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Abstract. Fourier transform can be generalized into the fractional Fourier transform (FRFT), Linear

Canonical Transform (LCT) and simplified fractional Fourier transform (SFRFT). They extend the utili-

ties of original Fourier transform, and can solve many problems that can’t solved well by original Fourier

transform.

In this paper, we study distributional generalized two-dimensional fractional Cosine transform. Testing

function space and distributional two-dimensional fractional Cosine transform is defined. Analyticity of

the generalized two-dimensional fractional Cosine transform is proved.
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1. Introduction

In recent years, the concept of fractional operator and measure have been investigated

extensively in many engineering applications and science. Four typical examples are
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described as follows.

The first is fractional derivative and integral are defined by many mathematicians and

applied to solve some physical problems [1]. The second is the fractional Fourier transform

has been studied in the optic community and signal processing area [2]. The third is the

fractional dimension is used to measure some real world data such as coastline, cloud, dust

in the air, and network of neurons in the body [3]. The fractional dimension has being

applied widely to pattern recognition and classification. The last is fractional lower-order

moment has been used to analyse non-Gaussian signal which is more realistic than the

Gaussian model in signal processing application [4].

Fractional transform are used to compute the mined time and frequency components

of signals. Fractional operators particularly, Fractional Fourier Transform (FrFT) have

been investigated in some depth in recent years. The FrFT is an extension of the ordinary

Fourier Transform (FT) and successfully applied in the areas of optics, quantum mechanics

and signal processing. It gives more complete representation of the signal in phase space

and enlarge the number of applications of the ordinary FT [5]. In addition to the FT,

the Cosine Transform (CT), which are based on half range expression of a function over

Cosine basis function are also important tools in signal processing. Despite of some lack of

elegance in there properties compared to the FT, CT has their own areas of applications.

The idea of fractionalization of the CT was proposed in [6]. The real part of the FrFT

kernel was chosen as the kernels for a fractional Cosine transform (FrCT) as in the case of

CT where real part of FT is chosen as a CT kernel. Thus FrFT and FrCT with parameter

are finding its place in many application where FT and CT are found to be useful like

beam forming, image compression, noise removal and signal restoration.

Distributional Generalized one-dimensional Fractional Fourier transform is defined as

FrFT{f(x)} = Fα(u) =< f(x), kα(x, u) >,

Where the kernel

kα(x, u) =

√
1− i cotφ

2π
e

i

2 sinα
[(x2+u2) cosα−2xu]

, where 0 < α <
π

2
. . . (1.1)
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In this paper, Two-dimensional fractional Cosine transform is extended in the distribu-

tional generalized sense. Section 2 presents definition of two-dimensional fractional Cosine

transform and testing function space. Section 3 explains distributional two-dimensional

FrCT. Section 4 proved analyticity theorem. Section 5 concludes the paper.

2. Two-dimensional Generalized fractional Cosine transform

2.1.Two-dimensional fractional Cosine transform with parameter α of f(x, y)

denoted by Fα
c {f(x, y)} performs a linear operation, given by the integral trans-

form.

F θ
c {f(x, y)} = F θ{f(x, y)}(u, v) = F θ(u, v) =

∫ ∞
0

∫ ∞
0

f(x, y)Kθ(x, y, u, v)dxdy, (2.1)

Where the kernel

Kθ(x, y, u, v) =

√
2

π

e

iθ

2
√
i sin θ

.e

i

2
(x2+u2+y2+v2) cot θ cos(cosecθ.ux). cos (cosecθ.vy) (2.2)

2.2.The Test Function Space E.

An infinitely differentiable complex valued function φ on Rn belongs to E(Rn) if for

each compact set I ⊂ Sa,b where

Sa,b = {x, y : x, y ∈ Rn, |x| ≤ a, |y| ≤ b, a > 0, b > 0}, I ∈ Rn.

γE,p,q(φ) = sup
x,y∈I

| Dp,q
x,yφ(x, y) |

<∞, where p, q = 1, 2, 3.....

Thus E(Rn) will denote the space of all φ ∈ E(Rn) with support contained in Sa,b.

Note that the space E is complete and therefore a Frechet space. Moreover, we say

that f is a fractional Cosine transformable if it is a member of E∗, the dual space of E.

3. Distributional two-dimensional fractional Cosine transform
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The two-dimensional distributional fractional Cosine transform of f(x, y) ∈ E∗(Rn)

defined by

F c
θ {f(x, y)} = F θ(u, v) = 〈f(x, y), Kθ(x, y, u, v)〉,

where

Kθ(x, y, u, v) =

√
2

π

e

iθ

2
√
i sin θ

.e

i

2
(x2+u2+y2+v2) cot θ cos(cosecθ.ux). cos (cosecθ.vy) (3.1)

R.H.S. of eq. (3.1) has a meaning as the application of f ∈ E∗ to Kθ(x, y, u, v) ∈ E

It can be extended to the complex space as an entire function given by

F θ
c {f(x, y)} = Fθ(g, h) = 〈f(x, y), Kθ(x, y, g, h)〉. (3.2)

The right hand side is meaningful because for each g, h ∈ cn, Kθ(x, y, g, h) ∈ E, as a

function of x, y.

4. Analyticity of the Generalized two-dimensional fractional Co-

sine transform

Theorem 4.1. Let f(x, y) ∈ E∗(Rn) and let its fractional Cosine transform be defined

by (3.2). The F θ
c (g, h) is an analytic on cn if the supf ⊂ Sa,b where

Sa,b = {x, y : x, y ∈ Rn, |x| ≤ a, |y| ≤ b, a > 0, b > 0}

Moreover F c
θ (g, h) is differentiable and

Dp,q
g,hF

θ
c (g, h) = 〈f(x, y), Dp,q

g,hKθ(x, y, g, h)〉 (4.1)

Proof.

Let

g : (g1, g2, ......gj, ......gn) ∈ cn

and

h : (h1, h2, ......, hj, ......hn) ∈ cn.
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We first prove that

∂

∂qj
F θ
c (g, h) = 〈f(x, y),

∂

∂qj
Kθ(x, y, g, h)〉

For fined gj 6= 0, chose two concentric circle c and c′ with centre at gj and radii r and r1

respectively such that 0 < r < r1 < |gj|.

Let 4gj be a complex increment satisfying 0 < |4gj| < x.

Consider,

F θ
c (gj +4gj)− F θ

c (gj)

4gj
− 〈f(x, y),

∂

∂qj
Kθ(x, y, g, h)〉 = 〈f(x, y), ψ4qj(x, y)〉 (4.2)

⇒ 〈f(x, y),
1

4qj
Kθ(x, y, gj+4gj, h)−Kθ(x, y, g, h)− ∂

∂qj
kθ(x, y, g, h)〉 = 〈f(x, y), ψ4qj(x, y)〉

For any fixed x, y ∈ Rn and fixed integer p = (p1, p2, ...., pn)

Dp
xKθ(x, y, g, h) = Dp

x[Ae

i

2
(x2+g2) cot θ

cos(cosecθ.gx).B(y)],

where B(y) = e

i

2
(y2+h2) cot θ

cos(cosecθ.hy) and A =

√
2

π

e

iθ

2
√
i sin θ

Dp
xKθ(x, y, g, h) =

√
2

π

e

iθ

2
√
i sin θ

e

i

2
(x2+g2+y2+h2) cot θ

cos(cosecθ.hy)

p∑
n=0

k∑
r=0

(
p

n

)
n!

(k − 2r)!r!
(i cot θ)k−r2−rxk−2r(cosecθ.gx)p−n

cos[cosecθ.gx+
(p− n)π

2
].

(4.3)

Since for any fixed x, y ∈ Rn and fixed integer p and θ is ranging from 0 to
π

2
.

Dp
xKθ(x, y, g, h) is analytic inside and on c′, we have by Cauchy’s integral formula

Dp
xψ4gj(x, y) =

1

2πi
Dp
x

∫
c′
kθ(x, y, g̃, h)

[
1

4gj

(
1

z − gj −4gj
− 1

z − gj

)
− 1

(z − gj)2

]
dz
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Where g̃ = g1, g2....gj−1, z, gj+1...gn

Dp
xψ4qj(x, y) =

4gj
2πi

∫
c′

A(x, y, g̃, h)

(z − gj −4gj)(z − gj)2
dz

But for all z ∈ c′ and x restricted to a compact subset of Rn, 0 < θ <
π

2
,

A(x, y, g̃, h) = Dp
xkθ(x, y, g̃, h) is bounded by a constant Q.

Moreover, |z − gj −4gj| > r1 − r > 0 and |z − gj| = r1.

Therefore we have,

|Dp
xψ4gj(x, y)| = |4gj

2πi

∫
c′

A(x, y, g̃, h)

(z − gj −4gj)(z − gj)2
dz|

≤ |4gj|Q
(r1 − r)r1

Similarly, |Dq
yψ4hj(x, y)| ≤ |4hj|P

(r1 − r)r1
,

where B(x, y, g, h̃) = Dq
yKθ(x, y, g, h̃) is bounded by a constant P .

Thus, as |4gj| −→ 0, Dp
xψ4gj(x, y) tends to zero uniformly on the compact subset of Rn,

therefore it follows that ψ4gj(x, y) converges in E(Rn) to zero.

Since f(x, y) ∈ E∗ we conclude that equation (4.2) also tends to zero.

Therefore, Fθ(g, h) is differentiable with respect to gj and hj. But this is true for all

j = 1, 2, 3...., n. Hence Fθ(g, h) is analytic on cn and

Dp,q
x,yFθ(g, h) = 〈f(x, y), Dp,q

g,hKθ(x, y, g, h)〉

5. Conclusion

We have extended the two-dimensional fractional Cosine transform in the distribu-

tional generalized sense. The testing function space and Distributional generalized two-

dimensional fractional Cosine transform is defined. Analyticity theorem is also proved.

Fractional Cosine transform is closely related to fractional Fourier transform which is

most essential tool in the theory of optics and signal processing. In particular, when

the function denoting the signal is impulse type, the generalized two-dimensional fraction

Cosine transform is useful.
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