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their properties. Moreover, we investigate the relationship between fuzzy irresolutity and fuzzy (supra) continuity.
We define preseparation axioms and investigate some their properties.

Keywords: fuzzy (supra) topological spaces; fuzzy interior operators; r-fuzzy preopen (closed) sets; r-PR; spaces;

fuzzy (supra)continuity.

2000 AMS Subject Classification: 54A40, 54C10, 54D10.

1. Introduction and preliminaries

Sostak [8] introduced the fuzzy topology as an extension of Chang’s fuzzy topology [2].
Mashhour et al.[5,6] defined preopen and preclosed sets in topological spaces and investigated
properties of them. Singal and Prakash [7] extended the notion of preopen sets to fuzzy sets and
defined the separation axioms and properties of them.

In this paper, we introduce the notion of r-fuzzy preopen(closed) sets in Sostak’s fuzzy topo-

logical space. In particular, we can obtain the fuzzy supra topology induced by the family of
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r-fuzzy preopen sets of a fuzzy topological space. We show the relationship among fuzzy conti-
nuity, fuzzy supra continuity and fuzzy irresolutity. Moreover, we define the separation axioms
of fuzzy topological spaces using r-fuzzy preopen (closed) sets.

Throughout this paper, let X be a nonempty set, I = [0, 1] and Iy = (0,1]. Forax € I, 0(x) = ¢
for all x € X. The family of all fuzzy sets on X denoted by IX. For x € X and ¢ € I, a fuzzy point
x; 1s defined by

t ify=nx,
if y # x.
Let Pt(X) be the family of all fuzzy points in X. For A,u € IX, A is called quasi-coincident

x(y) =

with i, denoted by A g u, if there exists x € X such that A (x) 4 p(x) > 1. Otherwise we denote
AgU.
Definition 1.1. [8] A function 7 : IX — I is called a fuzzy supra topology on X if it satisfies the
following conditions:

(S (0) = (1) =1,

(S2) T(Vier i) > Ajer (1), for any {ut}ier C IX.
The pair (X, 7) is called a fuzzy supra topological space.

A fuzzy supra topology on X is called a fuzzy topology on X if

(O) (i1 Af2) > T(k1) A T(pa), for any py, pp € 1%
The pair (X, 7) is called a fuzzy topological space (for short, fts).
Definition 1.2. ([3,4]) A function int : IX x I — IX is called a fuzzy interior operator if it satisfies
the following conditions: for A,y € IX and r,s € 1,

1) int(1) =1, int(l,()) =,

(12) int(A,r) <
(I3) int(A ,r)/\mt(,u, r)=int(AAU,T),
(14) int(A,r) <int(A,s),if r > s,

(

(I5) int(int(A,r),r) = int(A,r).

Theorem 1.3 ([3,4]) Letint : IX xI — X be a fuzzy interior operator. Define a function T, :

X —TonX by
Tint(A) = \/{r ell|int(A,r)=2A}.
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Then 7;,; is a fuzzy topology on X.

Theorem 1.4 ([3,4]) Let (X, 7) be a fts. Define functions int;,cly : IX x I — IX as follows:
inte(A,r) = \[{u e I |u < A,7(u) >r},

ce(A,r) = N{p el |A<p,t(T—p)>r}

The following results hold:
(1) int; 1s a fuzzy interior operator.
(2) i, = 7.

(3) int;(1—2A,r) =1—cl(A,r) foreach r € I, A € IX.

2. Some properties of r-fuzzy preopen sets

Definition 2.1. Let (X, 7) be a fts. For A € IX and r €1,

(1) A is called r-fuzzy preopen (for short, r-fpo) if for 0 < s <r,
A <intc(clt(A,s),s),
(2) A is called r-fuzzy preclosed (for short, r-fpc) if for 0 < s < r,

A > cl(intz(A,s),s).

Theorem 2.2. Let (X, 7) be afts. Let A € IX and r,s € I.
(1) A is r-fpo iff 1 — A is r-fpc.
(2) Any union of r-fpo sets is r-fpo.
(3) Any intersection of r-fpc sets is r-fpc.
(4)If T(A) > r, then A is r-fpo.
(5) int¢(A,r) is r-fpo and ¢l (A, r) is r-fpc.
(6) If A is r-fpo and 0 < s < r, then A is s-fpo.

Proof. (1) By Theorem 1.4 (3), it easily proved from

A <intr(cly(A,s),s)iff 1 — A > cle(intz(1—A,s),s).
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(2) Let A; be r-fpo for i € I'. Then \/,;cr A is r-fpo from , for 0 <s <r,

\/ Ai < \/ intz(clz(Ai,s),s) < clf(intf(\/ AiyS),s).

iel iel ier
Other cases are easily proved from Definition 2.1.

Theorem 2.3. Let (X, 7) be a fts. Define a function Pint; : IX x I — IX as follows:

Pint;(A,r) = \/{u elX|u<A, pisrfpo }.

For A, 1 € IX and r € I, it holds the following properties.
(1) Pint;(1,r) = 1 and Pint;(1,0) = A.
(2) Pintc(A,r) < A.
(3) Pint (A A, r) < Pintr(A,r) A Pint:(W,r).
@) If r < sforr,s €I, then Pint;(A,r) > Pintz(A,s).
(5) Pint¢(Pint;(A,r),r) = Pint:(A,r).
(6) Pintr(A,r) = A iff A is r-fpo.
Proof. (1), (2) and (6) are easily proved from the definition of Pint;.
(3) Since A A < A, 1, we have

Pint;(A AU, r) < Pintz(A,r) A Pintz(W,r).

(4) By Theorem 2.2(6), it is trivial.
(5) From (2), we only show Pint;(A,r) < Pint;(Pint;(A,r),r). Suppose

Pint;(A,r) £ Pint;(Pintz(A,r),r).
There exist x € X and ¢ € (0, 1) such that
Pintt(A,r)(x) >t > Pcly(Pcly(A,r),r)(x). (A)

Since Pint;(A,r)(x) > t, by the definition of Pintr, there exists r-fpo set A; with A} < A such

that

Pintr(A,r)(x) > A1 (x) > 1.
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Again, since A; < A and Pcl;(A,r) > Ay, by the definition of Pint;, Pint;(Pint;(A,r),r) > A;.

Hence
Pint(Pintr(A,r),r)(x) > A1 (x) > t.
It is a contradiction for (A). Thus, Pint;(A,r) = Pint;(Pint;(A,r),r).

Theorem 2.4. Let (X, 7) be a fts. Define a function Pcl; : IX x I — IX as follows:

Pcl:(A,r) = /\{u elX|A<u, pisrfpc }.

Then:
(1) Pint;(1—A,r) =1—Pcli(A,r).
(2) intr(A,r) < Pinte(A,r) <A < Pcly(A,r) <cle(A,r).

Proof. (1) For each A € IX and r € I, we have
Pint;(1—-A,r) =\V{uecrX|u<1-A, pisrfpo}

=1-A1-peX|1—-u>A, 1—pisrfpc}
=1—Pcl;(A,r).

(2) It is easy from Theorem 2.2 (5).

Theorem 2.5. Let (X, 7) be a fts and Pint; be a function provided with the properties (1)-(4) in

Theorem 2.3. Define the function 7p : IX — I on X by

wp(A) =V{rel|Pint:(A,r)=A1}
=V{rel| Aisrfpo}
=V{rel|Pcl(1—A,r)=1-1}.

Then 1p is a fuzzy supra topology on X with tp(1) > 7(4) for all A € I*.

Proof. The map 7p is well defined from
Pint;(A,r) = A iff A is r-fpo iff Pclo(1—A,r) =1—A.

(S1) Since Pint;(0,r) <0 from Theorem 2.3(2), then Pint;(0,r) = 0. Furthermore, Pint(1,r) =
1, for all r € I. Thus tp(0) = 7p(1) = 1.
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(S2) Suppose that there exists a family {A; € IX | i € '} such that
’CP(\/ QLI) < /\ Tp(),i).
ier ier
Then there exists ry € I such that
Tp(\/ Al) <rg < /\ Tp()t,'). (B)
iel’ iel’

Since Tp(A;) > ry, for all i € T, there exist r; € I with Pint(A;,r;) = A; such that
ro < ri < tp(A;).

On the other hand, since Pint;(A;,rg) > Pintc(Ai,ri) = A;, by Theorem 2.3 (2), we have
Pint;(Ai,ro) = A

It implies forall i € T,

Pintr(\/ Ai,ro) > Pintr(Ai,rg) = A;.
iel’
It follows

Pintf(\/ li,r()) > \/ A

ier ier
Thus, Pintt(\;crAi,r0) = VierAi, that is, 7p(A) > rg. It is a contradiction for (B). Thus,
Tp(Vier i) > Aier 7p(Ai). Hence 1p is a fuzzy supra topology on X. From Theorem 2.4(2)

and Theorem 1.4(2), int(A,r) = A implies Pint;(A,r) = A. Thus, tp(1) > () for all A € IX.
Example 2.6. Let X = {a,b} be a set. We define a fuzzy topology 7 : IX — I as follows:

1, ifA=0orl,
T(A) = if A =0.4,

1
29
0, otherwise.

() If 0 # A < 0.4, then int(cl(A,r),r) = 0.4 for 0 < r < 5. Thus, A is 3-fpo. Similarly, if
A £ 0.6, then int;(clz(A,r),r) =1 for r € Iy. Thus, A is r-fpo, for all r € I.

(1) Let A =ap7Vhysand 4 =agsVby7. Then A A =0.5. By (a), A and u are %—fpo. But
A AU is not %—fpo because

05> (imf(clf(o.s,

)=0.4).

N | =

)7

M| —
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(2) From (1), Pint(A,r) = A and Pint(pt,r) = p for 0 < r < 1. But Pint (A A p,r) = 0.4 for

0<r< %. Thus,
’2 72 ,2

Therefore Pint; is not a fuzzy interior operator which it does not satisfy the condition (I3) of
Definition 1.2.

(3) We can obtain a fuzzy supra topology 7p : IX — I as follows:

(

1, ifA=0orl,

L 3f0 04
(2) = > 1f07é/l_§0.4,

1, ifA £0.6,

0, otherwise.

By (1) and (2), for A = ag7V bys and 4 = agsV by 7,
0=T1p(AAU) # (rp(x) Atp(u) =1).

Hence 7p is not a fuzzy topology.

Example 2.7. Let X = {a,b} be a set. We define fuzzy topologies 17,7 : IX — I as follows:

1, ifA=0o0rl,
nA) = y(A) =1,VA e IX.

0, otherwise,

(1) Since inty (cly(A,r),r) =1 for 0 # A € I and r € Iy, then every fuzzy set A € IX is r-fpo
and r-fpc for r € I.

(2) Since inty(cly(A,r),r) = A for A € I and r € I, then every fuzzy set A € IX is r-fpo and
r-fpc forr € I.

By (1) and (2), we obtain fuzzy supra-topologies
(TIP = YP) (A)=1,vA e IX.

Definition 2.8. Let (X,7) and (Y,n) be fuzzy (resp. supra) topological spaces. A function
f:(X,7) = (Y,n) is called fuzzy (resp. supra) continuous iff T(f~'(u)) > n(u) for each
pel.
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Example 2.9. We define fuzzy topologies 7,1 : IX — I as follows:

1, ifA€{0,1}, 1, ifA€{0,1},
t(A)=1q 1, ifA€{02,03}, mn@A)=< i ifae{03},

0, otherwise, 0, otherwise.

We can obtain fuzzy topologies Tp, Np : IX — I as follows:
(1, ifA € {0,1}, (1, ifA € {0,1),

1 ey e 1 eq el

5, if0#A<0.3, 5, if0#£A<0.3,
w(A) =4 ? _ ne(A) =1 ° _

1, ifA £0.8, 1, ifA £0.7,

0, otherwise, \ 0, otherwise,

\
(1) The identity function idy : (X,7) — (X,n) is fuzzy continuous. But idy : (X,1p) —

(X,mp) is not fuzzy supra continuous because
0= 1p(0.75) # np(0.75) = 1.

(2) The identity function idx : (X,np) — (X, Tp) is fuzzy supra continuous. Butidx : (X,n) —

(X, 7) is not fuzzy continuous.

Definition 2.10. Let (X, 7) and (Y, 7) be fts’s. Let f: (X,7) — (Y,n) be a function.
(1) f is called fuzzy irresolute map iff f='(u) is r-fpo for each r-fpo u € I and r € I.
(2) f is called fuzzy irresolute open iff f(A) is r-fpo for each r-fpo A € I and r € I.
(3) f is called fuzzy irresolute closed iff f(A) is r-fpc for each r-fpc A € I' and r € I.

Theorem 2.11. Let (X, 7) and (Y, 1) be fts’s satisfying the condition:
(T) tp(1—A) > rimplies Pcl;(A,r) = A.
Then the following statements are equivalent.
() f:(X,tp) — (Y,np) is fuzzy supra continuous.
(2) f(Pclz(A,r)) < Pcly(f(A),r), foreach A € IX and r € I.
(3) Pele(f~1(u),r) < f~1(Pely(p,r)), foreach p € I¥ and r € 1.
@) Pint(f~'(u),r) > f~1(Pinty(u,r)), foreach u € I and r € 1.

Proof. (1) = (2). Suppose there exist A € IX and r € I, such that

f(Pele(A,r)) & Pely (f(A),r).
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Then there exist y € Y and ¢ € [ such that

F(Pele(A,r))(y) >t > Pely (f(A),r)(y).

If f~1({y}) =0, it is a contradiction since f(Pcl;(A,r))(y) = 0.
If =1 ({y}) # 0, there exists x € f~'({y}) such that

f(Pele(A,r))(y) = Pele(A,r)(x) > 1 > Pely (f(A),7)(f(x))- (©)

Since Pcly (f(A),r)(f(x)) <1, by the definition of Pcly, there exists r-fpc p € I¥ with f(A) <

such that
Pcly (f(A),r)(f(x)) < u(f(x) <t. (D)

Since A < f~1(u), Pcly(f~'(u),r) > Pcly(A,r). By (C) and (D),
Pele(f~1(),r)(x) = Pele(A,r)(x) > 1> p(f(x) = 1 (1) (%)

By (T), Pel(f~(u),r) # £~ (u) implies 7p(1 — £~ (1)) < r. Moreover, np(1 — ) > r be-
cause Pcly (U, r) = . So, np(1—p) > r > 1p(f'(1—p)). Hence f: (X,tp) — (Y,7Mp) is not
fuzzy supra continuous.
(2) = (3). By (2), put A = £~ (u). Since f(f~'(u)) < u, then
Pele(f7H(1),r) < f7H(F(Pele(f (0),7))) < fH (Pely (,7)).

(3) = (4). It is easy from Theorem 1.4(3).
(4) = (1). If Pinty(u,r) = W, then Pintc(f~'(u),r) = f~'(n). It implies zp(f~1(n)) >
np(u) forall u € 1¥.

Theorem 2.12. Let (X,7) and (Y,n) be fts’s. If f: (X,7) — (Y,n) is fuzzy irresolute, then

f:(X,tp) — (Y,np) is fuzzy supra continuous.

Proof. Suppose there exists p € I' such that

w(f~'(p)) < nr(p).

Then there exists r € Iy with Pinty(p,r) = p such that

(7 (p)) <r < mp(p). (E)
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Since f is fuzzy irresolute and Pinty (p,r) = p is r-fpo, then £~ (p) is r-fpo. Thus Pint.(f ' (p),r) =

£~ Yp). So, tp(f~'(p)) > r. It is a contradiction for (E). Hence f is fuzzy supra continuous.

3. Some properties of fuzzy preseparation axioms

Definition 3.1. A fts (X, 7) is said to be:

(1) r-F Py if T(u) > r for each r-fpo u € IX.

(2) r-PRy iff for each x;qys, there exists r-fpo u; € IX such that x; € U1 and ysqup, or there
exists r-fpo Uy € I¥ such that ys € U and x;gLl;.

(3) r-PR; iff for each x;gyj, there exist r-fpo sets Uy, o € IX such that x, € U1, YsqH1,Ys € U
and x;qLL.

(4) r-PR, iff for each x;qy;, there exist r-fpo sets i, Uy € IX such that x; € Ui, ys € W and

Hi1gHo.
(5) r-PR, 1 iff for each x;qy;, there exist r-fpo sets i, o € IX such that x; € uy,ys € Up and

Pcly(Uy,r)gPclc (U, 7).

(6) 1-PRy3 iff x,gA for each r-fpc A implies there exist there exist r-fpo sets up, 1y € IX such
that x, € py, A < up and pyqu;.

(7) r-PRy iff A1gA; for each r-fpc sets A; and i € {1,2} implies there exist r-fpo sets y; € IX
such that A; < y; and U1gu,.

Theorem 3.2. Let (X, 7) be a fts. Then the following statements are equivalent:
() (X,7)isr-FPsforall r € I.
(2) Pinty(A,r) = int;(A,r) foreach A € IX and r € I.

3) T =1p.

Proof. (1)=- (2). Suppose there exist A € IX and r € I such that
Pint;(A,r) Lint:(A,r).
Then there exist x € X and ¢ € (0,1) such that

Pintc(A,r)(x) >t > intz(A,r)(x).



SOME PROPERTIES OF FUZZY PRESEPARATION AXIOMS 1149

By the definition of Pint;(A,r), there exists a r-fpo set p € I with p < A such that
Pint(A,r)(x) > p(x) >t > intr(A,r)(x). (F)
By (1), t(p) > r with p < A. Then
intz(A,r)(x) > p(x) >1t.
It is a contradiction for (F). Hence Pint;(A,r) < intz(A,r). Furthermore, by Theorem 2.4(2),
Pint(A,r) = intz(A,r).

(2)= (3). Since Pint;(A,r) = intz(A,r), by Theorems 1.3, 1.4 and 2.5, Tp = Tjp,, = 7.
(3)= (1). Suppose (X,7) is not r-FP;. Then there exists a r-fpo set p € IX with 7(p) < r.

Thus tp(p) > r > 1(p).
Theorem 3.3. A fts (X, 7) is r-PRy iff for each x,gys, we have either x,gPcl;(ys, r) or ysGPcly(x;, 7).

Proof. Let (X, ) be r-PRy. For each x,gyy, if there exists r-fpo u; € I such that x; € y; and
ysqUi, then yg € 1— U < 1—x. By the definition of Pclz, Pcle(ys,r) < 1— u < 1—x,. Thus,
x:qPclz(ys,r). Other case, similarly, ysgPclc(x;,r).

Conversely, for each x,qys, x;gPcl(ys,r) implies

x; € Pint(1 —ys,1r) = (T—Pclf(ys,r)), y@(T—PclT(ys,r)),

or ys € Pint;(1 —x;,r) and x;gPint;(1 — x,,r). Hence (X, ) is r-PRy.
Theorem 3.4. A fts (X, 7) is r-PR; iff each x; € Pt(X) is r-fpc.

Proof. Let (X, 7) be r-PR;. For each y, € 1 — x;, that is, x;gy;, there exists r-fpo My, € IX such

that
ys S .uys S T_xt~

Hence 1 —x; = vySET—x, Uy, - Thus, x; is a r-fpc set.

Conversely, it is easily proved.
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Example 3.5. Let X = {a, b} be a set. We define a fuzzy topology 7 : IX — I as follows:

(

1, ifAe€{0,1},
I, ifA e{a,a |0<t<0.5},
T(A)=1q 1 ifA e {b;,b;|0<5<0.5},
L, ifA € {a1Vbs,aVbi,a Vb |0<t,5<0.5},
0, otherwise.

\

Ifa, for05<tr<land0<r< % then a, > int;(cl;(a;,r),r) = ap.s. Hence a; is not %—fpo.
Similarly, if by for0.5 <s<land 0 <r < % are not %—fpo.

(1)For each a;gby, there exist %—fpo ai,b; € IX such that
a; € ay,bsqay,bs € by,a:,qb.
For each a;qas, either t < 0.5 or s <0.5. Put¢ <0.5. there exists %-fpo a; € IX such that
as € as,a:qag.

For each b,gbs, it is similarly proved. Hence (X, 7) is %—PRO.

=

(2) By Theorem 3.4, ag 3 is not %—fpc because, 0 < r <

aps ? (clf(intf(aog,r),r) = a0‘5>.

Thus, (X, 7) is not 3-PR;.
(3) Since ag7 > <clf(intr(ao,7,r),r) = a0.5>, then ag 3gag 7. For all %—fpo set A and u with

ap3 € A and ag7 € U, we have A gu. Thus, (X, 7) is not %—PRZ.

Theorem 3.6. Let (X, 7) be a fts. Then the following statements are equivalent:
(1) (X, 7) is -PR3.
(2) If x, € A for each r-fpo A € I, there exists r-fpo u € IX such that x, € u < Pel (i, r) < A.
(3) If x,gA for each r-fpc A € IX, there exist r-fpo sets (1, o € IX such that x; € u, A <
and Pclc (U1, r)gPclc(Uy,r).
Proof. (1)= (2). Let x, € A for each r-fpo A. Then x,g(1 — A) for r-fpc 1 — A. Since (X, 1) is

1-PR3, there exist r-fpo sets i, p € IX such that x; € u,1 —A < p and ugp. It implies x, € u <
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1—p <A.Since 1—p is r-fpc,
x €1 <Pclr(u,r) <A.

(2)= (3). Let x;gA for each r-fpc A. Then x, € 1 — A for r-fpo 1 — A. By (2), there exists a
r-fpo set p € IX such that

x €< Pel(u,r) <1—A7.
Since u is r-fpo and x; € 1, by (2), there exists a r-fpo set i; € IX such that
X € iy < Pele(py,r) < < Pele(u,r) <T—-A.

It implies A < (T—Pclf(,u,r) = Pint;(1 — u,r)) <1—pu. Put gp = Pint;(1—pu,r). Then up
is a r-fpo set from the definition of Pint;. So, Pcly(tp,r) < 1—u < 1— Pcly(uy,r), that is,
Pcle(Wy,r)gPcle (U, r).

(3)= (1). It is trivial.
Theorem 3.7. Let (X, 7) be a fts. Then the following statements are equivalent:

(1) (X, 1) is 1-PRy.

(2) If A < p for each r-fpc A € IX and r-fpo p € I%, there exists a r-fpo set y € IX such that
A < < Pelg(p,r) <p.
(3)If A1gA, for each r-fpc sets A; with i € {1,2}, then there exist r-fpo sets t; € IX such that
Ai < i and Pcly(uy,r)gPcl:(ua,r).
Proof. It is similarly proved as in Theorem 3.6.
Theorem 3.8. Let (X, 7) be a fts. Then the following implications hold:
(r—PRsand r—PR;) = (r— PR3z and r— PR;)

= r—PR,; = r—PRy=r—PR| = r— PRy
2

Proof. We show that (r — PR3 and r — PR) = r — PR2%.

For each x,gys, by Theorem 3.4 , y, is r-fpc . Since (X, 7) is r-PR3, by Theorem 3.6(3), there
exist r-fpo sets p; € IX such that x; € 1, ys € tp and Pcly(uy,r)gPcly(uy,r). Hence (X, 1) is
r-PR, 1.

Other cases are easily proved.
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Example 3.9. Let R be a real number set. We define a fuzzy topology 7 : IX — I as follows:
1, ifA€{0,1},
T(A) =4 3. ifA =y,

0, otherwise.
where each 0 £ G€ is a finite set.

(A)If supp(A) = {x € R| A(x) >0} is denumerable and 0 < r < §, then A <int(clz(A,r),r) =
1

A <intr(cle(A,r),r) =1, A > cle(intz(A,r),r) = 0.

Thus, A is %-fpo and %-fpc.

(1) For x; g ys with x #y and 0 < r < %, there exist u,p € IX with x;, € u, y, € p and

supp(p) Nsupp(p) = 0 which supp(u) and supp(p) are denumerable. So, it g p.

(2) For x; g xs and 0 < r < %, there exist u,p € IR with p(x) =t, p(x) = s and supp(p) N
supp(p) = {x} which supp(u) and supp(p) are denumerable. So, it g p. By (A), u and p are
1-fpo. By (1) and(2), (R, ) is r— PR, for 0 < r < 1.

Furthermore, Pcl(u,r) = and Pcl(p,r) = p from (A). Hence (R, T) is r — PR, ! for0<r<
1
5
Example 3.10. Let X = {a,b,c} be a set. We define a fuzzy topology 7 : IX — I as follows:

1, if A €{0,1},

T(4) = if A =a,

1

79

0, otherwise.

(@) For A £ xp.¢y and 0 <r < %, then A is %-fpo because
l S inl‘T(ClT(l,r),r) - T

(b) For A(a) =t with0O<t<land0<r< %, then A is %—fpo from (a) and %—fpc because
A > cli(int;(A,r),r) =0.

(¢) For A < Xiapy and 0 <r < %, then A is %—fpc because

A > cle(int(A,r),r) =0.
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()For0<r< %, we have the following cases:

(Casel) For A1gA, with A1, A, in (b), A; and A, are both %—fpo and %—fpc

(Case2) For A;gA, with A; in (b) and A, in (c) and A (a) = ¢, there exists %—fpo A Vai—;
such that A,g(A; Va; ;).

(Case3) For A1gA, with A; and A, in (c), there exist %—fpo AiVag, for i € {1,2} such that
(M1 Vao2)g(Az2Vao.z2).

Thus, (X, 7) is r-PR3 from the above cases.

(2) Let ajgby and 0 < r < % For every r-fpo set A with b} € A, a; g A. Thus (X, 1) is not

%—PRl. Moreover, since by is %—fpc by (¢), (X, 7) is not r-PR3.

Theorem 3.11. Let (X,7) and (Y,n) be fts’s. Let f: (X,7) — (Y,n) be an injective fuzzy
irresolute map. If (Y, n) is r-PR; for i € {0,1,2} , then (X, 7) is r-PR; for i € {0,1,2}.

Proof. For each x,gys, since f is injective, then f(x),gf(y)s. Since (Y,n) is r-PR;, there exist
r-fpo sets w1, U € I¥ such that f(x); € uy, f(y)s € Uz and pgu,. Since f is a fuzzy irresolute
map, there exist r-fpo sets 1 (uy), f~1(up) € IX such that x, € f~1(u1),ys € f~'(uz) and
N (u)gf " (u2). Hence (X, 1) is r-PR;.
Other cases are similarly proved.

Theorem 3.12. Let (X,7) and (Y,n) be fts’s. Let f: (X,7) — (Y,n) be an injective fuzzy
irresolute and fuzzy irresolute closed map. If (Y, n) is r-PR; for i € {3,4} , then (X, 7) is r-PR;
forie {3,4}.

Proof. For each x;gA with r-fpc set A , since f is an injective fuzzy irresolute closed map,
then f(x),gf(A) with r-fpc set £(1) . Since (Y,n) is r-PR3, there exist r-fpo sets iy, tp € I¥
such that f(x); € u1, f(A) < up and pygus. Since f is a fuzzy irresolute map, there exist r-fpo
sets £ (), £~ (12) € ¥ such that x; € £~ (1), < £~ (2) and £~ (1)@f ' (12). Hence
(Y,7) is r-PR;3.

Other case is similarly proved.
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