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Abstract. A slant Hankel operator Sφ with φ in L∞(∂D) is an operator on L2(∂D) whose representing matrix

M = (αi j) is given by αi j = 〈φ ,z−2i− j〉 where 〈,〉 is the usual inner product on L2(∂D). In this paper, the bounds

of spectral radius of the operator are determined. Also the point spectrum of the adjoint of the operator is identified.
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1. Introduction

Let D be the unit disc{z : |z| < 1} in the complex plane and let {z : |z| = 1}, the unit circle,

be the boundary ∂D of D. Let φ(z) = ∑
∞
i=−∞ aizi be a bounded measurable function on the unit

circle.Then φ ∈ L∞(∂D). The slant Hankel operator Sφ is the operator on L2(∂D) given by the

following matrix w.r.t. the usual basis {zi : i ∈ Z} of L2(∂D):

(1.1)



... ... ... ... ... ...

... a2 a1 a0 ... ...

... a0 a−1 a−2 ... ...

... ... a−3 a−4 a−5 ...

... ... ... a−6 a−7 ...

... ... ... ... ... ...


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The motivation of the construction of the matrix of the slant Hankel operator [4] has come

from the matrix of slant Toeplitz operator given in [2].

2. Spectral Radius of Sφ

In this section, we attempt to determine an expression for the spectral radius of the operator

Sφ . We begin by proving the following.

Theorem 2.1. Let φ in L∞(∂D) be essentially bounded away from 0. If < φn > is a sequence in

L∞(∂D) such that ‖φn−φ‖∞→ 0, then limn→∞(Sφn) = r(Sφ ).

Proof: Take ρ > 1 and δ > 1. Using lemma 3.1 [3], there exists an ε > 0 such that δ |φ |< |ψ|<

ρ|φ | a.e. whenever ‖ψ−φ‖∞ < ε for any L∞(∂D) function ψ . We can choose large integer N

such that ‖φn−φ‖< ε whenever n > N. Therefore, we have for each n > N,

δ |φ |< |φn|< ρ|φ |.

From [5], we have

r(Sφ ) = lim
n→∞
‖ψn‖

1
n ,(1.2)

where ψn = Sn
|φ |2(1). We can write for each n > N,

r(Sδφ )≤ r(Sφn)≤ r(Sρφ ).

It gives

δ r(Sφ )≤ liminf
n→∞

r(Sφn)6 limsup
n→∞

≤ ρr(Sφ ).

Making ρ,δ → 1, we get limn→∞ r(Sφn) = r(Sφ ). For trigonometric polynomial φ , it is shown

in [5], that

r(Sφ ) = lim
n→∞

(
∫ 2π

0

n−1

∏
k=0
|φ((−2)k

θ)|2 dθ

2π
)

1
2n .

We can also have the same result for continuous φ . This completes the proof.
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Corrollary 2.2. Let φ be a non-zero continuous function on ∂D. Then

r(Sφ ) = lim
n→∞

(
∫ 2π

0

n−1

∏
k=0
|φ((−2)k

θ)|2 dθ

2π
)

1
2n

Now, we make use of Ergodic theory results. Consider the positive measure space (∂D,A,µ),

where µ is the normalized lebesgue measure dθ

2π
. Let ν be a function on ∂D defined as ν(eiθ ) =

e−2iθ . Then ν is a measure preserving continuous map. Also consider the composition operator

T on Lp(∂D),1 ≤ p < ∞ induced by ν i.e. T f = f oν for any f εLp(∂D). It is also easy to see

that ν is ergodic. Then by Birkhoff ergodic theorem, we have that

for any f εLp(∂D),1≤ p < ∞, 1
n ∑

n−1
k=0 T k f → l a.e.

in Lp and for some constant l i.e.

‖1
n

n−1

∑
k=0

T k− l‖p→ 0,as,n→ ∞.

But for each n,

∫ 2π

0
1
n ∑

n−1
k=0 T k f dθ

2π

=
∫ 2π

0

1
n

n−1

∑
k=0

f ((−2)k
θ)

dθ

2π

=
1
n

n−1

∑
k=0

∫ 2π

0
f ((−2)k

θ)
dθ

2π

=
∫ 2π

0
f

dθ

2π
.

Also,

|
∫ 2π

0

1
n

n−1

∑
k=0

T k dθ

2π
− l| ≤ ‖1

n

n−1

∑
k=0

T k f − l‖1

≤ ‖1
n

n−1

∑
k=0

T k f − l‖p→ ∞

as n→ ∞. Therefore, l =
∫ 2π

0 f dθ

2π
.

Theorem 2.3. For any φεL∞(∂D), e
∫ 2π

0 log |φ | dθ

2π ≤ r(Sφ ).

Proof. Since φ is bounded above,

−∞≤
∫ 2π

0
log |φ |dθ

2π
< ∞.
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Without loss of generality, we can take

−∞ <
∫ 2π

0
log |φ |dθ

2π
< ∞.

Therefore, log |φ | is integrable. So applying Birkhoff ergodic theorem to the L1 function log |φ |,

we have

1
n

n−1

∑
k=0

log |φ((−2)k
θ)| →

∫ 2π

0
log |φ |dθ

2π

a.e. on∂D. Therefore,

[
n−1

∏
k=0
|φ((−2)k

θ)|]
1
n = e

1
n ∑

n−1
k=0 log |φ((−2)kθ)|(1.3)

→ e
∫ 2π

0 log |φ | dθ

2π(1.4)

a.e. on ∂D. Now from (1), we get

r(Sφ ) ≥ limsup
n→∞

‖ψ(n)‖
1
2n
1

= limsup
n→∞

[
∫ 2π

0
Sn
|φ |2(1)

dθ

2π
]

1
2n

= limsup
n→∞

[
∫ 2π

0

n−1

∏
k=0
|φ((−2)k

θ)|2 dθ

2π
]

1
2n .

As f (x) = x
1

2n is a concave function on [0,∞), therefore using Lebesgue dominated convergence

theorem, we have for each n,

e
∫ 2π

0 log |φ | dθ

2π ≤ r(Sφ )

Theorem 2.4. For any φεL∞(∂D), such that log |φ | is integrable,

σp(S∗φ )⊆ {λ : |λ |= e
∫ 2π

0 log |φ | dθ

2π }.

Proof. Let λ be an eigenvalue of S∗
φ

. We show that λ 6= 0. If possible, let λ = 0. Then there

exists f 6= 0 in L2(∂D) such that S∗
φ

f = 0. It gives φ(θ) f ((−2)) = 0 a.e. θ . Therefore, we have

for almost every θ in [0,2π), f (−2θ) = 0 whenever φ(θ) 6= 0. But log |φ | is integrable and so

φ 6= 0 a.e. on ∂D. Let E = θε[0,2π) : f (θ) = 0. Then E is invariant under ν and ν is ergodic.

So, m(E) = 0 or m(E) = 1 where m is the normalized lebesgue measure on ∂D. Using the fact
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that ν is onto in [0,2π), we have m(E) 6= 0. Therefore, m(E) = 1. It implies f = 0 a.e. on ∂D,

a contradiction. Therefore λ 6= 0. Corresponding to the eigenvalue λ ,there exists a unit vector

g 6= o in L2(∂D) such that S∗
φ

g = λg. It gives φ(θ)g((−2)θ) = λg(θ) a.e. θ [0,2π) : g(θ) 6= 0.

Consider E1 = {θε[0,2π) : g(θ) 6= 0}. Then E1 is also invariant under ν and ν is ergodic.

Therefore,m(E1) = 0 or m(E1) = 1. But g 6= 0 and so m(E1 6= 0). Hence m(E1) = 1. Thus, we

get g 6= 0 a.e. on ∂D. As (E1) is invariant under ν ,goνn 6= 0 a.e. on ∂D for every n.

Now we have for each n,

[
n−1

∏
k=0
|φ((−2)k

θ)|]|g((−2)n
θ)|= |λ |n|g(θ)|

a.e. θ .

But goνn 6= 0 a.e. on ∂D and therefore

[
n−1

∏
k=0
|φ((−2)k

θ)|]
1
n = |λ | |g(θ)| 1n

|g((−2)nθ)| 1n
(1.5)

a.e. θ . Now we show that

|g(θ)| 1n

|g((−2)nθ)| 1n
→ l

a.e. θ on ∂D. By the definition of g, log |g|
|goν | = log |φ | − log |λ | and so log |φ | − log |λ | is

integrable. Therefore by Birkhoff ergodic theorem, we have,

1
n

n−1

∑
k=0

log
|g((−2)kθ)|
|g((−2)k+1θ)|

→
∫

∂D
log

|g|
|goν |

= 0

a.e. θ . So,

|g(θ)| 1n

|g((−2)nθ)| 1n
= e

1
n ∑

n−1
k=0 log |g((−2)kθ)|

|g((−2)k+1θ)| → l

a.e. θ . Therefore, we get

|λ |= e
∫ 2π

0 log |φ | dθ

2π .

Hence,

σp(S∗φ )⊆ {λ : |λ |= e
∫ 2π

0 log |φ | dθ

2π }.

Let us consider the mapping τ(eiθ ) = e2iθ for θ in [0,2π). Using Theorem [3,4.1] we can have

the following consequences.
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Corollary 2.5.Let φ be an invertible L∞(∂D) function such that log |φ | is integrable. If σp(A∗φ )∩

σp(S∗φ ) 6= /0,then there exists functions f ,g in L2(∂D) such that

g( f oτ) = f (goν)a.e.,on∂D

Corollary 2.6. Let φ be an invertible L∞(∂D) function such that log |φ | is integrable. Then for

any λ such that |λ | 6= e
∫ 2π

0 log |φ | dθ

2π ,Sφ −λ is invertible iff S∗
φ
−λ is onto.

3. Isometry of S∗
φ

In this section, we assume that S∗
φ

is an isometry. Here is one characterization for φ .

Theorem 3.1. For a L∞(∂D) function φ ,S∗
φ

is an isometry iff |φ(θ)|2 + |φ(θ +π)|2 = 2 a.e. θ

in [0,2π).

Proof. Let f be any L2(∂D) function. Then

‖S∗φ f‖2
2

=
∫ 2π

0
|φ(θ)|2| f (−2θ)|2 dθ

2π

=
∫ 2π

0
[
|φ(θ

2 )|
2 + |φ(θ

2 +π)|2

2
]| f (−2θ)|2 dθ

2π

= ‖Mψg‖2
2,

where g(θ) = f (−θ) and ψ(θ) = [
|φ( θ

2 )|
2+|φ( θ

2 +π)|2
2 ]

1
2 a.e. θ in [0,2π). But, ‖Mψg‖2 = ‖g‖2

iff |ψ|= 1 a.e. on ∂D. Also, ‖ f‖2 = ‖g‖2. Using the above theorem, we can easily check that

S∗
φα

is an isometry for each complex number α where φα(θ) =
α+eiθ√
1+|α|2

.

Theorem 3.2. Let φ be an invertible L∞(∂D) function such that log |φ | is integrable. Then

σp(S∗φ )∩{µ : |µ| = 1} 6= /0 if and only if φ = λ [ f
f oν

] for some |λ | = 1 and f in L2(∂D) with

| f |= 1 a.e. on ∂D and S∗
φ

f = λ f .
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Proof. ∫ 2π

0
log |φ(θ)|dθ

2π
=

1
2
{
∫ 2π

0
log |φ(θ

2
)|dθ

2π
+

∫ 2π

0
log |φ(θ

2
+π)|dθ

2π
}

=
1
2

∫ 2π

0
log |φ(θ

2
)||φ(θ

2
+π)|dθ

2π

≤ 1
2

∫ 2π

0
log[
|φ(θ

2 )|
2 + |φ(θ

2 +π)|2

2
]
dθ

2π

But S∗
φ

is an isometry and using Theorem 2.1, we get∫ 2π

0
log |φ(θ)|dθ

2π
≤ 1

2

∫ 2π

0
log1

dθ

2π
= 0.

Therefore,

e
∫ 2π

0 log |φ(θ)| dθ

2π ≤ 1.

Suppose σp(S∗φ )∩{µ : |µ|= 1} 6= /0. Then by Theorem 1.4, we have

e
∫ 2π

0 log |φ(θ)| dθ

2π = 1.

Therefore, the set {θε[0,2π) : |φ(θ)φ(θ +π)|= |φ(θ)|2+|φ(θ)+π|2
2 } has measure 1. So, we have

|φ(θ)| = |φ(θ +π)| a.e. θ . It gives |φ | = 1 a.e. on ∂D. Let µεσp(S∗φ )be such that |µ| = 1.

Then, there exists non-zero g in L2(∂D) such that S∗
φ

g = µg. So, we have |goν | = |g| a.e. and

so |g|oν = |g|. Since ν is ergodic, we can take without loss of generality that |g| = 1 a.e. on

∂D. Hence, we have φ = λ [ f
f oν

] where λ = µ and f = g.
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