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1. Introduction and preliminaries

Šostak [8] introduced the fuzzy topology as an extension of Chang’s fuzzy topology [2].

Mashhour et al.[5,6] defined preopen and preclosed sets in topological spaces and investigated

properties of them. Singal and Prakash [7] extended the notion of preopen sets to fuzzy sets and

defined the separation axioms and properties of them.

In this paper, we introduce the notion of r-fuzzy preopen(closed) sets in Šostak’s fuzzy topo-

logical space. In particular, we can obtain the fuzzy supra topology induced by the family of
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r-fuzzy preopen sets of a fuzzy topological space. We show the relationship among fuzzy conti-

nuity, fuzzy supra continuity and fuzzy irresolutity. Moreover, we define the separation axioms

of fuzzy topological spaces using r-fuzzy preopen (closed) sets.

Throughout this paper, let X be a nonempty set, I = [0,1] and I0 = (0,1]. For α ∈ I, α(x) = α

for all x ∈ X . The family of all fuzzy sets on X denoted by IX . For x ∈ X and t ∈ I, a fuzzy point

xt is defined by

xt(y) =

 t if y = x,

0 if y 6= x.

Let Pt(X) be the family of all fuzzy points in X . For λ ,µ ∈ IX , λ is called quasi-coincident

with µ , denoted by λ q µ , if there exists x ∈ X such that λ (x)+µ(x)> 1. Otherwise we denote

λqµ .

Definition 1.1. [8] A function τ : IX → I is called a fuzzy supra topology on X if it satisfies the

following conditions:

(S1) τ(0) = τ(1) = 1,

(S2) τ(
∨

i∈Γ µi)≥
∧

i∈Γ τ(µi), for any {µ}i∈Γ ⊂ IX .

The pair (X ,τ) is called a fuzzy supra topological space.

A fuzzy supra topology on X is called a fuzzy topology on X if

(O) τ(µ1∧µ2)≥ τ(µ1)∧ τ(µ2), for any µ1,µ2 ∈ IX .

The pair (X ,τ) is called a fuzzy topological space (for short, fts).

Definition 1.2. ([3,4]) A function int : IX×I→ IX is called a fuzzy interior operator if it satisfies

the following conditions: for λ ,µ ∈ IX and r,s ∈ I,

(I1) int(1) = 1, int(λ ,0) = λ ,

(I2) int(λ ,r)≤ λ ,

(I3) int(λ ,r)∧ int(µ,r) = int(λ ∧µ,r),

(I4) int(λ ,r)≤ int(λ ,s), if r ≥ s,

(I5) int(int(λ ,r),r) = int(λ ,r).

Theorem 1.3 ([3,4]) Let int : IX × I→ IX be a fuzzy interior operator. Define a function τint :

IX → I on X by

τint(λ ) =
∨
{r ∈ I | int(λ ,r) = λ}.
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Then τint is a fuzzy topology on X .

Theorem 1.4 ([3,4]) Let (X ,τ) be a fts. Define functions intτ ,clτ : IX × I→ IX as follows:

intτ(λ ,r) =
∨
{µ ∈ IX | µ ≤ λ ,τ(µ)≥ r},

clτ(λ ,r) =
∧
{µ ∈ IX | λ ≤ µ,τ(1−µ)≥ r}.

The following results hold:

(1) intτ is a fuzzy interior operator.

(2) τintτ = τ .

(3) intτ(1−λ ,r) = 1− clτ(λ ,r) for each r ∈ I,λ ∈ IX .

2. Some properties of r-fuzzy preopen sets

Definition 2.1. Let (X ,τ) be a fts. For λ ∈ IX and r ∈ I,

(1) λ is called r-fuzzy preopen (for short, r-fpo) if for 0≤ s≤ r,

λ ≤ intτ(clτ(λ ,s),s),

(2) λ is called r-fuzzy preclosed (for short, r-fpc) if for 0≤ s≤ r,

λ ≥ clτ(intτ(λ ,s),s).

Theorem 2.2. Let (X ,τ) be a fts. Let λ ∈ IX and r,s ∈ I.

(1) λ is r-fpo iff 1−λ is r-fpc.

(2) Any union of r-fpo sets is r-fpo.

(3) Any intersection of r-fpc sets is r-fpc.

(4) If τ(λ )≥ r, then λ is r-fpo.

(5) intτ(λ ,r) is r-fpo and clτ(λ ,r) is r-fpc.

(6) If λ is r-fpo and 0≤ s≤ r, then λ is s-fpo.

Proof. (1) By Theorem 1.4 (3), it easily proved from

λ ≤ intτ(clτ(λ ,s),s) iff 1−λ ≥ clτ(intτ(1−λ ,s),s).
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(2) Let λi be r-fpo for i ∈ Γ. Then
∨

i∈Γ λi is r-fpo from , for 0≤ s≤ r,

∨
i∈Γ

λi ≤
∨
i∈Γ

intτ(clτ(λi,s),s)≤ clτ(intτ(
∨
i∈Γ

λi,s),s).

Other cases are easily proved from Definition 2.1.

Theorem 2.3. Let (X ,τ) be a fts. Define a function Pintτ : IX × I→ IX as follows:

Pintτ(λ ,r) =
∨
{µ ∈ IX | µ ≤ λ , µ is r-fpo }.

For λ ,µ ∈ IX and r ∈ I, it holds the following properties.

(1) Pintτ(1,r) = 1 and Pintτ(λ ,0) = λ .

(2) Pintτ(λ ,r)≤ λ .

(3) Pintτ(λ ∧µ,r)≤ Pintτ(λ ,r)∧Pintτ(µ,r).

(4) If r ≤ s for r,s ∈ I, then Pintτ(λ ,r)≥ Pintτ(λ ,s).

(5) Pintτ(Pintτ(λ ,r),r) = Pintτ(λ ,r).

(6) Pintτ(λ ,r) = λ iff λ is r-fpo.

Proof. (1), (2) and (6) are easily proved from the definition of Pintτ .

(3) Since λ ∧µ ≤ λ ,µ , we have

Pintτ(λ ∧µ,r)≤ Pintτ(λ ,r)∧Pintτ(µ,r).

(4) By Theorem 2.2(6), it is trivial.

(5) From (2), we only show Pintτ(λ ,r)≤ Pintτ(Pintτ(λ ,r),r). Suppose

Pintτ(λ ,r) 6≤ Pintτ(Pintτ(λ ,r),r).

There exist x ∈ X and t ∈ (0,1) such that

Pintτ(λ ,r)(x)> t > Pclτ(Pclτ(λ ,r),r)(x). (A)

Since Pintτ(λ ,r)(x) > t, by the definition of Pintτ , there exists r-fpo set λ1 with λ1 ≤ λ such

that

Pintτ(λ ,r)(x)≥ λ1(x)> t.
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Again, since λ1 ≤ λ and Pclτ(λ ,r) ≥ λ1, by the definition of Pintτ , Pintτ(Pintτ(λ ,r),r) ≥ λ1.

Hence

Pintτ(Pintτ(λ ,r),r)(x)≥ λ1(x)> t.

It is a contradiction for (A). Thus, Pintτ(λ ,r) = Pintτ(Pintτ(λ ,r),r).

Theorem 2.4. Let (X ,τ) be a fts. Define a function Pclτ : IX × I→ IX as follows:

Pclτ(λ ,r) =
∧
{µ ∈ IX | λ ≤ µ, µ is r-fpc }.

Then:

(1) Pintτ(1−λ ,r) = 1−Pclτ(λ ,r).

(2) intτ(λ ,r)≤ Pintτ(λ ,r)≤ λ ≤ Pclτ(λ ,r)≤ clτ(λ ,r).

Proof. (1) For each λ ∈ IX and r ∈ I, we have

Pintτ(1−λ ,r) =
∨
{µ ∈ IX | µ ≤ 1−λ , µ is r-fpo }

= 1−
∧
{1−µ ∈ IX | 1−µ ≥ λ , 1−µ is r-fpc }

= 1−Pclτ(λ ,r).

(2) It is easy from Theorem 2.2 (5).

Theorem 2.5. Let (X ,τ) be a fts and Pintτ be a function provided with the properties (1)-(4) in

Theorem 2.3. Define the function τP : IX → I on X by

τP(λ ) =
∨
{r ∈ I | Pintτ(λ ,r) = λ}

=
∨
{r ∈ I | λ is r-fpo}

=
∨
{r ∈ I | Pclτ(1−λ ,r) = 1−λ}.

Then τP is a fuzzy supra topology on X with τP(λ )≥ τ(λ ) for all λ ∈ IX .

Proof. The map τP is well defined from

Pintτ(λ ,r) = λ iff λ is r-fpo iff Pclτ(1−λ ,r) = 1−λ .

(S1) Since Pintτ(0,r)≤ 0 from Theorem 2.3(2), then Pintτ(0,r)= 0. Furthermore, Pintτ(1,r)=

1, for all r ∈ I. Thus τP(0) = τP(1) = 1.
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(S2) Suppose that there exists a family {λi ∈ IX | i ∈ Γ} such that

τP(
∨
i∈Γ

λi)<
∧
i∈Γ

τP(λi).

Then there exists r0 ∈ I such that

τP(
∨
i∈Γ

λi)< r0 <
∧
i∈Γ

τP(λi). (B)

Since τP(λi)> r0, for all i ∈ Γ, there exist ri ∈ I with Pintτ(λi,ri) = λi such that

r0 < ri ≤ τP(λi).

On the other hand, since Pintτ(λi,r0)≥ Pintτ(λi,ri) = λi, by Theorem 2.3 (2), we have

Pintτ(λi,r0) = λi

It implies for all i ∈ Γ,

Pintτ(
∨
i∈Γ

λi,r0)≥ Pintτ(λi,r0) = λi.

It follows

Pintτ(
∨
i∈Γ

λi,r0)≥
∨
i∈Γ

λi.

Thus, Pintτ(
∨

i∈Γ λi,r0) =
∨

i∈Γ λi, that is, τP(λ ) ≥ r0. It is a contradiction for (B). Thus,

τP(
∨

i∈Γ λi) ≥
∧

i∈Γ τP(λi). Hence τP is a fuzzy supra topology on X . From Theorem 2.4(2)

and Theorem 1.4(2), intτ(λ ,r) = λ implies Pintτ(λ ,r) = λ . Thus, τP(λ )≥ τ(λ ) for all λ ∈ IX .

Example 2.6. Let X = {a,b} be a set. We define a fuzzy topology τ : IX → I as follows:

τ(λ ) =


1, if λ = 0 or 1,
1
2 , if λ = 0.4,

0, otherwise.

(a) If 0 6= λ ≤ 0.4, then intτ(clτ(λ ,r),r) = 0.4 for 0 < r ≤ 1
2 . Thus, λ is 1

2 -fpo. Similarly, if

λ 6≤ 0.6, then intτ(clτ(λ ,r),r) = 1 for r ∈ I0. Thus, λ is r-fpo, for all r ∈ I.

(1) Let λ = a0.7∨b0.5 and µ = a0.5∨b0.7. Then λ ∧µ = 0.5. By (a), λ and µ are 1
2 -fpo. But

λ ∧µ is not 1
2 -fpo because

0.5 >
(

intτ(clτ(0.5,
1
2
),

1
2
) = 0.4

)
.
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(2) From (1), Pint(λ ,r) = λ and Pint(µ,r) = µ for 0 ≤ r ≤ 1
2 . But Pint(λ ∧ µ,r) = 0.4 for

0 < r ≤ 1
2 . Thus,(

0.4 = Pintτ(λ ∧µ,
1
2
)
)
6=
(

Pintτ(λ ,
1
2
)∧Pintτ(µ,

1
2
) = 0.5

)
.

Therefore Pintτ is not a fuzzy interior operator which it does not satisfy the condition (I3) of

Definition 1.2.

(3) We can obtain a fuzzy supra topology τP : IX → I as follows:

τP(λ ) =



1, if λ = 0 or 1,
1
2 , if 0 6= λ ≤ 0.4,

1, if λ 6≤ 0.6,

0, otherwise.

By (1) and (2), for λ = a0.7∨b0.5 and µ = a0.5∨b0.7,

0 = τP(λ ∧µ) 6≥
(

τP(λ )∧ τP(µ) = 1
)
.

Hence τP is not a fuzzy topology.

Example 2.7. Let X = {a,b} be a set. We define fuzzy topologies η ,γ : IX → I as follows:

η(λ ) =

 1, if λ = 0 or 1,

0, otherwise,
γ(λ ) = 1,∀λ ∈ IX .

(1) Since intη(clη(λ ,r),r) = 1 for 0 6= λ ∈ IX and r ∈ I0, then every fuzzy set λ ∈ IX is r-fpo

and r-fpc for r ∈ I.

(2) Since intγ(clγ(λ ,r),r) = λ for λ ∈ IX and r ∈ I, then every fuzzy set λ ∈ IX is r-fpo and

r-fpc for r ∈ I.

By (1) and (2), we obtain fuzzy supra-topologies(
ηP = γP

)
(λ ) = 1,∀λ ∈ IX .

Definition 2.8. Let (X ,τ) and (Y,η) be fuzzy (resp. supra) topological spaces. A function

f : (X ,τ)→ (Y,η) is called fuzzy (resp. supra) continuous iff τ( f−1(µ)) ≥ η(µ) for each

µ ∈ IY .
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Example 2.9. We define fuzzy topologies τ,η : IX → I as follows:

τ(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ ∈ {0.2,0.3},

0, otherwise,

η(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ ∈ {0.3},

0, otherwise.

We can obtain fuzzy topologies τP,ηP : IX → I as follows:

τP(λ ) =



1, if λ ∈ {0,1},
1
2 , if 0 6= λ ≤ 0.3,

1, if λ 6≤ 0.8,

0, otherwise,

ηP(λ ) =



1, if λ ∈ {0,1},
1
2 , if 0 6= λ ≤ 0.3,

1, ifλ 6≤ 0.7,

0, otherwise,

(1) The identity function idX : (X ,τ)→ (X ,η) is fuzzy continuous. But idX : (X ,τP)→

(X ,ηP) is not fuzzy supra continuous because

0 = τP(0.75) 6≥ ηP(0.75) = 1.

(2) The identity function idX : (X ,ηP)→ (X ,τP) is fuzzy supra continuous. But idX : (X ,η)→

(X ,τ) is not fuzzy continuous.

Definition 2.10. Let (X ,τ) and (Y,η) be fts’s. Let f : (X ,τ)→ (Y,η) be a function.

(1) f is called fuzzy irresolute map iff f−1(µ) is r-fpo for each r-fpo µ ∈ IY and r ∈ I.

(2) f is called fuzzy irresolute open iff f (λ ) is r-fpo for each r-fpo λ ∈ IY and r ∈ I.

(3) f is called fuzzy irresolute closed iff f (λ ) is r-fpc for each r-fpc λ ∈ IY and r ∈ I.

Theorem 2.11. Let (X ,τ) and (Y,η) be fts’s satisfying the condition:

(T) τP(1−λ )≥ r implies Pclτ(λ ,r) = λ .

Then the following statements are equivalent.

(1) f : (X ,τP)→ (Y,ηP) is fuzzy supra continuous.

(2) f (Pclτ(λ ,r))≤ Pclη( f (λ ),r), for each λ ∈ IX and r ∈ I.

(3) Pclτ( f−1(µ),r)≤ f−1(Pclη(µ,r)), for each µ ∈ IY and r ∈ I.

(4) Pintτ( f−1(µ),r)≥ f−1(Pintη(µ,r)), for each µ ∈ IY and r ∈ I.

Proof. (1)⇒ (2). Suppose there exist λ ∈ IX and r ∈ I0 such that

f (Pclτ(λ ,r)) 6≤ Pclη( f (λ ),r).
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Then there exist y ∈ Y and t ∈ I0 such that

f (Pclτ(λ ,r))(y)> t > Pclη( f (λ ),r)(y).

If f−1({y}) = /0, it is a contradiction since f (Pclτ(λ ,r))(y) = 0.

If f−1({y}) 6= /0, there exists x ∈ f−1({y}) such that

f (Pclτ(λ ,r))(y)≥ Pclτ(λ ,r)(x)> t > Pclη( f (λ ),r)( f (x)). (C)

Since Pclη( f (λ ),r)( f (x))< t, by the definition of Pclη , there exists r-fpc µ ∈ IY with f (λ )≤ µ

such that

Pclη( f (λ ),r)( f (x))≤ µ( f (x))< t. (D)

Since λ ≤ f−1(µ), Pclτ( f−1(µ),r)≥ Pclτ(λ ,r). By (C) and (D),

Pclτ( f−1(µ),r)(x)≥ Pclτ(λ ,r)(x)> t > µ( f (x)) = f−1(µ)(x).

By (T), Pclτ( f−1(µ),r) 6= f−1(µ) implies τP(1− f−1(µ)) < r. Moreover, ηP(1− µ) ≥ r be-

cause Pclη(µ,r) = µ . So, ηP(1−µ)≥ r > τP( f−1(1−µ)). Hence f : (X ,τP)→ (Y,ηP) is not

fuzzy supra continuous.

(2)⇒ (3). By (2), put λ = f−1(µ). Since f ( f−1(µ))≤ µ , then

Pclτ( f−1(µ),r)≤ f−1( f (Pclτ( f−1(µ),r)))≤ f−1(Pclη(µ,r)).

(3)⇒ (4). It is easy from Theorem 1.4(3).

(4) ⇒ (1). If Pintη(µ,r) = µ , then Pintτ( f−1(µ),r) = f−1(µ). It implies τP( f−1(µ)) ≥

ηP(µ) for all µ ∈ IY .

Theorem 2.12. Let (X ,τ) and (Y,η) be fts’s. If f : (X ,τ)→ (Y,η) is fuzzy irresolute, then

f : (X ,τP)→ (Y,ηP) is fuzzy supra continuous.

Proof. Suppose there exists ρ ∈ IY such that

τP( f−1(ρ))< ηP(ρ).

Then there exists r ∈ I0 with Pintη(ρ,r) = ρ such that

τP( f−1(ρ))< r ≤ ηP(ρ). (E)
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Since f is fuzzy irresolute and Pintη(ρ,r)= ρ is r-fpo, then f−1(ρ) is r-fpo. Thus Pintτ( f−1(ρ),r)=

f−1(ρ). So, τP( f−1(ρ))≥ r. It is a contradiction for (E). Hence f is fuzzy supra continuous.

3. Some properties of fuzzy preseparation axioms

Definition 3.1. A fts (X ,τ) is said to be:

(1) r-FPs if τ(µ)≥ r for each r-fpo µ ∈ IX .

(2) r-PR0 iff for each xtqys, there exists r-fpo µ1 ∈ IX such that xt ∈ µ1 and ysqµ1, or there

exists r-fpo µ2 ∈ IX such that ys ∈ µ2 and xtqµ2.

(3) r-PR1 iff for each xtqys, there exist r-fpo sets µ1,µ2 ∈ IX such that xt ∈ µ1,ysqµ1,ys ∈ µ2

and xtqµ2.

(4) r-PR2 iff for each xtqys, there exist r-fpo sets µ1,µ2 ∈ IX such that xt ∈ µ1,ys ∈ µ2 and

µ1qµ2.

(5) r-PR2 1
2

iff for each xtqys, there exist r-fpo sets µ1,µ2 ∈ IX such that xt ∈ µ1,ys ∈ µ2 and

Pclτ(µ1,r)qPclτ(µ2,r).

(6) r-PR3 iff xtqλ for each r-fpc λ implies there exist there exist r-fpo sets µ1,µ2 ∈ IX such

that xt ∈ µ1,λ ≤ µ2 and µ1qµ2.

(7) r-PR4 iff λ1qλ2 for each r-fpc sets λi and i ∈ {1,2} implies there exist r-fpo sets µi ∈ IX

such that λi ≤ µi and µ1qµ2.

Theorem 3.2. Let (X ,τ) be a fts. Then the following statements are equivalent:

(1) (X ,τ) is r-FPs for all r ∈ I.

(2) Pintτ(λ ,r) = intτ(λ ,r) for each λ ∈ IX and r ∈ I.

(3) τ = τP.

Proof. (1)⇒ (2). Suppose there exist λ ∈ IX and r ∈ I such that

Pintτ(λ ,r) 6≤ intτ(λ ,r).

Then there exist x ∈ X and t ∈ (0,1) such that

Pintτ(λ ,r)(x)> t > intτ(λ ,r)(x).
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By the definition of Pintτ(λ ,r), there exists a r-fpo set ρ ∈ IX with ρ ≤ λ such that

Pintτ(λ ,r)(x)≥ ρ(x)> t > intτ(λ ,r)(x). (F)

By (1), τ(ρ)≥ r with ρ ≤ λ . Then

intτ(λ ,r)(x)≥ ρ(x)> t.

It is a contradiction for (F). Hence Pintτ(λ ,r)≤ intτ(λ ,r). Furthermore, by Theorem 2.4(2),

Pintτ(λ ,r) = intτ(λ ,r).

(2)⇒ (3). Since Pintτ(λ ,r) = intτ(λ ,r), by Theorems 1.3, 1.4 and 2.5, τP = τintτ = τ.

(3)⇒ (1). Suppose (X ,τ) is not r-FPs. Then there exists a r-fpo set ρ ∈ IX with τ(ρ) < r.

Thus τP(ρ)≥ r > τ(ρ).

Theorem 3.3. A fts (X ,τ) is r-PR0 iff for each xtqys, we have either xtqPclτ(ys,r) or ysqPclτ(xt ,r).

Proof. Let (X ,τ) be r-PR0. For each xtqys, if there exists r-fpo µ1 ∈ IX such that xt ∈ µ1 and

ysqµ1, then ys ∈ 1−µ1 ≤ 1− xt . By the definition of Pclτ , Pclτ(ys,r)≤ 1−µ1 ≤ 1− xt . Thus,

xtqPclτ(ys,r). Other case, similarly, ysqPclτ(xt ,r).

Conversely, for each xtqys, xtqPclτ(ys,r) implies

xt ∈ Pintτ(1− ys,r) =
(

1−Pclτ(ys,r)
)
, ysq

(
1−Pclτ(ys,r)

)
,

or ys ∈ Pintτ(1− xt ,r) and xtqPintτ(1− xt ,r). Hence (X ,τ) is r-PR0.

Theorem 3.4. A fts (X ,τ) is r-PR1 iff each xt ∈ Pt(X) is r-fpc.

Proof. Let (X ,τ) be r-PR1. For each ys ∈ 1− xt , that is, xtqys, there exists r-fpo µys ∈ IX such

that

ys ∈ µys ≤ 1− xt .

Hence 1− xt =
∨

ys∈1−xt
µys. Thus, xt is a r-fpc set.

Conversely, it is easily proved.
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Example 3.5. Let X = {a,b} be a set. We define a fuzzy topology τ : IX → I as follows:

τ(λ ) =



1, if λ ∈ {0,1},
1
2 , if λ ∈ {a1,at | 0≤ t ≤ 0.5},
1
2 , if λ ∈ {b1,bs | 0≤ s≤ 0.5},
1
2 , if λ ∈ {a1∨bs,at ∨b1,at ∨bs | 0 < t,s≤ 0.5},

0, otherwise.

If at for 0.5 < t < 1 and 0 < r ≤ 1
2 , then at > intτ(clτ(at ,r),r) = a0.5. Hence at is not 1

2 -fpo.

Similarly, if bs for 0.5 < s < 1 and 0 < r ≤ 1
2 , are not 1

2 -fpo.

(1)For each atqbs, there exist 1
2 -fpo a1,b1 ∈ IX such that

at ∈ a1,bsqa1,bs ∈ b1,atqb1.

For each atqas, either t ≤ 0.5 or s≤ 0.5. Put t ≤ 0.5. there exists 1
2 -fpo at ∈ IX such that

at ∈ at ,atqas.

For each btqbs, it is similarly proved. Hence (X ,τ) is 1
2 -PR0.

(2) By Theorem 3.4, a0.3 is not 1
2 -fpc because, 0 < r ≤ 1

2 ,

a0.3 6≥
(

clτ(intτ(a0.3,r),r) = a0.5

)
.

Thus, (X ,τ) is not 1
2 -PR1.

(3) Since a0.7 ≥
(

clτ(intτ(a0.7,r),r) = a0.5

)
, then a0.3qa0.7. For all 1

2 -fpo set λ and µ with

a0.3 ∈ λ and a0.7 ∈ µ , we have λ qµ . Thus, (X ,τ) is not 1
2 -PR2.

Theorem 3.6. Let (X ,τ) be a fts. Then the following statements are equivalent:

(1) (X ,τ) is r-PR3.

(2) If xt ∈ λ for each r-fpo λ ∈ IX , there exists r-fpo µ ∈ IX such that xt ∈ µ ≤ Pclτ(µ,r)≤ λ .

(3) If xtqλ for each r-fpc λ ∈ IX , there exist r-fpo sets µ1,µ2 ∈ IX such that xt ∈ µ1,λ ≤ µ2

and Pclτ(µ1,r)qPclτ(µ2,r).

Proof. (1)⇒ (2). Let xt ∈ λ for each r-fpo λ . Then xtq(1−λ ) for r-fpc 1−λ . Since (X ,τ) is

r-PR3, there exist r-fpo sets µ,ρ ∈ IX such that xt ∈ µ,1−λ ≤ ρ and µqρ. It implies xt ∈ µ ≤
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1−ρ ≤ λ . Since 1−ρ is r-fpc,

xt ∈ µ ≤ Pclτ(µ,r)≤ λ .

(2)⇒ (3). Let xtqλ for each r-fpc λ . Then xt ∈ 1−λ for r-fpo 1−λ . By (2), there exists a

r-fpo set µ ∈ IX such that

xt ∈ µ ≤ Pclτ(µ,r)≤ 1−λ .

Since µ is r-fpo and xt ∈ µ , by (2), there exists a r-fpo set µ1 ∈ IX such that

xt ∈ µ1 ≤ Pclτ(µ1,r)≤ µ ≤ Pclτ(µ,r)≤ 1−λ .

It implies λ ≤
(

1−Pclτ(µ,r) = Pintτ(1− µ,r)
)
≤ 1− µ . Put µ2 = Pintτ(1− µ,r). Then µ2

is a r-fpo set from the definition of Pintτ . So, Pclτ(µ2,r) ≤ 1− µ ≤ 1−Pclτ(µ1,r), that is,

Pclτ(µ1,r)qPclτ(µ2,r).

(3)⇒ (1). It is trivial.

Theorem 3.7. Let (X ,τ) be a fts. Then the following statements are equivalent:

(1) (X ,τ) is r-PR4.

(2) If λ ≤ ρ for each r-fpc λ ∈ IX and r-fpo ρ ∈ IX , there exists a r-fpo set µ ∈ IX such that

λ ≤ µ ≤ Pclτ(µ,r)≤ ρ.

(3)If λ1qλ2 for each r-fpc sets λi with i ∈ {1,2}, then there exist r-fpo sets µi ∈ IX such that

λi ≤ µi and Pclτ(µ1,r)qPclτ(µ2,r).

Proof. It is similarly proved as in Theorem 3.6.

Theorem 3.8. Let (X ,τ) be a fts. Then the following implications hold:

(r−PR4 and r−PR1) ⇒ (r−PR3 and r−PR1)

⇒ r−PR2 1
2

⇒ r−PR2⇒ r−PR1⇒ r−PR0

Proof. We show that (r−PR3 and r−PR1)⇒ r−PR2 1
2
.

For each xtqys, by Theorem 3.4 , ys is r-fpc . Since (X ,τ) is r-PR3, by Theorem 3.6(3), there

exist r-fpo sets µi ∈ IX such that xt ∈ µ1,ys ∈ µ2 and Pclτ(µ1,r)qPclτ(µ2,r). Hence (X ,τ) is

r-PR2 1
2
.

Other cases are easily proved.
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Example 3.9. Let R be a real number set. We define a fuzzy topology τ : IR→ I as follows:

τ(λ ) =


1, if λ ∈ {0,1},
1
3 , if λ = χG,

0, otherwise.

where each /0 6= Gc is a finite set.

(A) If supp(λ )= {x∈R | λ (x)> 0} is denumerable and 0≤ r≤ 1
2 , then λ ≤ intτ(clτ(λ ,r),r)=

1

λ ≤ intτ(clτ(λ ,r),r) = 1, λ ≥ clτ(intτ(λ ,r),r) = 0.

Thus, λ is 1
2 -fpo and 1

2 -fpc.

(1) For xt q ys with x 6= y and 0 ≤ r ≤ 1
2 , there exist µ,ρ ∈ IR with xt ∈ µ , ys ∈ ρ and

supp(µ)∩ supp(ρ) = /0 which supp(µ) and supp(ρ) are denumerable. So, µ q ρ .

(2) For xt q xs and 0 ≤ r ≤ 1
2 , there exist µ,ρ ∈ IR with µ(x) = t, ρ(x) = s and supp(µ)∩

supp(ρ) = {x} which supp(µ) and supp(ρ) are denumerable. So, µ q ρ . By (A), µ and ρ are
1
2 -fpo. By (1) and(2), (R,τ) is r−PR2 for 0 < r ≤ 1

2 .

Furthermore, Pcl(µ,r) = µ and Pcl(ρ,r) = ρ from (A). Hence (R,τ) is r−PR2 1
2

for 0 < r≤
1
2 .

Example 3.10. Let X = {a,b,c} be a set. We define a fuzzy topology τ : IX → I as follows:

τ(λ ) =


1, if λ ∈ {0,1},
1
2 , if λ = a1,

0, otherwise.

(a) For λ 6≤ χ{b,c} and 0≤ r ≤ 1
2 , then λ is 1

2 -fpo because

λ ≤ intτ(clτ(λ ,r),r) = 1.

(b) For λ (a) = t with 0 < t < 1 and 0≤ r ≤ 1
2 , then λ is 1

2 -fpo from (a) and 1
2 -fpc because

λ ≥ clτ(intτ(λ ,r),r) = 0.

(c) For λ ≤ χ{a,b} and 0≤ r ≤ 1
2 , then λ is 1

2 -fpc because

λ ≥ clτ(intτ(λ ,r),r) = 0.
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(1) For 0≤ r ≤ 1
2 , we have the following cases:

(Case1) For λ1qλ2 with λ1,λ2 in (b), λ1 and λ2 are both 1
2 -fpo and 1

2 -fpc

(Case2) For λ1qλ2 with λ1 in (b) and λ2 in (c) and λ1(a) = t, there exists 1
2 -fpo λ2 ∨ a1−t

such that λ1q(λ2∨a1−t).

(Case3) For λ1qλ2 with λ1 and λ2 in (c), there exist 1
2 -fpo λi ∨ a0.2 for i ∈ {1,2} such that

(λ1∨a0.2)q(λ2∨a0.2).

Thus, (X ,τ) is r-PR3 from the above cases.

(2) Let a1qb1 and 0 ≤ r ≤ 1
2 . For every r-fpo set λ with b1 ∈ λ , a1 q λ . Thus (X ,τ) is not

1
2 -PR1. Moreover, since b1 is 1

2 -fpc by (c), (X ,τ) is not r-PR3.

Theorem 3.11. Let (X ,τ) and (Y,η) be fts’s. Let f : (X ,τ)→ (Y,η) be an injective fuzzy

irresolute map. If (Y,η) is r-PRi for i ∈ {0,1,2} , then (X ,τ) is r-PRi for i ∈ {0,1,2}.

Proof. For each xtqys, since f is injective, then f (x)tq f (y)s. Since (Y,η) is r-PR2, there exist

r-fpo sets µ1,µ2 ∈ IY such that f (x)t ∈ µ1, f (y)s ∈ µ2 and µ1qµ2. Since f is a fuzzy irresolute

map, there exist r-fpo sets f−1(µ1), f−1(µ2) ∈ IX such that xt ∈ f−1(µ1),ys ∈ f−1(µ2) and

f−1(µ1)q f−1(µ2). Hence (X ,τ) is r-PR2.

Other cases are similarly proved.

Theorem 3.12. Let (X ,τ) and (Y,η) be fts’s. Let f : (X ,τ)→ (Y,η) be an injective fuzzy

irresolute and fuzzy irresolute closed map. If (Y,η) is r-PRi for i ∈ {3,4} , then (X ,τ) is r-PRi

for i ∈ {3,4}.

Proof. For each xtqλ with r-fpc set λ , since f is an injective fuzzy irresolute closed map,

then f (x)tq f (λ ) with r-fpc set f (λ ) . Since (Y,η) is r-PR3, there exist r-fpo sets µ1,µ2 ∈ IY

such that f (x)t ∈ µ1, f (λ )≤ µ2 and µ1qµ2. Since f is a fuzzy irresolute map, there exist r-fpo

sets f−1(µ1), f−1(µ2) ∈ IX such that xt ∈ f−1(µ1),λ ≤ f−1(µ2) and f−1(µ1)q f−1(µ2). Hence

(Y,τ) is r-PR3.

Other case is similarly proved.
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[4] U. Höhle and S.E. Rodabaugh, Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series,

Kluwer Academic Publishers, Boston, 1999.

[5] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous map-

pings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.

[6] A.S. Mashhour, I.A. Hasanein and S.N. El-Deeb, A note on semi-continuity and precontinuity, Indian J. Pure

Appl. Math. 13 (1982), 1119-1123.

[7] M.K. Singal and Niti Prakash, Fuzzy preopen set and fuzzy preseparation axioms, Fuzzy Sets and Systems

44 (1991), 273-281.
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