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Abstract. In this article, we introduce the sequence space BVσ (M, p,r,4u
v), where p = (pk) sequence of positive

reals, v = (vk) is any fixed sequence of non zero complex numbers, u ∈ N is a fixed number and study some of the

properties and inclusion relations on this space.
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1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively. We write

ω = {x = (xk) : xk ∈ R or C },

the space of all real or complex sequences. Let l∞, c and c0 denote the Banach spaces of

bounded, convergent and null sequences respectively. The following subspaces of ω were first

introduced and discussed by Maddox [10-11]. l(p) = {x ∈ ω : ∑
k
|xk|pk < ∞},

l∞(p) = {x ∈ ω : sup
k
|xk|pk < ∞},
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c(p) = {x ∈ ω : lim
k
|xk− l|pk = 0, for some l ∈ C }, c0(p) = {x ∈ ω : lim

k
|xk|pk = 0},

where p = (pk) is a sequence of striclty positive real numbers. The idea of Difference sequence

sets

X4 = {x = (xk) ∈ ω :4x = (xk− xk+1) ∈ X},

where X = l∞, c or c0 was introduced by Kizmaz [7]. Kizmaz [7] defined the sequence spaces,

l∞(4) = {x = (xk) ∈ ω : (4xk) ∈ l∞},

c(4) = {x = (xk) ∈ ω : (4xk) ∈ c},

c0(4) = {x = (xk) ∈ ω : (4xk) ∈ c0},

where4x = (xk− xk+1). These are Banach spaces with the norm

||x||4 = |x1|+ ||4x||∞.

After then Et [4] defined the sequence spaces

l∞(42) = {x = (xk) ∈ ω : (42xk) ∈ l∞},

c(42) = {x = (xk) ∈ ω : (42xk) ∈ c},

c0(42) = {x = (xk) ∈ ω : (42xk) ∈ c0},

where (42x) = (42xk) = (4xk−4xk+1). The sequence spaces l∞(42),c(42) and c0(42) are

Banach spaces with the norm

||x||4 = |x1|+ |x2|+ ||42x||∞.

After then R. Colak and M. Et [5] defined the sequence spaces

l∞(4m) = {x = (xk) ∈ ω : (4mxk) ∈ l∞},

c(4m) = {x = (xk) ∈ ω : (4mxk) ∈ c},

c0(4m) = {x = (xk) ∈ ω : (4mxk) ∈ c0},

where m ∈ N,

40x = (xk),

4x = (xk− xk+1),
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4mx = (4m−1xk−4m−1xk+1),

and so that

4mxk =
m

∑
i=0

(−1)i

m

i

 xk+i

and showed that these are Banach spaces with the norm

||x||4 =
m

∑
i=1
|xi|+ ||4mx||∞.

Esi and Isik [3] defined the sequence spaces

l∞(4m
v ,s, p) = {x = (xk) ∈ ω : sup lim

k
k−s|4m

v xk|pk < ∞,s≥ 0},

c(4m
v ,s, p) = {x = (xk) ∈ ω : k−s|4m

v xk−L|pk → 0(k→ ∞),s≥ 0, forsome L},

c0(4m
v ,s, p) = {x = (xk) ∈ ω : k−s|4m

v xk|pk → 0(k→ ∞),s≥ 0},

where p = (pk) is a sequence of striclty positive real numbers, v = (vk) is any fixed sequence of

non zero complex numbers, m ∈ N is a fixed number,

40
vxk = (vkxk), 4vxk = (vkxk− vk+1xk+1)

and

4m
v xk = (4m−1

v xk−4m−1
v xk+1)

and so that

4m
v xk =

m

∑
i=0

(−1)i

m

i

 vk+ixk+i.

When s=0, m=1, v=(1,1,1,.......) and pk = 1 for all k ∈ N, they are just l∞(4),c(4) and c0(4)

defined by Kizmaz[7]. When s=0 and pk = 1 for all k ∈ N, they are the following sequence

spaces defined by Et and Esi[6]

l∞(4m
v ) = {x = (xk) ∈ ω : (4m

v xk) ∈ l∞},

c(4m
v ) = {x = (xk) ∈ ω : (4m

v xk) ∈ c},

c0(4m
v ) = {x = (xk) ∈ ω : (4m

v xk) ∈ c0}.

The concept of paranorm is closely related to linear metric spaces.It is a generalization of that

of absolute value.(see[11]) Let X be a linear space. A function g : X −→ R is called paranorm,
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if for all x,y,z ∈ X ,

(PI) g(x) = 0 i f x = θ ,

(P2) g(−x) = g(x),

(P3) g(x+ y)≤ g(x)+g(y),

(P4) If (λn) is a sequence of scalars with λn→ λ (n→ ∞) and xn,a ∈ X with xn→ a (n→ ∞) ,

in the sense that g(xn−a)→ 0 (n→ ∞) , in the sense that g(λnxn−λa)→ 0 (n→ ∞).

An Orlicz function is a function M : [0,∞)→ [0,∞), which is continuous, non-decreasing

and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x)→ ∞ as x→ ∞; see [2],[14] and the

references therein.

Lindenstrauss and Tzafriri[8] used the idea of Orlicz functions to construct the sequence

space

`M = {x ∈ ω :
∞

∑
k=1

M(
|xk|
ρ

)< ∞, for some ρ > 0}.

The space `M is a Banach space with the norm

||x||= inf{ρ > 0 :
∞

∑
k=1

M(
|xk|
ρ

)≤ 1}.

The space `M is closely related to the space lp which is an Orlicz sequence space with M(x) = xp

for 1≤ p < ∞.

An Orlicz function M is said to satisfy 42 condition for all values of x if there exists a

constant K > 0 such that M(Lx)≤ KLM(x) for all values of L > 1.

A sequence space E is said to be solid or normal if (xk) ∈ E implies (αkxk) ∈ E for all sequence

of scalars (αk) with |αk|< 1 for all k ∈ N.

A sequence space E is said to be symmetric if (xπ(k)) ∈ E whenever (xk) ∈ E where π(k) is

a permutation on N.

Let σ be an injection on the set of positive integers N into itself having no finite orbits and T be

the operator defined on l∞ by T (xk) = (xσ(k)). A positive linear functional functional Φ, with

||Φ||= 1, is called a σ -mean or an invariant mean if Φ(x) = Φ(T x) for all x ∈ l∞.

A sequence x is said to be σ -convergent, denoted by x∈Vσ , if Φ(x) takes the same value, called

σ − limx, for all σ -means Φ. We have

Vσ = {x = (xk) :
∞

∑
m=1

tm,n(x) = L uniformly in n, L = σ − limx},



ON CERTAIN CLASS OF SEQUENCE SPACES OF INVARIANT MEAN 271

where for m≥ 0,n > 0.

tm,n(x) =
xk + xσ(k)+ .....+ xσm(k)

m+1
,and t−1,n = 0,

where σm(k) denotes the mth iterate of σ at n. In particular, if σ is the translation, a σ -mean

is often called a Banach limit and Vσ reduces to f, the set of almost convergent sequences; see

[9],[15],[16] and the references therein. Mursaleen [12] defined the sequence space

BVσ = {x ∈ l∞ : ∑
m
|φm,n(x)|< ∞,uniformly in n},

where

φm,n(x) = tm,n(x)− tm−1,n(x)

assuming that

tm,n(x) = 0, for m = -1.

A straight forward calculation shows that

φm,n(x) =


1

m(m+1)

m
∑
j=1

J(xσ j(k)− xσ j−1(k)) (m≥1),

xk, (m = 0).

Note that for any sequence x,y and scalar λ we have

φm,n(x+ y) = φm,n(x)+φm,n(y) and φm,n(λx) = λφm,n(x).

After then Khan[17] introduced and studied the space

BVσ (M, p,r) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|φm,n(x)|
ρ

)]pk < ∞ uniformly in n, ρ > 0},

where M is an Orlicz function, p = (pk) is any sequence of strictly positive real numbers and

r ≥ 0. Recently Khan and Ebadullah[18] introduced and studied the sequence space

BVσ (M, p,r,4) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|φm,n(4x)|
ρ

)]pk < ∞ uniformly in n, ρ > 0}.

Subsequently the spaces of invariant mean and Orlicz function have been studied by various

authors; see [1],[2],[9],[12],[13],[14],[15],[16],[17] and the references therein.

2. Main Results
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In this article, we introduce the sequence space

BVσ (M, p,r,4u
v) = {x = (xk) :

∞

∑
m=1

1
mr [M(

|φm,n(4u
vx)|

ρ
)]pk < ∞ uniformly in n, ρ > 0},

where u ∈ N is a fixed number, v = (vk) is any fixed sequence of non zero complex numbers

and study some of the properties and inclusion relations on this space.

Let M be an Orlicz function, p= (pk) be any sequence of strictly positive real numbers, u∈N

be a fixed number and r ≥ 0. Now we define the sequence spaces as follows:

We have

BVσ (M, p,r,4) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|φm,n(4x)|
ρ

)]pk < ∞ uniformly in n, ρ > 0}.

For M(x) = x we get

BVσ (p,r,4u
v) = {x = (xk) :

∞

∑
m=1

1
mr |φm,n(4u

vx)|pk < ∞ uniformly in n}.

For pk = 1, for all m, we get

BVσ (M,r,4u
v) = {x = (xk) :

∞

∑
m=1

1
mr [M(

|φm,n(4u
vx)|

ρ
)]< ∞ uniformly in n, ρ > 0}.

For r = 0 we get

BVσ (M, p,4u
v) = {x = (xk) :

∞

∑
m=1

[M(
|φm,n(4u

vx)|
ρ

)]pk < ∞ uniformly in n, ρ > 0}.

For M(x) = x and r=0 we get

BVσ (p,4u
v) = {x = (xk) :

∞

∑
m=1
|φm,n(4u

vx)|pk < ∞ uniformly in n, ρ > 0}.

For pk = 1, for all m and r=0, we get

BVσ (M,4u
v) = {x = (xk) :

∞

∑
m=1

[M(
|φm,n(4u

vx)|
ρ

)]< ∞ uniformly in n, ρ > 0}.



ON CERTAIN CLASS OF SEQUENCE SPACES OF INVARIANT MEAN 273

For M(x) = x, pk = 1, for all m and r=0, we get

BVσ (4u
v) = {x = (xk) :

∞

∑
m=1
|φm,n(4u

vx)|< ∞ uniformly in n}.

Theorem 2.1. The sequence space BVσ (M, p,r,4u
v) is a linear space over the field C of complex

numbers.

Proof. Let x,y ∈ BVσ (M, p,r,4u
v) and α,β ∈ C then there exists positive numbers ρ1 and ρ2

such that

∞

∑
m=1

1
mr [M(

|φm,n(4u
vx)|

ρ1
)]pk < ∞,

and
∞

∑
m=1

1
mr [M(

|φm,n(4u
vy)|

ρ2
)]pk < ∞

uniformly in n. Define ρ3 = max(2|α|ρ1, 2|β |ρ2). Since M is non decreasing and convex we

have
∞

∑
m=1

1
mr [M(

|αφm,n(4u
vx)+βφm,n(4u

vy)|
ρ3

)]pk

≤
∞

∑
m=1

1
mr [M(

|αφm,n(4u
vx)|

ρ3
+
|βφm,n(4u

vy)|
ρ3

)]pk

≤
∞

∑
m=1

1
mr

1
2
[M(

φm,n(4u
vx)

ρ1
)+M(

φm,n(4u
vy)

ρ2
)]< ∞

uniformly in n. This proves that BVσ (M, p,r,4u
v) is a linear space over the field C of complex

numbers.

Theorem 2.2. For any Orlicz function M and a bounded sequence p = (pk) of strictly positive

real numbers, BVσ (M, p,r,4u
v) is a paranormed space with

g(4u
vx) = inf

n≥1
{ρ

pk
K : (

∞

∑
m=1

1
mr [M(

|φm,n(4u
vx)|

ρ
)]pk)

1
K ≤ 1, uniformly in n}

where K = max(1, suppk).
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Proof. It is clear that g(4u
vx) = −g(4u

vx). Since M(0) = 0, we get inf{ρ
pk
K } = 0, for 4u

vx =

0. Now for α=β=1, we get g(4u
vx+4u

vy) ≤ g(4u
vx)+ g(4u

vy). For the continuity of scalar

multiplication let l 6= 0 be any complex number. Then by the definition we have

g(l4u
vx) = inf

n≥1
{ρ

pk
K : (

∞

∑
m=1

1
mr [M(

|φm,n(l4u
vx)|

ρ
)]pk)

1
K ≤ 1, uniformly in n}

g(l4u
vx) = inf

n≥1
{(|l|s)

pk
K : (

∞

∑
m=1

1
mr [M(

|φm,n(l4u
vx)|

(|l|s)
)]pk)

1
K ≤ 1, uniformly in n},

where s = ρ

|l| . Since |l|pk ≤ max(1,|l|H), we have

g(l4u
vx)≤ max(1, |l|H) inf

n≥1
{s

pk
K : (

∞

∑
m=1

1
mr [M(

|φm,n(l4u
vx)|

(|l|s)
)]pk)

1
K ≤ 1, uniformly in n}

g(l4u
vx) ≤ max(1, |l|H)g(4u

vx). Therefore g(l4u
vx) converges to zero when g(4u

vx) converges

to zero in BVσ (M, p,r,4u
v). Now let x be fixed element in BVσ (M, p,r,4u

v). There exists ρ > 0

such that

g(4u
vx) = inf

n≥1
{ρ

pk
K : (

∞

∑
m=1

1
mr [M(

|φm,n(4u
vx)|

ρ
)]pk)

1
K ≤ 1, uniformly in n}.

Now

g(l4u
vx) = inf

n≥1
{ρ

pk
K : (

∞

∑
m=1

1
mr [M(

|φm,n(l4u
vx)|

ρ
)]pk)

1
K ≤ 1, uniformly in n}→ 0 as l→ 0.

This completes the proof.

Theorem 2.3. Suppose that 0 < pm < tm < ∞ for each m ∈ N and r > 0. Then

(a) BVσ (M, p,4u
v)⊆ BVσ (M, t,4u

v).

(b) BVσ (M,4u
v)⊆ BVσ (M,r,4u

v).

Proof. (a) Suppose that x ∈ BVσ (M, p,4u
v). This implies that [M(

|φi,n(4u
vx)|

ρ
)]pk)≤ 1

for sufficiently large value of i, say i ≥ m0 for some fixed m0 ∈ N. Since M is non decreasing,

we have
∞

∑
m=m0

[M(
|φi,n(4u

vx)|
ρ

)]tm ≤
∞

∑
m=m0

[M(
|φi,n(4u

vx)|
ρ

)]pm < ∞.

Hence x ∈ BVσ (M, t,4u
v).

(b) The proof is trivial.
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Corollary 2.4. 0 < Pm ≤ 1 for each m, then BVσ (M, p,4u
v)⊆ BVσ (M,4u

v)

If Pm ≥ 1 for all m , then BVσ (M,4u
v)⊆ BVσ (M, p,4u

v).

Theorem 2.5. The sequence space BVσ (M, p,r,4u
v) is solid.

Proof. Let x ∈ BVσ (M, p,r,4u
v). This implies that

∞

∑
m=1

1
mr [M(

|φm,n(4u
vx)|

ρ
)]pk < ∞.

Let αk be a sequence of scalars such that |αk| ≤ 1 for all m ∈ N. Then the result follows from

the following inequality.

∞

∑
m=1

1
mr [M(

|αkφm,n(4u
vx)|

ρ
)]pk ≤

∞

∑
m=1

1
mr [M(

|φm,n(4u
vx)|

ρ
)]pk < ∞.

Hence αx ∈ BVσ (M, p,r,4u
v) for all sequence of scalars (αk) with |αk| ≤ 1 for all m ∈N when-

ever x ∈ BVσ (M, p,r,4u
v).

Corollary 2.6. The sequence space BVσ (M, p,r,4u
v) is monotone.

Theorem 2.7. Let M1,M2 be Orlicz function satisfying42 condition and

r,r1,r2 ≥ 0. Then we have

(a) If r > 1 then BVσ (M1, p,r,4u
v)⊆ BVσ (M0M1, p,r,4u

v),

(b) BVσ (M1, p,r,4u
v)∩BVσ (M2, p,r,4u

v)⊆ BVσ (M1 +M2, p,r,4u
v),

(c) If r1 ≤ r2 then BVσ (M, p,r1,4u
v)⊆ BVσ (M, p,r2,4u

v).

Proof. (a) Since M is continuous at 0 from right, for ε > 0 there exists 0 < δ < 1 such that

0≤ c≤ δ implies M(c)< ε .

If we define

I1 = {m ∈ N : M1(
|φm,n(4u

vx)|
ρ

)≤ δ for some ρ > 0,

I2 = {m ∈ N : M1(
|φm,n(4u

vx)|
ρ

)> δ for some ρ > 0,

when

M1(
|φm,n(4u

vx)|
ρ

)> δ



276 KHALID EBADULLAH

we get

M(M1(
|φm,n(4u

vx)|
ρ

))≤ {2M1

δ
}M1(

|φm,n(4u
vx)|

ρ
).

Hence for x ∈ BVσ (M1, p,r,4u
v) and r > 1

∞

∑
m=1

1
mr [M0M1(

|φm,n(4u
vx)|

ρ
)]pk = ∑

m∈I1

1
mr [M0M1(

|φm,n(4u
vx)|

ρ
)]pk + ∑

m∈I2

1
mr [M0M1(

|φm,n(4u
vx)|

ρ
)]pk .

∞

∑
m=1

1
mr [M0M1(

|φm,n(4u
vx)|

ρ
)]pk ≤ max(εh,εH)

∞

∑
m=1

1
mr +max({2M1

δ
}h,{2M1

δ
}H)

where 0 < h = inf pk ≤ pk ≤ H = sup
k

pk < ∞.

(b) The proof follows from the following inequality

1
mr [(M1 +M2)(

|φm,n(4u
vx)|

ρ
)]pk ≤C

1
mr [M1(

|φm,n(4u
vx)|

ρ
)]pk +C

1
mr [M2(

|φm,n(4u
vx)|

ρ
)]pk .

(c) The proof is straightforward.

Corollary 2.8. Let M be an Orlicz function satisfying42 condition. Then we have

(a) If r > 1 then BVσ (p,r,4u
v)⊆ BVσ (M, p,r,4u

v),

(b) BVσ (M, p,4u
v)⊆ BVσ (M, p,r,4u

v),

(c) BVσ (p,4u
v)⊆ BVσ (p,r,4u

v),

(d) BVσ (M,4u
v)⊆ BVσ (M,r,4u

v).

Proof. The proof is straightforward.
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