local error (middle) and global error (bot-

tom) in the u component of the Lotka-Volterra system, for the indicated

algorithms. Vertical axes show base 10 exponents.

clearly demonstrates the virtues of controlling global error as the integration proceeds,

rather than merely controlling local error.



420 J.S.C. PRENTICE

0 20 40 60 80 100

G
lo

b
al

 e
rr

o
r

-6

-5

-4

-3

-2

-1

0

0 20 40 60 80 100

L
o

ca
l 

er
ro

r

-5

-4

-3

-2

-1

t

0 20 40 60 80 100

G
lo

b
al

 e
rr

o
r

-6

-5

-4

-3

-2

-1

LE(RK1,RK2)
v component

LE(RK1,RK2)
v component

RK12Q8
v component

F����� 2. Global error (top), local error (middle) and global error (bot-

tom) in the v component of the Lotka-Volterra system, for the indicated

algorithms. Vertical axes show base 10 exponents.
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F����� 3. Global error (top), local error (middle) and global error (bot-

tom) in the u component of the Lotka-Volterra system, for the indicated

algorithms. Vertical axes show base 10 exponents.
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F����� 4. Global error (top), local error (middle) and global error (bot-

tom) in the v component of the Lotka-Volterra system, for the indicated

algorithms. Vertical axes show base 10 exponents.
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